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THE EQUATION XA + AX∗ = 0 AND THE DIMENSION
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Abstract. We solve the matrix equation XA+AX∗ = 0, where A ∈ Cn×n is an arbitrary given

square matrix, and we compute the dimension of its solution space. This dimension coincides with

the codimension of the tangent space of the ∗congruence orbit of A. Hence, we also obtain the (real)

dimension of ∗congruence orbits in Cn×n. As an application, we determine the generic canonical

structure for ∗congruence in Cn×n and also the generic Kronecker canonical form of ∗palindromic

pencils A + λA∗.
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1. Introduction. We are interested in the solution of the equation

XA + AX∗ = 0 , (1.1)

where A ∈ C
n×n is a given arbitrary square matrix and X∗ denotes the conjugate

transpose of the unknown X. This equation is closely related to the equation

XA + AXT = 0 (1.2)

(where XT denotes the transpose of X), which has been solved in the recent work [7],

and the present paper can be seen as the continuation of that work. In particular, the

main techniques used in [7] for equation (1.2) are still valid for equation (1.1) and, for

the sake of brevity, many of the arguments will be referred to that paper. However,

there are several important differences between both equations that have led us to

address them separately. The main difference is that whereas (1.2) is linear in C, (1.1)

is not, though it is linear in R. Then, the solution space of (1.1) is not a complex

but a real subspace of C
n×n. To illustrate this fact and the difference between both
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equations, let us consider the scalar case. If A is a complex number and X is a scalar

unknown, then the solution of (1.2), provided A 6= 0, is X = 0. By contrast, the

solution of (1.1), for A 6= 0, consists of the set of purely imaginary complex numbers.

This is connected to the theory of orbits, which is one of the main motivations to

address the resolution of (1.1).

The ∗congruence orbit of A, denoted by O(A), is the set of matrices which are
∗congruent to A, that is,

O(A) = {PAP ∗ : P is nonsingular} .

The congruence orbit of A is defined in a similar way replacing P ∗ by PT . It is

known that the congruence orbit of A is a complex manifold [3] in C
n×n, considered

as a vector space over the field C. By contrast, the ∗congruence orbit of A is not a

manifold in C
n×n over C but over the real field R. The link between the orbits and

the solution of the matrix equations above is the tangent space. We will see that the

tangent space of O(A) at the point A is the set

TA =
{

XA + AX∗ : X ∈ C
n×n

}
.

As a consequence, the dimension of the solution space of (1.1) is equal to the codi-

mension of this tangent space, which is in turn equal to the codimension of O(A).

Since O(A) is a real manifold, we have to consider here real dimension instead of

the complex dimension considered in [7]. For more information about the theory of

orbits and its relationship with (1.1), the interested reader may consult [7] and the

references therein.

Another relevant difference between equations (1.1) and (1.2) comes from the

reduction to the canonical form, which is the basic step in our resolution procedure.

More precisely, to solve (1.1) (respectively, (1.2)) we first transform A into its canoni-

cal form for ∗congruence (resp., congruence), CA, and then we solve the corresponding

equation with CA instead of A. From the solution of this last equation we are able

to recover the solution of the original equation by means of a change of variables in-

volving the ∗congruency (resp., congruency) matrix leading A to CA. The canonical

forms for congruence and ∗congruence bear a certain resemblance but they are not

equal [9]. Both of them consist of three types of blocks, and these blocks coincide for

just one type (Type 0), though the other two types have a similar appearance. These

differences in the canonical forms lead in some cases to different solutions, though the

techniques used to achieve these solutions are similar. In particular, in both cases the

equation for CA is decomposed into smaller equations involving the canonical blocks.

One of the relevant differences related with this is that the hardest cases for equation

(1.2) are no longer present in (1.1). The main consequence of this is that, for (1.1),

we are able to give an explicit solution of this last equation for all types of blocks (we
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want to stress that though in [7] the complete solution of (1.2) was obtained, there

is a particular case for which this solution was not given explicitly, but through an

algorithm). Then, provided that the change matrix leading A to its canonical form

for ∗congruence is known, we give a complete explicit solution of (1.1).

Among the applications of equations (1.1) and (1.2) there are two specific contexts

where they are of particular interest. The first one is the theory of orbits, mentioned

above, where the solution of these equations, and the determination of the dimension

of their solution space, may have numerical applications in the computation of the

canonical form for congruence (or ∗congruence) of A (see the introduction of [7] for

details). In the second place, the more general equations XA + BXT = C and

XA + BX∗ = C arise in the perturbation theory of the generalized palindromic

eigenvalue problem [5]. Also, these equations naturally appear in intermediate steps

in the design of structure-preserving algorithms for this kind of eigenvalue problems

[11]. Related with these two contexts, in [7] the dimension of the solution space of (1.2)

has been used to determine the generic Kronecker canonical form of T -palindromic

pencils. In a similar way, the dimension of the solution space of (1.1) allow us to

determine the generic Kronecker canonical form of ∗palindromic pencils. The same

approach was followed in [6] to derive the generic Kronecker canonical form of singular

matrix pencils (though the notion of genericity in [6] is different to the one considered

in the present paper). We also want to remark that other equations somewhat related

to (1.1) and (1.2) have been considered in [4, 12] in relation with Hamiltonian systems.

It is worth to point out that in the recent work [11, Lemma 8] mentioned above,

the authors have provided necessary and sufficient conditions for the existence of a

unique solution of XA + BX∗ = C (and the same was done in [5, Lemma 5.10]

for the equation XA + BXT = C). Forty years earlier, Ballantine considered in [2,

Theorem 2] the non-homogeneous equation XA + AX∗ = C, with C Hermitian and

A Hermitian positive definite, and he gave necessary and sufficient conditions for the

existence of a positive stable solution. In the present paper we are mainly interested in

the case where the homogeneous equation (1.1) for general A has a multiple solution.

Actually, as a consequence of our codimension count, we will see that (1.1) never has

a unique solution (see Theorem 5.1). This is coherent with the characterization given

in [11] when specialized to (1.1).

The paper is organized as follows. In Section 2, we recall the canonical form for
∗congruence and we also establish the relationship between (1.1) and the theory of

orbits using the tangent space. In Section 3, we summarize the dimension count of

the solution space of (1.1) in terms of the canonical form for ∗congruence of A. In

Section 4, we solve (1.1) and, as a consequence, we prove the result stated in Section

3. In Section 5, we provide the generic canonical structure for ∗congruence in C
n×n,

and also the generic Kronecker canonical form of ∗palindromic pencils. Finally, in
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Section 6, we summarize the most relevant contributions of the paper and we present

some lines of future research.

2. The canonical form for ∗congruence. To calculate the real dimension of

the solution space of (1.1) we will make use of the following result, whose proof mimics

the one of Lemma 1 in [7] and is omitted.

Lemma 2.1. Let A,B ∈ C
n×n be two ∗congruent matrices such that B = PAP ∗.

Let Y ∈ C
n×n and X := P−1Y P . Then Y is a solution of Y B+BY ∗ = 0 if and only

if X is a solution of XA + AX∗ = 0. Therefore, the linear mapping Y 7→ P−1Y P

is an isomorphism between the solution space (over R) of Y B + BY ∗ = 0 and the

solution space (over R) of XA + AX∗ = 0, and, as a consequence, both spaces have

the same real dimension.

Lemma 2.1 indicates that the solution of (1.1) can be recovered from the solution

of the equation obtained by replacing A with another ∗congruent matrix B = PAP ∗.

This suggests a natural procedure to solve (1.1), namely, to reduce A by ∗congruence

to a simpler form and then solve the equation with this new matrix as a coefficient ma-

trix instead of A. We will use as this simple form the canonical form for ∗congruence

introduced by Horn and Sergeichuk [9] (see also [10, 14]).

In order to recall the canonical form for ∗congruence, let us define the following

k × k matrices as in [9],

Γk =




0 (−1)k+1

. .
.

(−1)k

−1 . .
.

1 1

−1 −1

1 1 0




(Γ1 = [1]),

and the k × k Jordan block with eigenvalue λ ∈ C,

Jk(λ) =




λ 1 0

λ
. . .

. . . 1

0 λ




(J1(λ) = [λ]).

Also, we define, for each µ ∈ C, the 2k × 2k matrix

H2k(µ) =

[
0 Ik

Jk(µ) 0

] (
H2(µ) =

[
0 1

µ 0

])
.
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Theorem 2.2. (Canonical form for ∗congruence) [9, Theorem 1.1 (b)] Each

square complex matrix is ∗congruent to a direct sum, uniquely determined up to per-

mutation of summands, of canonical matrices of the three types:

Type 0 Jk(0)

Type I αΓk, |α| = 1

Type II H2k(µ), |µ| > 1

One of our main motivations to address the resolution of (1.1) is because of its

relation with the theory of orbits. In this context, our interest focuses not on the

explicit solution of (1.1) but on the dimension of its solution space over R. The

connection between (1.1) and the ∗congruence orbits of A is shown in the following

result. We omit the proof because it is similar to the one of Lemma 2 in [7].

Lemma 2.3. Let A ∈ C
n×n be given and let O(A) be the ∗congruence orbit of A.

Then the tangent space of O(A) at A is

TA =
{
XA + AX∗ : X ∈ C

n×n
}

.

As a consequence of Lemma 2.3, the real dimension of the solution space of (1.1)

over R is the codimension of O(A). This motivates the following definition.

Definition 2.4. Given A ∈ C
n×n, the codimension of A is the codimension

of its ∗congruence orbit O(A) (this codimension coincides with the dimension of the

solution space of XA + AX∗ = 0).

We want to stress again that, since O(A) is not a manifold over C but over R, we

are considering real dimension in Definition 2.4.

3. Main results. As a consequence of Lemma 2.1, the codimension of a given

matrix A is equal to the codimension of its canonical form for ∗congruence. Then, we

may restrict ourselves to A being a direct sum

A = diag(D1, . . . ,Dp) , (3.1)

where D1, . . . ,Dp are canonical blocks of Type 0, I and II as in Theorem 2.2. Following

an analogous procedure to the one in [7, §3], we partition the unknown X = [Xij ]
p
i,j=1

in (1.1) conformally with the partition of A in (3.1), where Xij is a block with the

appropriate size. Then (1.1) is equivalent to the system of p2 equations obtained by

equating to zero all the (i, j) blocks in the left hand side of (1.1). In particular, for

the diagonal (i, i) block, we get

XiiDi + DiX
∗
ii = 0, (3.2)
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and, for the (i, j) and (j, i) blocks together, we get

XijDj + DiX
∗
ji = 0

XjiDi + DjX
∗
ij = 0.

(3.3)

Then (1.1) is decoupled into p smaller independent equations (3.2), for i = 1, . . . , p,

together with p(p−1)/2 independent systems of equations (3.3), for 1 ≤ i < j ≤ p. As

a consequence, the dimension of the solution space of (1.1) is the sum of the dimension

of the solution spaces of all equations (3.2), that is, the sum of the codimensions of the

blocks Di, and all systems of equations (3.3). This motivates the following definition.

Definition 3.1. Let M ∈ C
m×m and N ∈ C

n×n. Then the real interaction

between M and N , denoted by inter (M,N), is the real dimension of the solution

space (X,Y ) over R of the linear system

XM + NY ∗ = 0

Y N + MX∗ = 0,

for the unknowns X ∈ C
n×m and Y ∈ C

m×n.

Then we have the following result.

Lemma 3.2. The real codimension of the block diagonal matrix D = diag(D1,

D2, . . . ,Dp) is the sum of the real codimensions of the diagonal blocks Di for all i =

1, . . . , p, and the sum of the real interactions between Di and Dj for all 1 ≤ i < j ≤ p.

The main result of the paper is stated in Theorem 3.3 below. It shows the real

codimension of the ∗congruence orbit of an arbitrary matrix A ∈ C
n×n in terms of the

canonical form for ∗congruence of A. We stress that, instead of the complex dimension

considered in [7], here we deal with real dimension, which implies that some factors

of 2 appear in the statement of the theorem. Before stating Theorem 3.3 we want to

remark an important difference with respect to [7, Theorem 2] for congruence orbits:

observe that in Theorem 3.3 there is no contribution from interactions between Type

I and Type II blocks. We will prove that these interactions are always zero.

From now on, we will use the standard notation ⌊q⌋ (respectively, ⌈q⌉) for the

largest (resp., smallest) integer that is less (resp., greater) than or equal to q. We will

use also the notation i :=
√
−1.

Theorem 3.3. (Breakdown of the codimension count) Let A ∈ C
n×n be a

matrix with canonical form for ∗congruence,

CA =Jp1
(0) ⊕ Jp2

(0) ⊕ · · · ⊕ Jpa
(0)

⊕ α1Γq1
⊕ α2Γq2

⊕ · · · ⊕ αbΓqb

⊕ H2r1
(µ1) ⊕ H2r2

(µ2) ⊕ · · · ⊕ H2rc
(µc),
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where p1 ≥ p2 ≥ · · · ≥ pa. Then the real codimension of the orbit of A for the action

of ∗congruence, i.e., the dimension of the solution space of (1.1) over R, depends only

on CA. It can be computed as the sum

cTotal = c0 + c1 + c2 + c00 + c11 + c22 + c01 + c02

whose components are given by:

1. The codimension of the Type 0 blocks

c0 =

a∑

i=1

2
⌈pi

2

⌉
.

2. The codimension of the Type I blocks

c1 =

b∑

i=1

qi.

3. The codimension of the Type II blocks

c2 =
c∑

i=1

2ri .

4. The codimension due to interactions between Type 0 blocks

c00 =

a∑

i,j=1
i<j

inter(Jpi
(0), Jpj

(0)) ,

where

inter(Jpi
(0), Jpj

(0)) =





2pj , if pj is even,

2pi, if pj is odd and pi 6= pj,

2(pi + 1), if pj is odd and pi = pj .

5. The codimension due to interactions between Type I blocks

c11 =
∑

2min{qi, qj} ,

where the sum runs over all pairs of blocks (αiΓqi
, αjΓqj

), i < j, in CA such

that: (a) qi and qj have the same parity (both odd or both even) and αi = ±αj,

and (b) qi and qj have different parity and αi = ±iαj.

6. The codimension due to interactions between Type II blocks

c22 =
∑

4min{ri, rj} ,

where the sum runs over all pairs (H2ri
(µi),H2rj

(µj)), i < j, of blocks in CA

such that µi = µj.
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7. The codimension due to interactions between Type 0 and Type I blocks

c01 = Nodd ·
b∑

i=1

2qi ,

where Nodd is the number of Type 0 blocks with odd size in CA.

8. The codimension due to interactions between Type 0 and Type II blocks

c02 = Nodd ·
c∑

i=1

4ri ,

where Nodd is the number of Type 0 blocks with odd size in CA.

We want to stress several remarkable differences between Theorem 3.3 and the

corresponding result in [7, Theorem 2] for the congruence orbits. The first one is the

absence of any interaction between Type I and Type II blocks in Theorem 3.3, as

noticed before the statement. Also, the codimension of Type I blocks in Theorem

3.3 is not exactly twice the codimension of Type I blocks in [7, Theorem 2], and for

both the codimension and the interaction of Type II blocks, there is a summand in

[7, Theorem 2] that is no longer present in Theorem 3.3.

Theorem 3.3 provides the dimension of the solution space of (1.1). In order to

get the solution, we can follow the procedure below:

1. Transform A into its canonical form for ∗congruence: CA = PAP ∗.

2. Solve the equation Y CA +CAY ∗ = 0. For this, decompose this equation into

the smaller equations (3.2) and (3.3) and solve these equations independently.

3. Compute X = P−1Y P as stated in Lemma 2.1.

In the following section, we will show how to solve (3.2) and (3.3) for the Type 0, I

and II blocks of CA. As a consequence, we completely solve (1.1) up to the knowledge

of the ∗congruency matrix P leading A to its canonical form for ∗congruence CA.

4. Codimension of individual blocks and interactions. In this section, we

compute all quantities appearing in Theorem 3.3, namely the codimension of the Type

0, Type I and Type II blocks in the canonical form for ∗congruence of A, and the

interaction between pairs of blocks. We want to stress that our procedure does not

only give the dimension of the solution space of (1.1), but also the explicit solution

of this equation.

Most of the arguments employed in [7] for equation (1.2) are still valid for equation

(1.1), and also the conclusions are the same. Nonetheless, in certain cases (1.1)

requires additional arguments. We will focus mainly on these cases and refer to [7]

for the remaining ones. For the sake of brevity, we will only state three lemmas. In
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Lemma 4.1 we will group the results regarding the codimension of individual blocks.

Lemma 4.2 contains the interactions due to pairs of blocks with the same type and in

Lemma 4.3 we deal with the interaction between blocks of different type. We recall

that we are considering real dimension instead of the complex one considered in [7].

Lemma 4.1. (Codimension of individual blocks)

(i) The real codimension of an individual k × k Type 0 block is

codim(Jk(0)) = 2

⌈
k

2

⌉
.

(ii) The real codimension of an individual k × k Type I block is

codim(αΓk) = k.

(iii) The real codimension of an individual k × k Type II block is

codim(H2k(µ)) = 2k.

Proof. Following similar arguments to the ones in [7, §4] for the congruence we

find that the solution of XJk(0) + Jk(0)X∗ = 0 is

X =




x1 0 0 0 0 0 . . . 0

0 −x1 0 x2 0 x3 . . . x k
2

−x2 0 x1 0 0 0 . . . 0

0 0 0 −x1 0 x2 . . . x k
2
−1

−x3 0 −x2 0 x1 0 . . . 0
...

...
...

...
...

...
. . .

...

−x k
2

0 −x k
2
−1 0 −x k

2
−2 0 . . . 0

0 0 0 0 0 0 . . . −x1




(k even),

X =




x1 0 0 0 0 . . . 0

−x2 −x1 x2 0 x3 . . . x k+1

2

0 0 x1 0 0 . . . 0

−x3 0 −x2 −x1 x2 . . . x k−1

2

...
...

...
...

...
. . .

...

−x k+1

2

0 −x k−1

2

0 −x k−3

2

. . . x2

0 0 0 0 0 . . . x1




(k odd),

where x1, . . . , x⌈k/2⌉ are arbitrary (complex) parameters. From this, the statement

on the codimension immediately follows.
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For Type I blocks, we have the equation

XΓk + ΓkX∗ = 0 . (4.1)

Let us consider separately the cases k even and k odd.

◮ k even: Similar reasonings as the ones for solving (1.2) in [7, Lemma 5] give rise

to the following conclusions:

a) X is Toeplitz.

b) X is lower triangular.

c) (−1)ixk,k−i+1 = xi1.

We want to stress that conditions a) and b) are the same as the ones obtained

in the proof of Lemma 5 in [7], but c) is different to equation (17) in [7] due to the

presence of the conjugate in the right hand side. This leads to a solution which is

different than the corresponding one in [7], as we will see below.

For odd i, conditions a) and c) above imply

{
xi1 = xk,k−i+1

xi1 = −xk,k−i+1,

and this in turn implies

xi1 = −xi1.

Hence, xi1 is purely imaginary.

By analogous reasonings we conclude that xi1 is real for even i. Then X must be

of the form

X =




b1i 0

a1 b1i

b2i a1 b1i

...
. . .

. . .
. . .

b k
2
i . . . b2i a1 b1i

a k
2

b k
2
i . . . b2i a1 b1i




,

for some arbitrary real values a1, . . . , ak/2 and b1, . . . , bk/2. A direct computation

shows that X above is indeed a solution of (4.1) for all real values a′s and b′s, so this

is the general solution of (4.1).

◮ k odd: Reasoning as above we conclude that the general solution of (4.1) in this
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case is

X =




b1i 0

a1 b1i

b2i a1 b1i

...
. . .

. . .
. . .

a k−1

2

. . . b2i a1 b1i

b k+1

2

i a k−1

2

. . . b2i a1 b1i




.

Now the statement on the codimension is immediate.

Finally, for Type II blocks, we have the system of equations





X12Jk(µ) = −X∗
12

X21 = −Jk(µ)X∗
21

X11 = −X∗
22

X22Jk(µ) = −Jk(µ)X∗
11,

obtained by partitioning the original equation

XH2k(µ) + H2k(µ)X∗ = 0

conformally with the partition of H2k(µ). Notice that the first and the second equa-

tions are decoupled from the other two equations. Hence, we will solve separately the

first equation, then the second equation, and finally the third and the fourth ones

together.

• For the first equation notice that, since µ 6= 0, Jk(µ) is invertible. Then the

first equation is equivalent to

X∗
12 = −Jk(µ)−∗X12,

where A−∗ stands for the inverse of the conjugate transpose of A. Now, by

replacing this in the initial equation we achieve

X12Jk(µ) = Jk(µ)−∗X12,

which is a Sylvester equation. The reader should notice that there is a remark-

able difference with the proof of Lemma 6 in [7]. In [7], µ = ±1 were allowed,

and these values required a special examination. Now we have |µ| > 1, so

these values are excluded, and this considerably simplifies the solution. More

precisely, the matrices Jk(µ) and Jk(µ)−∗ have no common eigenvalues, and

then the solution of the previous equation is X12 = 0 [8, Ch. XII §1]. Similar

reasonings lead to X21 = 0.
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• Replacing the third equation in the fourth one we obtain

X22Jk(µ) = Jk(µ)X22,

which is again a Sylvester equation. The solution of this equation is an

arbitrary upper triangular Toeplitz matrix [8, Ch. XII §1]. From this, the

statement on the codimension follows.

Lemma 4.2. (Interaction between blocks of the same type) The real

interaction between two blocks of the same type is:

(i) For two Type 0 blocks Jk(0), Jℓ(0), with k ≥ ℓ,

inter(Jk(0), Jℓ(0)) =





2ℓ , if ℓ is even,

2k , if ℓ is odd and k 6= ℓ,

2(k + 1) , if ℓ is odd and k = ℓ.

(ii) For two Type I blocks,

inter(αΓk, βΓℓ) =





0 , if k, ℓ have the same parity and α 6= ±β,

0 , if k, ℓ have different parity and α 6= ±iβ,

2min{k, ℓ}, otherwise.

(iii) For two Type II blocks,

inter(H2k(µ),H2ℓ(µ̃)) =

{
4min{k, ℓ} , if µ = µ̃,

0 , if µ 6= µ̃.

Proof. The arguments in all three cases are similar to the corresponding ones

for congruence employed in [7]. The solutions of the associated equations are also

the same as the corresponding solutions there, but some cases deserve more detailed

comments. More precisely, let us begin with the case of two type 0 blocks. In this

case, the solution of

XJk(0) = −Jℓ(0)Y ∗

Y Jℓ(0) = −Jk(0)X∗

can be obtained from the solution of the system of equations with T instead of ∗ (see

[7, Lemma 7]) just by replacing Y with Y .

For two Type I blocks, we have the system of equations

αXΓk = −βΓℓY
∗

βY Γℓ = −αΓkX∗.
(4.2)

Though the procedure that we follow to solve (4.2) is similar to the one used to

solve the system of equations (40) in [7], the presence of the factors α and β in
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(4.2) introduces a difference that requires slight changes in the reasonings. Since

Γℓ is invertible, we find Y = −(α/β)ΓkX∗Γ−1
ℓ and, taking conjugate transposes,

Y ∗ = −(α/β)Γ−T
ℓ XΓT

k (note that Γ∗
m = ΓT

m). Replacing this expression for Y ∗ in the

first equation of (4.2) we get the system of equations

X
(
αβ ΓkΓ−T

k

)
=
(
αβ ΓℓΓ

−T
ℓ

)
X (4.3)

Y = −(α/β)ΓkX∗Γ−1
ℓ , (4.4)

which is equivalent to (4.2). To solve (4.3)-(4.4), we just have to solve (4.3) for X and

then to obtain Y from (4.4). Note that (4.3) is a Sylvester equation. To solve it, we

recall that ΓsΓ
−T
s is similar to Js((−1)s+1) [9, p. 1016]. As a consequence, and since

|α| = |β| = 1, the matrices αβ ΓkΓ−T
k and αβ ΓℓΓ

−T
ℓ have different eigenvalues if and

only if: (a) k, ℓ have the same parity and α 6= ±β, or (b) k, ℓ have different parity

and α 6= ±iβ. In both cases the solution of (4.3) is X = 0 [8, Ch.VIII, §1], and this

implies Y = 0 by (4.4). For the remaining cases, we may follow similar arguments as

the ones in the proof of Lemma 8 in [7] to obtain

X = Q




0 . . . 0 x1 x2 . . . xℓ

0 . . . 0 0 x1
. . .

...
...

...
...

. . . x2

0 . . . 0 0 . . . 0 x1




P−1,

where x1, x2, . . . , xℓ are free parameters, and P,Q are the nonsingular matrices lead-

ing αβΓkΓ−T
k and αβΓℓΓ

−T
ℓ , respectively, to their Jordan canonical form, that is,

(αβ) ΓkΓ−T
k = PJk((−1)k+1αβ)P−1 and (αβ) ΓℓΓ

−T
ℓ = QJℓ((−1)ℓ+1αβ)Q−1.

Finally, for two Type II blocks, the solution of

{
XH2k(µ) = −H2ℓ(µ̃)Y ∗

Y H2ℓ(µ̃) = −X2k(µ)X∗

can be obtained using similar arguments as the ones in the proof of Lemma 9 in [7]

for the congruence case. Nonetheless, the casuistry here is slightly different. More

precisely, the solution depends on whether µ = µ̃, µµ̃ = 1 or µ 6= µ̃, µµ̃ 6= 1. Since

|µ|, |µ̃| > 1, the case µµ̃ = 1 is impossible.

Lemma 4.3. (Interaction between blocks of different type) The real in-

teraction between two blocks of different type is:

(i) For one Type 0 block and one Type I block,

inter(Jk(0), αΓℓ) =

{
0 , if k is even,

2ℓ , if k is odd.
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(ii) For one Type 0 block and one Type II block,

inter(Jk(0),H2ℓ(µ)) =

{
0 , if k is even,

4ℓ , if k is odd.

(iii) For one Type I block and one Type II block,

inter(αΓk,H2ℓ(µ)) = 0.

Proof. In this case, there are no relevant differences with the congruence case

described in [7, Lemma 10]. The solution of the corresponding equations can be

obtained in a similar way. For claim (iii) we just notice that |µ| > 1 and, in particular

µ 6= (−1)k+1.

Lemmas 4.1, 4.2 and 4.3 immediately imply the codimension count stated in

Theorem 3.3.

5. Minimal codimension and generic structure. The goal of this section

is to answer the following question: which is the typical canonical structure by
∗congruence in C

n×n? In other words, we want to determine the generic canonical

structure for ∗congruence of matrices in C
n×n. We understand by generic canonical

structure the canonical structure for ∗congruence of a certain set of matrices that has

codimension zero. The first step in this direction is Theorem 5.1 below.

Theorem 5.1. The minimal (real) codimension for a ∗congruence orbit in C
n×n

is n.

Proof. Given A ∈ C
n×n the real codimension cTotal of its ∗congruence orbit is

given by Theorem 3.3. We will first show that cTotal ≥ n. For this, we will show that

c0 + c1 + c2 ≥ n (following the notation in Theorem 3.3). Let k0, k1 and 2k2 be the

total size corresponding to, respectively, Type 0 blocks, Type I blocks and Type II

blocks in the canonical form for ∗congruence of A. Notice that k0 + k1 + 2k2 = n.

Now, using the basic inequality ⌈x⌉ + ⌈y⌉ ≥ ⌈x + y⌉, we have that

c0 ≥ 2

⌈
k0

2

⌉
, c1 = k1 , c2 = 2k2 .

Then

c0 + c1 + c2 ≥ 2

⌈
k0

2

⌉
+ k1 + 2k2 ≥ n .

Now, notice that the real codimension of

Hn(µ) if n is even and Hn−1(µ) ⊕ Γ1 if n is odd
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is n. This shows that the bound is sharp and the result is proved.

As a consequence of Theorem 5.1, there are no ∗congruence orbits of codimension

zero. Therefore, the generic canonical structure must include more than one orbit.

This fact should not be surprising because it is the same situation as in the case of

similarity and congruence [1, 7]. In order to find a generic structure, we should be

unconcerned with the particular values α, µ in Type I and Type II blocks. On the

contrary, when we consider a particular orbit, these values are fixed. This leads us

to the following notion, which is motivated by the notion of bundle introduced by

Arnold [1] for the action of similarity and already extended in [7] for the action of

congruence.

Definition 5.2. Let A ∈ C
n×n with canonical form for ∗congruence

CA =
a⊕

i=1

Jpi
(0) ⊕

b⊕

i=1

αiGi ⊕
t⊕

i=1

H(µi),

with |αi| = 1, for i = 1, . . . , b, |µi| > 1, for i = 1, . . . , t, and µi 6= µj , αi 6= αj if i 6= j,

where

Gi = Γsi,1
⊕ · · · ⊕ Γsi,qi

for i = 1, . . . , b,

and

H(µi) = H2ri,1
(µi) ⊕ H2ri,2

(µi) ⊕ · · · ⊕ H2ri,gi
(µi), for i = 1, . . . , t.

Then the bundle B(A) of A for the action of ∗congruence is defined by the following

union of ∗congruence orbits

B(A) =
⋃

|α′

i|=1,i=1,...,b

|µ′

i|>1, i=1,...,t

µ′

i 6=µ′

j , α′

i 6=α′

j ,i 6=j

O
(

a⊕

i=1

Jpi
(0) ⊕

b⊕

i=1

α′
iGi ⊕

t⊕

i=1

H(µ′
i)

)
. (5.1)

The real codimension of the bundle (5.1) is the number

codimB(A) = cTotal(A) − 2t − b,

where cTotal(A) is the real codimension of A.

Notice that whereas in the real codimension of the bundle we subtract twice the

number of different values µi associated to Type II blocks, we only subtract once

the number of different values αi corresponding to Type I blocks. The reason for

this difference is that whereas µi are arbitrary complex numbers with absolute value

greater than one (they vary upon a set of real dimension 2), the αi numbers are
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unitary complex numbers, so they vary upon a one-dimensional real set. Note also

that a bundle consists of matrices with the same canonical structure for ∗congruence,

that is, with the same number of different blocks of the same type and with the same

sizes, but with arbitrary µ′
i and α′

i parameters (|µ′
i| > 1, |α′

i| = 1).

Now we can state the following result, which is an immediate consequence of

Theorem 5.1, Theorem 3.3, and the definition of codimension of a bundle for the

action of ∗congruence. It gives us the generic canonical structure for ∗congruence in

C
n×n.

Theorem 5.3. (Generic canonical form for ∗congruence)

1. Let n be even and A ∈ C
n×n be a matrix whose canonical form for ∗cong-

ruence is

GA = H2(µ1) ⊕ H2(µ2) ⊕ · · · ⊕ H2(µn/2), (5.2)

with |µi| > 1, i = 1, . . . , n/2 and µi 6= µj if i 6= j. Then codim(B(A)) = 0.

Therefore, we can say that the generic canonical form for ∗congruence of a

matrix in C
n×n is the one in (5.2) with unspecified values µ1, µ2, . . . , µn/2.

2. Let n be odd and A ∈ C
n×n be a matrix whose canonical form for ∗congruence

is

GA = H2(µ1) ⊕ H2(µ2) ⊕ · · · ⊕ H2(µ(n−1)/2) ⊕ (αΓ1), (5.3)

with |µi| > 1, i = 1, . . . , (n − 1)/2, µi 6= µj if i 6= j and |α| = 1. Then

codim(B(A)) = 0. Therefore, we can say that the generic canonical form for
∗congruence of a matrix in C

n×n is the one in (5.3) with unspecified values

µ1, µ2, . . . , µ(n−1)/2, α.

Let us justify the presence of the Type I block αΓ1 in the generic structure (5.3).

When A is nonsingular, this kind of blocks in the canonical form for ∗congruence of

A are associated with eigenvalues γ with |γ| = 1 in the Jordan canonical form of

A−∗A [9]. If n is odd and A is nonsingular, then A−∗A has always an eigenvalue γ

with |γ| = 1. To see this, notice that λ is an eigenvalue of A−∗A if and only if −λ

is an eigenvalue of the ∗palindromic pencil A + λA∗. It is known that the nonzero

eigenvalues of this kind of pencils are paired up in the form (λ, 1/λ), in such a way

that λ is an eigenvalue of A + λA∗ if and only if 1/λ is, and both eigenvalues have

the same algebraic multiplicity [13, Theorem 2.2]. Then, if n is odd, there is at least

one eigenvalue λ with λ = 1/λ, so |λ| = 1.

As an application of Theorem 5.3, we are able to determine also the generic canon-

ical structure of ∗palindromic matrix pencils A + λA∗. Note that, as a consequence

of Theorem 5.3, the generic canonical form for ∗congruence of ∗palindromic pencils is

GA +λG∗
A, where GA is given by (5.2) if n is even and by (5.3) if n is odd. From this
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we can obtain the generic Kronecker canonical form for strict equivalence [8, Chap-

ter XII] of ∗palindromic pencils by taking into account that GA + λG∗
A is strictly

equivalent to G−∗
A GA + λIn and the Jordan canonical form of H2k(µ)−∗H2k(µ) is

Jk(µ) ⊕ Jk(1/µ). Then we get the following theorem.

Theorem 5.4. The generic Kronecker canonical form of ∗palindromic pencils in

C
n×n is:

1. If n is even:

(λ+µ1)⊕ (λ+1/µ1)⊕ (λ+µ2)⊕ (λ+1/µ2)⊕· · ·⊕ (λ+µn/2)⊕ (λ+1/µn/2),

where µ1, . . . , µn/2 are unspecified complex numbers such that |µi| > 1, i =

1, . . . , n/2, and µi 6= µj if i 6= j.

2. If n is odd:

(λ + µ1) ⊕ (λ + 1/µ1) ⊕ (λ + µ2) ⊕ (λ + 1/µ2) ⊕ · · · ⊕
(λ + µ(n−1)/2) ⊕ (λ + 1/µ(n−1)/2) ⊕ (λ + γ),

where γ is an unspecified complex number with |γ| = 1 and µ1, . . . , µ(n−1)/2

are unspecified complex numbers such that |µi| > 1, i = 1, . . . , (n − 1)/2 and

µi 6= µj if i 6= j.

6. Conclusions. In this paper, we have solved the equation XA+AX∗ = 0, for

a given matrix A ∈ C
n×n. As a consequence, we have computed the dimension of the

∗congruence orbit of A and we have determined the generic canonical structure for
∗congruence in C

n×n. As an application, we have also obtained the generic Kronecker

structure of ∗palindromic pencils in C
n×n. This work completely closes the study of

the solution space of the related equations XA + AXT = 0 and XA + AX∗ = 0

which, despite their similar appearance, present relevant differences. At the same

time, this work can be seen as a first step in describing the space of ∗congruence

orbits in C
n×n. One of the major goals in this context is to completely describe the

inclusion relationships between the orbit closures.
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