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Abstract. In this paper, some new lower bounds for the smallest singular value of a square

complex matrix A are derived. A key tool to obtain these bounds is using some Hermitian matrices

which are, in the sense of Loewner matrix ordering, below the Hermitian part of A or, more generally,

below the Hermitian part of the unitary equivalences of A. Two types of new bounds are proposed.

The first bound can be applied to matrices with positive diagonal entries and strictly diagonally

dominant Hermitian parts. It is always at least as large (never worse) as pure Gersgorin-based

bound due to C.R. Johnson [C.R. Johnson. A Gersgorin-type lower bound for the smallest singular

value. Linear Algebra Appl., 112:1–7, 1989.]. The other bound is complementary with the first

one and it can be effectively applied to matrices whose Hermitian parts are very far from diagonal

dominance.
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1. Introduction. It is well known that lower bounds for the smallest singular

value σn(A) of an n × n complex matrix A have many potential theoretical and

practical applications. Following [4] and [5], recall that σn(A) indicates not only

whether or not A is nonsingular, but also how far (in a unitary invariant norm)

from the singular matrices A is. Moreover, it is also a key ingredient in the spectral

condition number σ1(A)/σn(A) (where σ1(A) is the largest singular value of A), which

is commonly used in studying numerical calculations involving A. So, lower bounds

for the smallest singular value in terms of possible simple functions of the entries of

a matrix are of interest.

Several results of this type are available in the literature. We first mention the

bound derived by Varah in [13] for matrices which are simultaneously strictly diago-

nally dominant by rows and columns and bounds for more general classes of matrices

obtained by Varga in [14]. Bounds involving the determinant of the matrix as well as

∗Received by the editors on August 28, 2010. Accepted for publication on April 30, 2011. Handling

Editor: Panayiotis Psarrakos.
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the Euclidean norm of its rows and columns were presented in [3] and [11]. Due to the

relationship with our results, we also mention Gersgorin-based bounds given in [6],

[7] and [9] and bounds based on some variants of Gersgorin theorem proposed in [8].

In this paper we present some further simple lower bounds for the smallest singular

value of a square complex matrix A. To get them we make use of the known fact

that the smallest singular value of a matrix A is greater than or equal to the smallest

eigenvalue of the Hermitian part H(A) of A and focus on Hermitian matrices which

are, in the sense of Loewner matrix ordering, below H(A).

In Section 2, we present a condition for a square real matrix to be a P -matrix and

we recall some basic information on the Loewner matrix ordering. In Sections 3 and

4, we develop two different applications of this ordering to the problem of bounding

the smallest singular value. These applications are complementary and require a

computational cost of O(n2) elementary operations to bound the smallest singular

value of an n × n matrix.

In Section 3, we derive Gudkov-type bounds for the smallest singular value. We

show that these bounds are sharper than those of [8] for the matrices considered

therein. A limitation of the proposed bounds follows from the fact that they provide

nontrivial results only for matrices which, by means of unitary transformations, be-

come matrices whose Hermitian parts are strictly diagonally dominant. In Section

4, we obtain the bounds that are complementary with the bounds from Section 3

and which can be applied to more general matrices. These bounds, as shown in an

example, can also improve bounds obtained in [6] and [8]. The paper is closed with

conclusions presented in Section 5.

2. H(A)-type bounds for σn(A). For a given complex matrix A = (aij)1≤i,j≤n,

we define

Pk(A) =
∑

j 6=k

|akj |, Qk(A) =
∑

j 6=k

|ajk|, k = 1, . . . , n,(2.1)

and the Hermitian part of A, i.e., the matrix

H(A) =

(

1

2
(aij + āji)

)

1≤i,j≤n

.

A matrix A = (aij)1≤i,j≤n is said to be strictly diagonally dominant (by rows) if, for

each k = 1, . . . , n, |akk| > Pk(A).

Denote the singular values of A and real eigenvalues of H(A) by σi(A) and

λi(H(A)) (i = 1, . . . , n), respectively, and assume that:

σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A), λ1(H(A)) ≥ λ2(H(A)) ≥ · · · ≥ λn(H(A)).
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It is well-known (Corollary 3.1.5 of [5]) that

σn(A) ≥ λn(H(A))(2.2)

and that

λn(H(A)) ≤ Re(λ) ≤ λ1(H(A))(2.3)

hold for any eigenvalue λ of A (5 of Section 14-2 of [2]).

Applying Gersgorin theorem to the matrix H(A), where A is a square complex

matrix such that H(A) is positive definite, the bound (2.2) becomes

σn(A) ≥ min
1≤k≤n

{Re(akk) − Pk(H(A))}.(2.4)

In fact, (2.4) is given in Theorem 1 in [7]. This formula provides a nontrivial bound for

σn(A) whenever H(A) is strictly diagonally dominant with positive diagonal entries.

Of course, as singular values of a Hermitian positive definite matrix coincide with

its eigenvalues, and taking into account (2.2), this bound can be obviously extended

to derive a lower bound σn(B) ≥ σn(A) for any complex matrix B such that A :=

H(UBV ) is positive definite strictly diagonally dominant for some unitary matrices

U, V .

Let us notice that Gersgorin theorem was also used in Theorem 3 of [7] to derive

the following bound for σn(A): σn(A) ≥ min1≤k≤n{|akk| − 1

2
(Pk(A) + Qk(A))}. It

is easy to see that, for matrices with positive diagonal entries, bound (2.4) is always

at least as large as the bound from the aforementioned theorem and it is essentially

better for A such that 1

2
(Pr(A) + Qr(A)) > Pr(H(A)), where r is the index for

which the right hand-side in the latter bound (the bound proposed in [7]) attends the

minimum. The following example illustrates this fact.

Example 2.1. Let

A =

(

3 2

−2 3

)

.

Then the bound of Theorem 3 of [7] gives σ2(A) ≥ 1 and, since H(A) is a diagonal

matrix with diagonal entries equal to 3, bound (2.4) gives σ2(A) ≥ 3. In this case

σ2(A) =
√

13.

A real square matrix such that all its principal minors are positive is called a P -

matrix. The following result collects the above inequalities relating to singular values

and eigenvalues and also provides a class of P -matrices.

Proposition 2.2. If A is a square real matrix with positive diagonal entries such

that H(A) is positive definite, then A is a P -matrix, and (2.2), (2.3), and

σn(A) ≥ min
1≤k≤n

{akk − Pk(H(A))}(2.5)
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(see (2.1)) hold.

Proof. Formulae (2.2), (2.3) and (2.5) follow from the hypotheses and the previous

comments.

To show that A is a P -matrix suppose that B is a principal submatrix of A of order

k, 1 ≤ k ≤ n. Clearly, H(B) coincides with the corresponding principal submatrix of

H(A). Then, by hypothesis, H(B) is positive definite and so 0 < λn(H(B)) ≤ Re(µ)

for any eigenvalue µ of B. Hence det B > 0 and the result follows.

It should be pointed out that Proposition 2.2 can also be applied to matrices

whose Hermitian parts belong to a class of P -matrices different from the class of

strictly diagonally dominant with positive diagonal entries (for instance, the class of

B-matrices introduced in [10]).

Further lower bounds for σn(A), sharing a similar type of information on A, were

derived in [8]. We derive a new bound in Section 3 that improves these bounds in all

examples considered in [8].

Observe that, by Corollary 3.1.5 of [5], σ1(A) ≥ λ1(H(A)) and so, lower bounds

for σ1(A) could be derived in a similar way to those for σn(A).

We shall close this section by recalling the definition of Loewner ordering and a

basic result of it. Given two Hermitian matrices A,B, we write B � A if A − B is

positive semidefinite. The partial ordering on the class of Hermitian matrices induced

by � is called the Loewner ordering. The following result is well-known (Corollary

4.3.3 of [4]).

Theorem 2.3. Let A,B be two Hermitian matrices with eigenvalues λ1(A) ≥
λ2(A) ≥ · · · ≥ λn(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B). If A � B, then λk(A) ≤
λk(B), k = 1, . . . , n.

In the next two sections, we shall present two different applications of Loewner

ordering to derive new lower bounds of the smallest singular value of a matrix.

3. A new Gudkov-type bound for the smallest singular value. We start

this section by introducing some notations related to Gudkov’s condition for nonsin-

gularity. Let A = (aij)1≤i,j≤n and let R1(A) := P1(A) (see (2.1)). Then we define for

each i = 2, . . . , n

Ri(A) :=

i−1
∑

k=1

|aik|
Rk(A)

|akk|
+

n
∑

k=i+1

|aik|.(3.1)

Before stating Gudkov’s nonsingularity condition [1] we mention that matrices

that satisfy it are known in the literature as Nekrasov matrices ([12]).
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Theorem 3.1. Let A = (aij)1≤i,j≤n be a complex matrix such that |aii| > Ri(A)

for i = 1, . . . , n. Then A is nonsingular.

The following result is an immediate consequence of Theorem 2 of [12].

Theorem 3.2. Let A = (aij)1≤i,j≤n be a complex matrix with positive diagonal

entries satisfying aii > Ri(A) for i = 1, . . . , n. Then all eigenvalues of A have positive

real parts.

For our purposes, we will need the following weaker version of the previous result:

Theorem 3.3. Let A = (aij)1≤i,j≤n be a complex matrix with nonnegative diag-

onal entries satisfying aii ≥ Ri(A) for i = 1, . . . , n. Then all eigenvalues of A have

nonnegative real parts.

Proof. Let ε > 0 and consider the matrix Aε := A + εI. Then one can check

that the positive diagonal entries of Aε satisfy aii + ε > Ri(A) ≥ Ri(Aε), and so, by

Theorem 3.2, all eigenvalues of Aε have positive real parts. Hence Re(λi) + ε > 0

for any eigenvalue λi of A. Taking into account that these inequalities hold for any

ε > 0, the result follows.

Now we are ready to present our main result for Hermitian strictly diagonally

dominant matrices. To state it the following notion of the last landing index is needed.

Let {bi}i=1,...,n be a nonincreasing ordered sequence of real numbers. The index

j such that bj > bj+1 = bj+2 = · · · = bn will be called the ll-index (last landing

index) for {bi}i=1,...,n. If the elements of the sequence coincide, then we set j := n;

otherwise, j belongs to {1, . . . , n − 1}.

Theorem 3.4. Let A be an n × n Hermitian matrix strictly diagonally dom-

inant with positive diagonal entries and let F be a permutation matrix such that

Ã = (ãrs)1≤r,s≤n := FAFT satisfies

ã11 − P1(Ã) ≥ ã22 − P2(Ã) ≥ · · · ≥ ãnn − Pn(Ã) =: w

(see (2.1)) and ãii ≥ ãkk if i > k and ãii −Pi(Ã) = ãkk −Pk(Ã). Let j be the ll-index

of {ãii−Pi(Ã)}i=1,...,n, let z := ãjj−Pj(Ã) and set v := w if j = n and v := min{(w+

z)/2, ãj+1,j+1} otherwise. Let D be the diagonal matrix D = diag{d1, . . . , dn} with

di := v for i ≤ j and, for all i > j, di := ãii − Ri(Ã − Di) (see (3.1)), where Di :=

diag{d1, . . . , di−1, 0 . . . , 0}. Then the smallest singular value σn(A) of A satisfies

σn(A) ≥ min{v, ãj+1,j+1−Rj+1(Ã−D), ãj+2,j+2−Rj+2(Ã−D), . . . , ãnn−Rn(Ã−D)}.
(3.2)

Proof. We shall prove that Ã − D is positive semidefinite. As j is the ll-index of
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{ãii − Pi(Ã)}i=1,...,n and v ≤ (w + z)/2, we have

ãii − v ≥ ãii −
w + z

2
≥ ãii − (ãii − Pi(Ã)) = Pi(Ã) = Pi(Ã − D) ≥ Ri(Ã − D),

for any index i with 1 ≤ i ≤ j, and

ãii − di = ãii − (ãii − Ri(Ã − Di)) = Ri(Ã − Di) = Ri(Ã − D),

for any index i with i > j. So, Ã − D satisfies the hypotheses of Theorem 3.3 and

therefore, as a Hermitian matrix, Ã − D is positive semidefinite. Then D � Ã and

by Theorem 2.3, the smallest eigenvalue of Ã is greater than or equal to the smallest

eigenvalue of D, which is its smallest diagonal entry. Since λn(Ã) = λn(A) = σn(A),

we obtain (3.2).

If all rows of A have the same diagonal dominance (i.e., if a11 − P1(A) = · · · =

ann − Pn(A)), then the previous result leads again to the bound (2.5).

Let us particularize Theorem 3.4 in the important case in which there exists a

unique row with the minimal strict diagonal dominance.

Corollary 3.5. Let A be a matrix satisfying the hypotheses of Theorem 3.4

with j = n − 1. Then, with the notation of Theorem 3.4, the smallest singular value

σn(A) of A satisfies

σn(A) ≥ min{v, ãnn − Rn(Ã − D)}.

Our next result applies Theorem 3.4 to non-Hermitian matrices.

Corollary 3.6. Let B be an n × n complex matrix such that A := H(UBV ) is

positive definite strictly diagonally dominant for some unitary matrices U, V . Then

the smallest singular value σn(B) of B satisfies

σn(B) ≥ min{v, ãj+1,j+1−Rj+1(Ã−D), ãj+2,j+2−Rj+2(Ã−D), . . . , ãnn−Rn(Ã−D)},
(3.3)

where v, Ã = (ãrs)1≤r,s≤n, j, and D are defined as in Theorem 3.4.

Proof. Since U, V are unitary matrices, σn(UBV ) = σn(B) and( 3.3) follows by

comment on page 3 and by applying Theorem 3.4 to A = H(UBV ).

Let us particularize the previous result in the important case in which the Her-

mitian part possesses a unique row with the minimal strict diagonal dominance.

Corollary 3.7. Let B be a matrix satisfying the hypotheses of Corollary 3.6

with j = n − 1. Then the smallest singular value σn(B) of B satisfies

σn(B) ≥ min{v, ãnn − Rn(Ã − D)},
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where v, Ã = (ãij)1≤i,j≤n and D are defined as in Theorem 3.4.

Remark 3.8. Theorem 3.4 and Corollary 3.6 still hold if we replace the choice

v := min{(w + z)/2, ãj+1,j+1} by v := min{(w + z)/2, ãnn}, as it can be checked

from their proofs. Although v is smaller with this choice, the remaining terms of the

right-hand sides of the bounds (3.2) and (3.3) can be greater.

Remark 3.9. Observe that forming the matrix A := H(UBV ) requires (n2−n)/2

sums and divisions, calculating the diagonal dominance of each row of A to transform

it into Ã requires n2 − 2n sums, n subtractions and O(n log n) comparisons and

obtaining v requires 1 sum, 1 division and n− j + 1 comparisons. Moreover, forming

D, Ã − D, obtaining Rn(Ã − D), calculating the differences ãj+1,j+1 − Rj+1(Ã −
D), ãj+2,j+2 − Rj+2(Ã − D), . . . , ãnn − Rn(Ã − D) and checking Gudkov’s condition

requires O(n2) elementary operations. Finally, additional n − j + 1 comparisons are

needed. So, the computational cost for obtaining the bound of Corollary 3.6 for the

smallest singular value of an n × n matrix if UBV is known has the order of O(n2)

elementary operations. Example 4.7 illustrates how U, V can be chosen in practice.

Remark 3.10. Similarly as in the proof of Theorem 3.4 one can show that a

strictly diagonally dominant Hermitian A with positive diagonal entries is, in the

Loewner ordering, over D = diag(d, ..., d), where d = mink{akk − Pk(A)} and in

consequence (see Corollary 3.6), for B satisfying the hypotheses of Corollary 3.6,

obtain the bound (2.4).

Remark 3.11. Following Remark 3.10 and the definition of Ri(A), it is easy

to see that for a matrix B with positive diagonal entries satisfying the hypotheses

of Corollary 3.6, the bound (3.3) is always at least as large as the bound (2.4) (and

therefore at least as large as the bound given in Theorem 3 of [7]) and for B such

that all sums of the first i − 1 terms in Pi(H(UBV )), i = 2, ..., n, are nonzero the

bound (3.3) is essentially better than the bound (2.4) (and therefore essentially better

than the bound given in Theorem 3 of [7]). Moreover, if B satisfies the hypotheses

of Corollary 3.6 and r is the index for which the right hand-side in the bound (2)

from [8] attends the minimum, our experiments show that, when Pr(B) is “close” to

Qr(B), the bound (3.3) is better than the bound (2) of [8].

We shall close this section giving examples which illustrate efficiency of our results.

We consider the matrices used in Section 5 of [8] to compare the best bounds for the

smallest singular value. Our new bounds will always improve bounds obtained in [8]

for these examples.
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Example 3.12. Let us start with the matrices A1 and A := H(A1) with

A1 =





224 21 55

61 137 66

−83 −26 175



 , A =





224 41 −14

41 137 20

−14 20 175



 , Ã =





224 −14 41

−14 175 20

41 20 137



 .

Then, with the notations of Theorem 3.4, we have z = 141, w = 76 and also v =

min{137, 217

2
} = 217

2
= d1 = d2. So we have R1(Ã − D) = P1(Ã − D) = 55,

R2(Ã−D) = 1540

231
+20 = 6160

231
and R3(Ã−D) = 4510

231
+ 246400

30723
≈ 27.54. Then d3 = ã33−

R3(Ã−D) ≈ 109.46 and the bound of Corollary 3.6 is σ3(A1) ≥ min{108.5, 109.46} =

108.5. Let us observe that σ3(A1) = 117.83 and the best bound found in [8] was 55.72.

Let us now consider the matrices A2 and A := H(A2) with

A2 =





259 −9 44

−18 94 −2

−43 8 243



 , A =





259 − 27

2

1

2

− 27

2
94 3

1

2
3 243



 , Ã =





259 1

2
− 27

2
1

2
243 3

− 27

2
3 94



 .

Then, with the notations of Theorem 3.4, we have z = 479

2
, w = 155

2
and also v =

min{94, 634

4
} = 94 = d1 = d2. So we have R1(Ã−D) = P1(Ã−D) = 14, R2(Ã−D) =

7

165
+3 = 502

165
and R3(Ã−D) = 189

165
+ 1506

24585
≈ 1.20. Then d3 = ã33−R3(Ã−D) ≈ 92.80

and the bound of Corollary 3.6 is σ3(A2) ≥ min{94, 92.80} = 92.80. Let us observe

that σ3(A2) = 92.88 and the best bound found in [8] was 87.84.

The last matrix studied in [8] was A3:

A3 =





10 1 1

1 20 1

1 1 30



 , A := H(A3) = A3, Ã =





30 1 1

1 20 1

1 1 10



 .

Then, with the notations of Theorem 3.4, we have that z = 18, w = 8 and v =

min{10, 13} = 10 = d1 = d2. So we have R1(Ã − D) = P1(Ã − D) = 2, R2(Ã − D) =
1

10
+ 1 = 11

10
and R3(Ã − D) = 1

10
+ 11

100
= 0.21. Then d3 = ã33 − R3(Ã − D) = 9.79

and the bound of Corollary 3.6 is σ3(A3) ≥ min{10, 9.79} = 9.79. Let us observe that

σ3(A3) = 9.86 and the best bound found in [8] was 9.64.

4. Complementary results to bound the smallest singular value. In this

section, we present another application of the Loewner ordering that complements the

results of the previous section. Let us recall (Definition 2.5.11 in [5]) that an n × n

complex matrix A = (aij)1≤i,j≤n is said to be strictly diagonally dominant of its row

entries if |aii| > |aij | for each i = 1, . . . , n and all j 6= i.

Theorem 4.1. Let M = (mij)1≤i,j≤n be a Hermitian matrix strictly diagonally

dominant of its row entries and with positive diagonal. If there exists 0 < c(M) <

min1≤i≤n{mii} such that the matrix C := M − c(M)(1, . . . , 1)T (1, . . . , 1) is strictly

diagonally dominant with positive diagonal entries, then σn(M) ≥ σn(C).
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Proof. Observe that the Hermitian matrix M −C is positive semidefinite because

its eigenvalues are 0 (with multiplicity n − 1) and nc(M) > 0. So, C � M and by

Theorem 2.3, the smallest eigenvalue of M (which coincides with σn(M)) is greater

than or equal to the smallest eigenvalue of C (which coincides with σn(C)).

Corollary 4.2. Let A = (aij)1≤i,j≤n be an n × n complex matrix such that

M := H(UAV ) is a matrix characterized in Theorem 4.1 for some unitary matrices

U, V . Then the smallest singular value σn(A) of A satisfies σn(A) ≥ σn(C), where

C is defined in Theorem 4.1, and for lower bounds for σn(C) one can use the bounds

obtained in Sections 2 and 3.

Proof. As U, V are unitary matrices, σn(A) = σn(UAV ) and the assertion follows

from Theorem 4.1.

The efficiency of the results of this section depends on the spectral properties of

the matrix C, and the following remark provides some suggestions on the choice of

the number c(M).

Remark 4.3. As c(M) is positive, in order to reach our purposes (i.e., either the

matrix C becomes strictly diagonally dominant or its strict row diagonal dominance

is increased) it is necessary that the number q of nonpositive off-diagonal entries of

M satisfies 2q < n(n − 1) since otherwise we increase the sum of the absolute values

of the off-diagonal entries. In this case, a good choice to diminish the positive off-

diagonal entries and to control the increasing of the absolute values of the remaining

off-diagonal entries is the choice c(M) := m, where m is the arithmetic mean of the

off-diagonal entries. Let us mention two exceptions for this choice:

• m does not satisfy 0 < m < min1≤i≤n{mii},
• 2(q + r(s)) ≥ n(n − 1), where s is the least positive off-diagonal entry of M

and r(s) denotes the number of off-diagonal entries of M equal to s.

In the first case we recommend the choice c(M) := s and in the second case the

choice c(M) := min{m, s}. Finally, let us observe that the choice of c(M) proposed

here increases the computational cost considered in Remark 3.9 in at most (n2 − n−
2)/2 sums, one division and at most (n2 − n)/2 + 1 comparisons. The computation

of the matrix

C = M − c(M)(1, . . . , 1)T (1, . . . , 1)

requires (n2 + n)/2 elementary operations. Thus we still keep a computational cost

of O(n2) elementary operations for an n × n matrix, as in Remark 3.9.

We shall close Section 4 by examples illustrating efficiency of Theorem 4.1 and

Corollary 4.2.
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Example 4.4. Let

M =

















10 5 4 3 2 1

5 10 3 2 1 4

4 3 10 1 5 2

3 2 1 10 4 5

2 1 5 4 10 3

1 4 2 5 3 10

















,

with σ6(M) = 2.6411. According to Remark 4.3, the choice of c(M) is c(M) = m,

where m = 3 is the arithmetic mean of the off-diagonal entries. Then, by Theorem

4.1 and denoting by G := c(M)(1, . . . , 1)T (1, . . . , 1), we can write

M = C + G =

















7 2 1 0 −1 −2

2 7 0 −1 −2 1

1 0 7 −2 2 −1

0 −1 −2 7 1 2

−1 −2 2 1 7 0

−2 1 −1 2 0 7

















+

















3 · · · · · · · · · · · · 3
...

...
...

...
...

...

3 · · · · · · · · · · · · 3

















,

and σ6(M) ≥ σ6(C) ≥ 1 by (2.5). Let us observe that σ6(C) = 1.028. With the choice

of c(M) = s = 1 as the least positive off-diagonal entry of M , the corresponding

matrix C = M − G is not strictly diagonally dominant. Observe that, by Corollary

4.2, we also have σ6(A) ≥ σ6(C) ≥ 1 for the matrix

A =

















10 12 5 9 2 3

−2 10 4 5 2 10

3 2 10 2 7 −2

−3 −1 0 10 6 5

2 0 3 2 10 6

−1 −2 6 5 0 10

















since H(A) = M (σ6(A) = 5.4345).

In contrast to Theorem 3.4, Theorem 4.1 can be applied to matrices that are very

far from diagonal dominance, as the following example shows.

Example 4.5. For any n odd, let us consider the following n × n matrix M =

(mij)1≤i,j≤n:

M =



















2n n − 1 n + 1 · · · n − 1 n + 1

n − 1 2n n − 1 · · · n + 1 n − 1
...

. . .
...

...
. . .

...

n − 1 n + 1 n − 1 · · · 2n n − 1

n + 1 n − 1 n + 1 · · · n − 1 2n



















,
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with diagonal entries mii = 2n and off-diagonal entries mij = n − 1 if i + j is odd

and mij = n + 1 if i + j is even. In this case, since one half of the off-diagonal entries

coincide with the least positive off-diagonal entry s = n− 1 of M , the choice of c(M)

corresponding to Remark 4.3 is c(M) = s = n− 1 = min{m, s}, and so , by Theorem

4.1, we can write M = C + c(M)(1, . . . , 1)T (1, . . . , 1):



















n + 1 0 2 · · · 0 2

0 n + 1 0 · · · 2 0
...

. . .
...

...
. . .

...

0 2 0 · · · n + 1 0

2 0 2 · · · 0 n + 1



















+





















n − 1 · · · · · · · · · · · · n − 1
...

...
...

...
...

...
...

...

n − 1 · · · · · · · · · · · · n − 1





















,

C =



















n + 1 0 2 · · · 0 2

0 n + 1 0 · · · 2 0
...

. . .
...

...
. . .

...

0 2 0 · · · n + 1 0

2 0 2 · · · 0 n + 1



















.

Then σn(M) ≥ σn(C) ≥ 2 by (2.5). With the choice c(M) = m, where m = n is the

arithmetic mean of the off-diagonal entries, the corresponding matrix

C = M − c(M)(1, . . . , 1)T (1, . . . , 1) =



















n −1 1 · · · −1 1

−1 n −1 · · · 1 −1
...

. . .
...

...
. . .

...

−1 1 −1 · · · n −1

1 −1 1 · · · −1 n



















and σn(M) ≥ σn(C) ≥ 1 by (2.5).

In our next example we consider a matrix that has both positive and negative

entries.

Example 4.6. Let

M =





7 5 3

5 10 −2

3 −2 10



 ,

with σ3(M) = 1.7145. In this case, 2(q+r(s)) = 2(2+2) ≥ 3(3−1) = 6 and therefore,

following Remark 4.3 (see (ii)), we choose c(M) = min{m, s} = min{2, 3} = 2. So,
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by Theorem 4.1, we can write

M =





5 3 1

3 8 −4

1 −4 8



 +





2 2 2

2 2 2

2 2 2





and σ3(M) ≥ σ3(C). By (2.5), σ3(C) ≥ 1. In fact, σ3(C) = 1.5472. With the choice

c(M) = s = 3, the corresponding matrix C = M − c(M)(1, . . . , 1)T (1, . . . , 1) is not

strictly diagonally dominant.

An easy application of Corollary 4.2 appears when U and/or V are permutation

matrices. Since most of the off-diagonal entries should be positive as commented in

Remark 4.3, and in fact the bounds are better if we increase the number of positive

off-diagonal entries, we can apply the previous results with signature matrices in

addition to the permutation matrices. The following example comes from Example 2

of Section 17-12 of [2] and illustrates this idea.

Example 4.7. Let

B =









11 −3 −5 1

1 −5 −3 11

−5 1 11 −3

−3 11 1 −5









.

Let F be the permutation matrix such that BF exchanges columns 2 and 4 of B, so

that BF is strictly diagonally dominant with positive diagonal entries (and Hermi-

tian). Using the signature matrix S = diag{1, 1,−1,−1}we obtain

M := S(BF )S =









11 1 5 3

1 11 3 5

5 3 11 1

3 5 1 11









.

According to Remark 4.3, the choice of c(M) is c(M) = 3, i.e. c(M) is equal to the

arithmetic mean of the off-diagonal entries. Then, by Theorem 4.1, we can write

M = C + c(M)(1, . . . , 1)T (1, . . . , 1) =









8 −2 2 0

−2 8 0 2

2 0 8 −2

0 2 −2 8









+









3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3









and σ4(B) = σ4(M) ≥ σ4(C) ≥ 4 by (2.5), which is in fact optimal because σ4(B) = 4

(see Example 2 of Section 17-12 of [2]).

The fifth example of this section shows that our bounds can improve those pre-

sented in [6] (and again bounds from [8]).
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Example 4.8. Let

A =





0.75 0.5 0.4

0.5 1 0.6

0 0.5 1





be the matrix considered in Example 4 of [6]. Then, by Theorem 2 therein, we get

σ3(A) ≥ 0.056 (the true value of the minimal singular value is σ3(A) = 0.2977).

Observe that M := H(A) satisfies

M =





0.75 0.5 0.2

0.5 1 0.55

0.2 0.55 1



 = C +





0.2 0.2 0.2

0.2 0.2 0.2

0.2 0.2 0.2



 , C =





0.55 0.3 0

0.3 0.8 0.35

0 0.35 0.8



 .

Hence, by (2.3), Theorem 4.1 and (2.6), σ3(A) ≥ σ3(M) ≥ σ3(C) ≥ 0.15 (note that,

by Theorem 3 from [8], we get the bound 0.0086).

We have compared our bounds with others sharing a similar type of information

on a matrix. However, our bounds can also improve the bounds having “a different

nature” than ours, as those of [11]. For example, for a 3 × 3 diagonal matrix D =

diag(d1, d2, d3) with d1 ≥ d2 ≥ d3 > 0, the bound (22) of [11] is σ3(D) > (2/3)d3 and

the bound (2.5) gives σ3(D) ≥ d3, which is in fact an equality.

5. Conclusions. This paper deals with lower bounds for the smallest singular

value σn(A) of a complex square matrix A. We use the fact that the smallest singular

value of a matrix is not less than the smallest eigenvalue of its Hermitian part, which is

combined with well known result about Loewner ordering. Theorem 3.4 from Section 3

gives an estimation for Hermitian matrices strictly diagonally dominant with positive

diagonal entries, and consequently for (up to permutation) matrices, Hermitian parts

of which have this property. If any main diagonal entry is not positive, it is easy

to remedy it since σn(A) is a unitarily invariant function of A. In particular, if all

diagonal entries of A are nonzero then, after multiplication of A by diagonal matrix D

with the entries equal to the quotients of the conjugate of the entry and its modulus,

the diagonal entries of DA will be positive. In Section 4 the result is generalized

to the class of matrices obtained from the previous one by appropriate rank-one

perturbations.

The presented bounds are simple, in the sense that they can be computed easily

and require a computational cost of O(n2) elementary operations to bound the small-

est singular value of an n × n matrix. Numerical examples illustrate the sharpness

of the proposed bounds, comparing to known ones. Although results of Section 3

can be applied only to matrices such that their Hermitian part can be transformed

into a strictly diagonally dominant matrix by means of unitary transformation, the

results of Section 4 can be applied to matrices whose Hermitian parts are very far

from diagonal dominance.
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