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THE INVERSE EIGENVALUE AND INERTIA PROBLEMS FOR

MINIMUM RANK TWO GRAPHS∗

WAYNE BARRETT† , SETH GIBELYOU‡ , MARK KEMPTON‡ , NICOLE MALLOY‡ ,

CURTIS NELSON‡ , WILLIAM SEXTON‡ , AND JOHN SINKOVIC‡

Abstract. Let G be an undirected graph on n vertices and let S(G) be the set of all real sym-

metric n×n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding

to the edges of G. Let mr(G) denote the minimum rank of all matrices in S(G), and mr+(G) the

minimum rank of all positive semidefinite matrices in S(G). All graphs G with mr(G) = 2 and

mr+(G) = k are characterized; it is also noted that mr+(G) = α(G) for such graphs. This charac-

terization solves the inverse inertia problem for graphs whose minimum rank is two. Furthermore, it

is determined which diagonal entries are required to be zero, are required to be nonzero, or can be

either for a rank minimizing matrix in S(G) when mr(G) = 2. Collectively, these results lead to a

solution to the inverse eigenvalue problem for rank minimizing matrices for graphs whose minimum

rank is two.

Key words. Combinatorial matrix theory, Inertia, Inverse eigenvalue problem, Inverse inertia

problem, Graph, Minimum positive semidefinite rank, Minimum rank, Nil vertex, Symmetric.
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1. Introduction. One of the fundamental questions in combinatorial matrix

theory is the Minimum Rank Problem, which asks: what is the minimum rank of all

real symmetric n×n matrices with a given off-diagonal zero pattern? This question has

also been considered for matrices with entries in any field and even for nonsymmetric

matrices but in this study we are concerned with questions of possible inertias and

sets of eigenvalues of real symmetric matrices. Any off-diagonal zero pattern of such

matrices can be encoded in a graph by taking a set of n vertices and constructing edges

corresponding to the nonzero off-diagonal entries. Conversely, there is an infinite set

of such matrices corresponding to the pattern encoded in a graph G, which we denote

by S(G). The smallest rank attained by a matrix in S(G) is the minimum rank of G,

denoted mr(G). Though far from solved, many results have been published that help

to answer this question. In particular, Barrett, van der Holst, and Loewy [4] classified
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all graphs with minimum rank 2. The current paper provides a deeper characterization

of graphs G with minimum rank 2 by examining their minimum positive semidefinite

rank, the minimum rank of all positive semidefinite matrices in S(G). For a graph G

such that mr(G) = 2 and mr+(G) = k, we present equivalent statements concerning

the complement of G, forbidden subgraphs of G and the independence number of G.

One result of this characterization is that the minimum positive semidefinite rank of

a graph with minimum rank 2 can be found by computing the independence number.

Although in general this is difficult, the independence number for this class of graphs

is easily computable.

One generalization of the Minimum Rank Problem is the Inverse Eigenvalue Prob-

lem, which asks what eigenvalues are possible for a matrix with a given off-diagonal

zero pattern? We present a solution to the Inverse Eigenvalue Problem for rank

minimizing matrices for graphs whose minimum rank is two. Our result bears some

similarity to what is reported in [1] as will be discussed near the beginning of Section

6.

A generalization of the Minimum Rank Problem that is also a simplification of the

Inverse Eigenvalue Problem is the Inverse Inertia Problem. The inertia of a matrix is

an ordered triple giving the number of positive eigenvalues, the number of negative

eigenvalues, and the multiplicity of the eigenvalue 0 for that matrix. Without losing

any information we can drop the multiplicity of 0 to obtain an ordered pair which we

call the partial inertia. The Inverse Inertia Problem consists of classifying all possible

partial inertias for matrices in S(G). Due to results from [3], the partial inertias of

graphs with minimum rank 2 are completely classified by knowing mr+(G). Thus, the

characterization above solves the Inverse Inertia Problem for graphs with minimum

rank 2.

A third generalization that has not been widely studied considers the structure

of matrices A in S(G) for which rankA = mr(G). We denote this subset of S(G) by

MR(G). Although this is a related problem to the Inverse Inertia and Eigenvalue

Problems, its complexity is not easily comparable to theirs. Knowing details about

the structure of MR(G) can be helpful in certain aspects of the Inverse Eigenvalue

Problem, and knowing the possible inertias for a graph can be helpful in determining

the structure of MR(G). In many cases MR(G) is a sufficiently restricted subset

that certain diagonal entries are required to be zero or nonzero for all matrices in

MR(G). We call the vertices corresponding to such diagonal entries respectively nil

and nonzero vertices. Finding nil and nonzero vertices is a first step toward classifying

MR(G). For graphs with minimum rank 2 we classify all nil and nonzero vertices.

Consequently, we also classify all vertices that are neither nil nor nonzero, which we

call neutral vertices.
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2. Definitions.

2.1. Matrix theory.

Definition 2.1. Given a graph G on n vertices, let S(G) be the set of all real

symmetric n × n matrices A = [aij ] such that aij 6= 0, i 6= j, if and only if ij is an

edge of G. Let S+(G) be the subset of S(G) consisting of all positive semidefinite

matrices in S(G). Then the minimum rank of G is

mr(G) = min
A∈S(G)

{rankA}.

The minimum positive semidefinite rank of G is

mr+(G) = min
A∈S+(G)

{rankA}.

Definition 2.2. Given a graph G, let

MR(G) = {A ∈ S(G) | rankA = mr(G)}.

Definition 2.3. Given a matrix A we define the inertia of A as the triple

(π(A), ν(A), δ(A)), where π(A) denotes the number of positive eigenvalues of A, ν(A)

the number of negative eigenvalues of A, and δ(A) the multiplicity of 0 as an eigenvalue

of A.

We note that for an n × n matrix A, π(A) + ν(A) + δ(A) = n.

Definition 2.4. The partial inertia of a symmetric matrix A, denoted pin(A),

is the ordered pair (π(A), ν(A)) where π and ν are as in Definition 2.3.

We note that for any symmetric matrix A, π(A) + ν(A) = rankA.

Definition 2.5. Given a graph G, the inertia set of G, denoted I(G), is the set

of all possible partial inertias that can be obtained by matrices in S(G). That is

I(G) = {(r, s) ∈ N × N | pin(A) = (r, s) for some A ∈ S(G)}.

(Here we include the number 0 in N.)

Definition 2.6. Let m and n be non-negative integers with m ≤ n. When

plotted as points in R
2, the set

{(r, s) ∈ N
2 |m ≤ r + s ≤ n}

forms a trapezoid. We denote this set by T[m,n].

Observation 2.7. For any graph G on n vertices, I(G) ⊆ T[mr(G), n].
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Definition 2.8. Let G be a graph on n vertices. If I(G) = T[k, n] for some

nonnegative integer k, we say that I(G) is a trapezoid.

Observation 2.9. If I(G) is a trapezoid, then I(G) = T[mr(G), n].

It is shown in [5] that for most graphs G on six or fewer vertices, I(G) is a

trapezoid.

2.2. Graph theory.

Definition 2.10. A clique in a graph is a set of vertices which are pairwise

adjacent. A complete graph is a graph whose vertex set forms a clique. The complete

graph on n vertices is notated Kn.

Definition 2.11. The clique number of a graph G denoted ω(G), is the size of

the largest clique in G.

Definition 2.12. A set of vertices in a graph G is an independent set if its

vertices are pairwise non-adjacent. The independence number of G, denoted α(G), is

the size of the largest independent set in G.

Definition 2.13. The complement of a graph G = (V,E) is the graph Gc =

(V,Ec), where Ec consists of all two element sets from V that are not in E.

We note that α(G) = ω(Gc).

Definition 2.14. A vertex v in a graph G is a

• nil vertex if its corresponding diagonal entry dv is zero in every matrix in

MR(G).

• nonzero vertex if its corresponding diagonal entry dv is nonzero in every

matrix in MR(G).

• neutral vertex if it is neither a nil vertex nor a nonzero vertex.

The following examples show the identification of nil, nonzero, and neutral vertices

Example: Let S4 be the star on 4 vertices with V = {1, 2, 3, 4} and E = {12, 13, 14}.
Every matrix in MR(S4) is of the form

A =









d1 a b c

a d2 0 0

b 0 d3 0

c 0 0 d4









,

where d2, d3, d4 correspond to the pendant vertices of S4. Since mr(S4) = 2, rankA =

2. If any of d2, d3, or d4 is not 0, then rankA is greater than 2. Hence, every pendant

vertex of S4 is a nil vertex.
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Further, both









1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0









and









0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0









are in MR(S4) and thus d1 is a

neutral vertex.

Example: Consider Kn, n ≥ 2. Let A ∈ MR(Kn). Since mr(Kn) = 1, rankA = 1.

If any diagonal entry of A were zero, then the rank of A would be at least two.

Therefore, every diagonal entry of A is nonzero and thus every vertex of Kn is a

nonzero vertex.

Definition 2.15. Given two graphs G and H with V (G)∩V (H) = ∅, the union

of G and H is the graph (V (G) ∪ V (H), E(G) ∪ E(H)) and is written G ∪ H.

Definition 2.16. Given two graphs G and H with V (G) ∩ V (H) = ∅, the join

of G and H, written G ∨ H, is the graph with vertex set V (G) ∪ V (H) and edge set

E(G) ∪ E(H) ∪ {uv|u ∈ V (G) and v ∈ V (H)}.

Definition 2.17. A decomposable graph (or cograph) G is defined recursively as

follows:

• K1 is decomposable.

• If G1 and G2 are decomposable, G1 ∪ G2 is decomposable.

• If G1 and G2 are decomposable, G1 ∨ G2 is decomposable.

Definition 2.18. A graph G is said to be H-free if H is not an induced subgraph

of G.

3. Previous results and lemmata.

Theorem 3.1. [7] A graph G is decomposable if and only if G is P4-free.

The following two results are Theorem 9 and Theorem 11 from [4].

Theorem 3.2. Let G be a connected graph and let F be an infinite field with

char F 6= 2. Then the following are equivalent:

1. mr(F,G) ≤ 2.

2. Gc can be expressed as the union of at most 2 complete graphs and of complete

bipartite graphs.

3. G is (P4, dart, ⋉, K3,3,3)-free.

Theorem 3.3. Given a connected graph, G, the following are equivalent:

1. mr+(G) ≤ 2.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 389-418, April 2011



ELA

394 W. Barrett et al.

2. Gc is the union of complete bipartite graphs.

3. G is (Kc
3, P4)-free. (G is P4-free with α(G) ≤ 2.)

We remark that it is well known that complete graphs on two or more vertices

are the only connected graphs with minimum rank 1.

The next result is Corollary 2.7 from [6] and the observation follows immediately

from definitions.

Theorem 3.4. For a connected graph G, α(G) ≤ mr+(G).

Observation 3.5. For a graph G, mr(G) ≤ mr+(G).

The following two results are Lemma 1.1 and Theorem 7.1 from [3].

Lemma 3.6. [Northeast Lemma] Let G be a graph on n vertices and suppose that

A ∈ S(G) with pin(A) = (π, ν). Then for every pair of integers r ≥ π and s ≥ ν

satisfying r + s ≤ n, there exists a matrix B ∈ S(G) with pin(B) = (r, s).

Theorem 3.7. Let G be a graph and let M ∈ S(G) be a real symmetric matrix

with partial inertia (k, 0), k > 1. Then there exists a matrix M ′ ∈ S(G) with partial

inertia (r, s) satisfying r < k and s < k.

Corollary 3.8. Let G be a graph and suppose that (2, 0) ∈ I(G). Then (1, 1) ∈
I(G).

4. Graphs whose minimum rank is two and whose positive semidefinite

minimum rank is k. We provide the following theorem and proof preliminary to a

larger result.

Theorem 4.1. Given a connected graph G, the following statements are equiva-

lent:

1. mr(G) = mr+(G) = 2.

2. Gc is nonempty and can be expressed as the union of complete bipartite graphs.

3. G is (P4, dart, ⋉,K3,3,3)-free and α(G) = 2.

Proof.

1 ⇒ 3

By Theorem 3.2, mr(G) = 2 ⇒ G is (P4, dart, ⋉,K3,3,3,)-free. By Theorem

3.4, we know α(G) ≤ mr+(G) = 2. If α(G) ≤ 1, then G is a complete graph and

mr(G) = 1, a contradiction. Therefore, α(G) = 2.

3 ⇒ 2

It follows from Theorem 3.3 that Gc is the union of complete bipartite graphs

and since ω(Gc) = α(G) = 2, Gc is nonempty.
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2 ⇒ 1

By Theorem 3.3, mr+(G) ≤ 2. If mr(G) = 1, G is a complete graph and Gc is

empty, a contradiction. Therefore, 2 ≤ mr(G) ≤ mr+(G) ≤ 2.

Lemma 4.2. Let k ≥ 3. Then it is possible to construct sets of vectors

{u1, u2, . . . , uk}, {v1, v2, . . . , vk}, {x1, y1}, {x2, y2}, . . ., {xt, yt} in R
k such that all

vectors within a given set are pairwise orthogonal and such that any pair of vectors

from distinct sets is not orthogonal.

Proof. Consider the following vectors:

u1 = [1, 0, 0, 0, . . . , 0, 0, 0] u2 = [0, 1, 0, 0, . . . , 0, 0, 0]

· · · · · ·
uk−1 = [0, 0, 0, 0, . . . , 0, 1, 0] uk = [0, 0, 0, 0, . . . , 0, 0, 1]

v1 = [1 − k
2 , 1, 1, . . . , 1, 1] v2 = [1, 1 − k

2 , 1, . . . , 1, 1]

· · · · · ·
vk−1 = [1, 1, 1, . . . , 1 − k

2 , 1] vk = [1, 1, 1, . . . , 1, 1 − k
2 ].

For odd k:

x1 = [cos θ1, sin θ1, cos θ1, . . . , sin θ1, 1] y1 = [cos θ1, sin θ1, cos θ1, . . . , sin θ1,
1−k
2 ]

x2 = [cos θ2, sin θ2, cos θ2, . . . , sin θ2, 1] y2 = [cos θ2, sin θ2, cos θ2, . . . , sin θ2,
1−k
2 ]

...
...

xt = [cos θt, sin θt, cos θt, . . . , sin θt, 1] yt = [cos θt, sin θt, cos θt, . . . , sin θt,
1−k
2 ].

For even k:

x1 = [cos θ1, sin θ1, cos θ1, . . . , sin θ1] y1 = [− sin θ1, cos θ1,− sin θ1, . . . , cos θ1]

x2 = [cos θ2, sin θ2, cos θ2, . . . , sin θ2] y2 = [− sin θ2, cos θ2,− sin θ2, . . . , cos θ2]
...

...

xt = [cos θt, sin θt, cos θt, . . . , sin θt] yt = [− sin θt, cos θt,− sin θt, . . . , cos θt].

We choose θi such that 0 < θ1 < θ2 < · · · < θt < π
2 , and θi 6= arccos

(

k−2√
2(k−1)

)

+ π
4

for all i.

I. All vectors within a set are pairwise orthogonal.

The u set has only one non-zero term in each vector and none of the other vectors
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have a non-zero term in the same location so they must be orthogonal to each other,

vr · vs = 1 + 1 + · · · + 1 − k

2
+ · · · + 1 − k

2
+ · · · + 1

=

k
∑

j=1

1 − k

2
− k

2
= k − k = 0.

For odd k:

xr · yr = (cos2 θr + sin2 θr) + (cos2 θr + sin2 θr) + · · · + 1 − k

2

= 1 + 1 + · · · + 1 +
1 − k

2
=

k − 1

2
+

1 − k

2
= 0.

For even k:

xr · yr = − cos θr sin θr + cos θr sin θr − · · · − cos θr sin θr + cos θr sin θr

=
k

2
(cos θr sin θr − cos θr sin θr) = 0.

II. Vectors from distinct sets are not orthogonal.

Any vector in the u set has only one nonzero term, and no vectors in the other sets

have zero terms so the u vectors cannot be orthogonal to a vector in a different set.

For odd k:

vr · xs = cos θs + sin θs + · · · +
(

1 − k

2

)

cos θs + · · · + 1 for odd r 6= k

=

(

k − 1

2

)

(cos θs + sin θs) −
k

2
cos θs + 1(1)

=

(

k − 1

2

)

sin θs −
1

2
cos θs + 1 > 0 for 0 < θs <

π

2
(2)

vr · ys = cos θs + sin θs + · · · +
(

1 − k

2

)

cos θs + · · · + 1 − k

2
for odd r 6= k

=

(

k − 1

2

)

(cos θs + sin θs) −
k

2
cos θs −

k − 1

2
(3)

= −
(

k − 1

2

)

(1 − sin θs) −
1

2
cos θs < 0 for 0 < θs <

π

2
.(4)
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For even r 6= k change the −k
2 cos to a −k

2 sin in (1) and (3) and you will get

an inequality similar to (2) and (4) with the cos’s and sin’s switched,

vk · xs = cos θs + sin θs + cos θs + · · · +
(

1 − k

2

)

=

(

k − 1

2

)

(cos θs + sin θs) −
k − 2

2

=

√
2(k − 1)

2
cos

(

θs −
π

4

)

− k − 2

2
6= 0 by the choice of θi’s

vk · ys = cos θs + sin θs + cos θs + · · · +
(

1 − k

2

)(

1 − k

2

)

=

(

k − 1

2

)(

cos θs + sin θs +
k − 2

2

)

> 0

xr · xs = cos θr cos θs + sin θr sin θs + · · · + 1 > 0 for 0 < θr, θs <
π

2

xr · ys = cos θr cos θs + sin θr sin θs + · · · + 1 − k

2

=

(

k − 1

2

)

(cos θr cos θs + sin θr sin θs − 1)

=

(

k − 1

2

)

(cos(θr − θs) − 1) 6= 0 for θr 6= θs

yr · ys = cos θr cos θs + sin θr sin θs + · · · + (1 − k)2

4
> 0 for 0 < θr, θs <

π

2
.

For even k:

vr · xs = cos θs + sin θs + · · · +
(

1 − k

2

)

cos θs + · · · + sin θs for odd r

=
k

2
(cos θs + sin θs) −

k

2
cos θs =

k

2
sin θs > 0 for 0 < θs <

π

2

vr · ys = − sin θs + cos θs − · · · −
(

1 − k

2

)

sin θs + · · · + cos θs for odd r

=
k

2
(cos θs − sin θs) +

k

2
sin θs =

k

2
cos θs > 0 for 0 < θs <

π

2
.
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For even r change the equations in the same manner as the odd k case,

xr · xs = cos θr cos θs + sin θr sin θs + · · · + sin θr sin θs > 0 for 0 < θr, θs <
π

2

xr · ys = − cos θr sin θs + cos θs sin θr − · · · + cos θs sin θr

=
k

2
(sin θr cos θs − cos θr sin θs) =

k

2
sin(θr − θs) 6= 0 for θr 6= θs

yr · ys = sin θr sin θs + cos θr cos θs + · · · + cos θr cos θs > 0 for 0 < θr, θs <
π

2
.

Theorem 4.3. Given a connected graph G and any integer k ≥ 2, the following

statements are equivalent:

1. mr(G) = 2 and mr+(G) = k.

2. Gc = Kk ∪Kℓ ∪ complete bipartite graphs, where 0 ≤ ℓ ≤ k. If ℓ = 0 there is

at least one complete bipartite graph in the union.

3. G is (P4, dart, ⋉,K3,3,3)-free and α(G) = k.

Proof. We have shown that this theorem is true for k = 2. Assume that it is true

for all integers less than k and ≥ 2.

1 ⇒ 3

By Theorem 3.2, mr(G) = 2 ⇒ G is (P4, dart, ⋉,K3,3,3,)-free. Also, since α(G)

is a lower bound on mr+(G), we know α(G) ≤ mr+(G) = k. If α(G) = r < k, by the

inductive hypothesis mr+(G) = r < k, a contradiction. Therefore α(G) ≥ k, hence

we have α(G) = k.

3 ⇒ 2

By Theorem 3.2, Gc can be expressed as the union of at most two complete graphs

and of complete bipartite graphs. Since α(G) = k, the complement has at least one

complete graph of size k giving the component Kk, and no larger complete graphs

giving ℓ ≤ k for the second component Kℓ. If ℓ = 0 and the third set is empty then

G = Kc
k, a contradiction.

2 ⇒ 1

Suppose Gc = Kk ∪ Kℓ ∪ Kp1,q1
∪ · · · ∪ Kpt,qt

. Then by Theorem 3.2 we have

mr(G) = 2. Also, since G contains Kc
k, we have α(G) ≥ k which implies mr+(G) ≥ k.

We also know that any matrix M ∈ S(G) has the form
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M =



























































∗ 0 0 · · · 0

0 ∗ 0 · · · 0

0 0 ∗
...

...
. . .

0 0 ∗
∗ 0 0 · · · 0

0 ∗ 0 · · · 0

0 0 ∗
...

...
. . .

0 0 ∗

X

X

R1

R2

. . .

Rt



























































,

where the first two blocks are of size k and ℓ, where Ri =

[

Si 0

0 Ti

]

for Si ∈ S(Kpi
)

and Ti ∈ S(Kqi
), and where X denotes the obvious nonzero structure of the matrix.

Assuming G has n vertices, M is an n × n matrix. Suppose there exists a k × n

matrix B, such that M = BT B ∈ S(G). Since M is a Gram matrix, it’s positive

semidefinite, and thus we could conclude mr+(G) ≤ k. Hence, k ≤ mr+(G) ≤ k so we

know mr+(G) = k. We will show it is possible to build such a matrix M = BT B ∈
S(G) using the vectors constructed in Lemma 4.2.

We define

U =
[

uT
1 uT

2 · · · uT
k

]

,

V =
[

vT
1 vT

2 · · · vT
ℓ

]

,

Wi =
[

xT
i · · ·xT

i yT
i · · · yT

i

]

so that Ri = WT
i Wi ∈ S(Kpi

∪ Kqi
),

B =
[

U V W1 W2 · · · Wt

]

.

Then let M = BT B. Because of the orthogonality conditions in Lemma 4.2,

M ∈ S(G) with rank(M) ≤ k.

Corollary 4.4. Let G be a connected graph. If mr(G) = 2, then mr+(G) =

α(G).

Proof. Since mr+(G) ≥ mr(G) = 2, by Theorem 4.3, mr+(G) = α(G).
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A more general result than Corollary 4.4 was found earlier by Hein van der Holst,

Raphael Loewy, and Barrett, but has not been published. We include that result and

proof with their permission.

Theorem 4.5. For a decomposable graph G,

mr+(G) + ι(G) = α(G),

where ι(G) is the number of isolated vertices in G.

The proof uses the following lemmas, which are Corollary 2.7 and Proposition 2.6

in [8].

Lemma 4.6. For any graph G, mr+(G ∨ K1) = mr+(G) + ι(G).

Lemma 4.7. For any graphs G and H,

mr+(G ∨ H) = max{mr+(G ∨ K1),mr+(H ∨ K1)}.

Combining the two lemmas we obtain the following:

Lemma 4.8. For any graphs G and H,

mr+(G ∨ H) = max{mr+(G) + ι(G),mr+(H) + ι(H)}.

We can now prove Theorem 4.5 by induction on the number of vertices of G.

Proof. For G = K1: mr+(K1) + ι(K1) = 0 + 1 = α(K1).

We verify that if the equality holds for G and H, then it holds for G ∪ H and

G ∨ H.

Unions: mr+(G ∪ H) + ι(G ∪ H) = mr+(G) + mr+(H) + ι(G) + ι(H) = α(G) +

α(H) = α(G ∪ H).

Joins: By Lemma 4.8, mr+(G ∨ H) = max{mr+(G) + ι(G),mr+(H) + ι(H)} =

max{α(G), α(H)} = α(G ∨ H).

Since every minimum rank 2 graph is decomposable, Corollary 4.4 is an imme-

diate consequence of Theorem 4.5. Some results in the next section depend only on

Corollary 4.4 making this second short approach to the corollary preferable. But it is

more transparent to view the inverse eigenvalue problem in the final section in terms

of Theorem 4.3, so we have retained its lengthy proof. Moreover, the proof of 2 ⇒ 1

also gives a construction of a positive semidefinite matrix of rank k for a graph G

with mr(G) = 2 and mr+(G) = k.

We have reduced the problem of finding the minimum positive semidefinite rank

of graphs with minimum rank two to finding the independence number. While this
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is difficult for graphs in general, the proof of Theorem 4.5 shows that it can be done

easily for decomposable graphs. See [7] for further details on finding the independence

number of a decomposable graph.

The results presented thus far solve the inverse inertia problem for graphs whose

minimum rank is two. Let G be a graph on n vertices whose minimum rank is two. By

Corollary 3.8, (1, 1) ∈ I(G). Using the fact that mr+(G) = α(G) and the Northeast

Lemma, we conclude that the inertia set of G includes every possible point except the

points along the x-axis whose x coordinate is less than α(G) and the points along the

y-axis whose y coordinate is less than α(G). The following example is KS2,4 (see [5]

for this notation). It’s known that mr(KS2,4) = 2 and α(KS2,4) = 4. We show the

inertia set by plotting the points in R
2.

Now that we have shown that mr+(G) = α(G) provided mr(G) = 2, we ask, how

are mr+(G) and α(G) related when mr(G) 6= 2? Assuming no restrictions are placed

on mr+(G) and α(G), we note that the difference mr+(G)− α(G) may be arbitrarily

large. Consider Pn. Then mr+(Pn) − α(Pn) = n − 1 − ⌊n/2⌋ → ∞ as n → ∞. For

mr(G) 6= 2, the question concerning the relationship of mr+(G) and α(G) for a fixed

α(G) remains open.

5. Nil, neutral, and nonzero vertices of graphs whose minimum rank is

two. Another interesting generalization of the Minimum Rank Problem asks, given

a graph G what structures are possible for matrices A ∈ S(G) with rankA = mr(G)?

More concisely, what are the structures of matrices in MR(G)? A first step towards

classifying MR(G) is determining which diagonal entries, if any, are required to be

zero or nonzero (see Definition 2.14). There are cases when no diagonal entry is

required to be zero. For example, if a connected graph G has mr+(G) = mr(G)

(note: this occurs for all graphs with a trapezoidal inertia set), then there exists

a positive semidefinite matrix in MR(G). If a diagonal entry was zero, the entire

row and column of the matrix containing this entry would be zero in order for the

matrix to be positive semidefinite. This contradicts G being a connected graph. Thus,

mr+(G) 6= mr(G) is a necessary condition for G to have a nil vertex. We note however

that this is not a sufficient condition. For example, using techniques found in [10], we

know that for the graph G below, mr(G) = 6,mr+(G) = 7 and G has no nil vertices.
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The following theorems characterize nil, neutral, and nonzero vertices of graphs

whose minimum rank is two. For results of a more general nature about nil vertices

see [2].

Theorem 5.1. Let G be a connected graph and assume mr(G) = 2 and α(G) > 2.

Let S be an independent set of size k > 2. Then every vertex in S is a nil vertex.

Proof. Let M ∈ MR(G), and assume |G| = n. Since M is real symmetric, it can

be expressed as the sum of rank 1 matrices, M = λ1q1q
T
1 + λ2q2q

T
2 + · · · + λnqnqT

n ,

where the λi are the eigenvalues of M and each qi ∈ R
n. Since rank(M) = mr(G) = 2,

M has 2 nonzero eigenvalues and the eigenvalue 0 with multiplicity n−2. By Corollary

4.4, mr+(G) = α(G) > 2. Thus the two nonzero eigenvalues must be of opposite sign.

Say λ1 > 0 and λ2 < 0. So M reduces to the sum of two rank 1 matrices, and we

can write M =
√

λ1q1(
√

λ1q1)
T −

√
−λ2q2(

√
−λ2q2)

T . Thus we can write M as the

difference of two rank 1 matrices A = aaT and B = bbT .

Label the vertices of the independent set S as 1, . . . , k. Let ∗ represent an entry

that may be zero or nonzero. Then

M = A − B =































d1 0 · · · 0 ∗ · · · ∗
0 d2

. . .
...

...
...

...
. . .

. . . 0
...

0 · · · 0 dk ∗
∗ · · · · · · ∗ . . .

. . .
...

...
. . .

. . . ∗
∗ · · · · · · ∗ dn































=























a2
1 a1a2 · · · a1ak · · · a1an

a2a1 a2
2 a2ak a2an

...
. . .

...
...

aka1 aka2 · · · a2
k aiak

...
. . .

...

ana1 ana2 · · · anak · · · a2
n























−























b2
1 b1b2 · · · b1bk · · · b1bn

b2b1 b2
2 b2bk b2bn

...
. . .

...
...

bkb1 bkb2 · · · b2
k · · · bkbn

...
...

. . .
...

bnb1 bnb2 · · · bnbk · · · b2
n























.
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Let r, s, t ∈ S be distinct. Since mrs,mrt,mst = 0, corresponding entries in A

and B are equal. Thus

(5.1) aras = brbs,

(5.2) arat = brbt,

(5.3) asat = bsbt.

I. arasatbrbsbt = 0. Without loss of generality suppose ar = 0. Then by (5.1)

and (5.2)

brbs = aras = 0 = arat = brbt,

from which we have the following two possibilities:

i. br = 0: Then r is an isolated vertex, which is impossible.

ii. bs = bt = 0: Then

asat = bsbt = 0,

so either as = 0 or at = 0. Then either s or t is an isolated vertex, and we have the

same contradiction as before.

II. We may now suppose that arasatbrbsbt 6= 0. Then (5.1), (5.2), and (5.3) give

ar

br

=
bs

as

,

ar

br

=
bt

at

,

as

bs

=
bt

at

,

and those equations together give

as

bs

=
bt

at

=
ar

br

=
bs

as

⇒ a2
s = b2

s.

Hence, ds = a2
s − b2

s = 0. By symmetry, di = 0 for i = 1, . . . , k.

Example: We will use the above theorem to show that every vertex of Km,n with

m,n ≥ 3 is a nil vertex. Consider Km,n with m,n ≥ 3. It is known that mr(Km,n) = 2.
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By Corollary 4.4, mr+(Km,n) = α(Km,n) = max{m,n} ≥ 3. The two independent

sets of size m and n contain every vertex of Km,n. By Theorem 5.1, every vertex is

a nil vertex.

The following theorems will show that the nil vertices of a graph whose minimum

rank is two can only be found in independent sets of size 3 or more.

Theorem 5.2. If H is an induced subgraph of a graph G with mr(H) = mr(G),

then if v is a nil (nonzero) vertex in H v is also a nil (nonzero) vertex in G.

Proof. Let G, H, and v be as described above. Let A ∈ MR(G). Let B be

the principal submatrix of A corresponding to H. Since rankA = mr(G) = mr(H),

rankB = mr(H). Thus B ∈ MR(H), and so the diagonal entry of A corresponding

to v is zero (nonzero). Thus v is a nil (nonzero) vertex in G.

Lemma 5.3. Let G be a paw

( )

. The non-dominating vertices of G are

nonzero.

Proof. Let G be the paw and let A ∈ S(G) have rank 2.

A =









d1 a b 0

a d2 c 0

b c d3 e

0 0 e d4









.

Suppose that at least one of d1, d2, d4 is equal to zero.

If d4 6= 0, then at least one of d1 and d2 must be zero. Then the matrix A(3)

below has full rank.

A(3) =





d1 a 0

a d2 0

0 0 d4



.

If d4 = 0, then the matrix formed by deleting row 1 and column 2 from A has

full rank.

In each case we contradict the fact that A has rank 2. Thus none of d1, d2, d4

may be zero.

Lemma 5.4. The dominating vertex of K3,3 ∨K1 = (K3 ∪K3 ∪K1)
c = K3,3,1 is

nonzero.

Proof. Since mr(K3,3,1) = 2, by Theorem 5.1 the vertices that constitute the

independent sets of size 3 are nil vertices. Hence, any matrix M ∈ S(K3,3,1) has the

form
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M =























0 0 0

0 0 0 X

0 0 0

0 0 0

X 0 0 0

0 0 0

x

x d7























,

where X and x denote the obvious nonzero structure of the matrix.

Consider the 3×3 submatrix of M , M [{1, 4, 7}] =





0 a b

a 0 c

b c d7



 , abc 6= 0. Suppose

d7 = 0. Then M [{1, 4, 7}] would be an invertible submatrix of M , contradicting

rankM = 2. Therefore, d7 6= 0, and hence the corresponding vertex is nonzero.

Corollary 5.5. Let G be a graph with mr(G) = 2. If G has an induced paw or

an induced K3,3,1, then the non-dominating vertices of the former and the dominating

vertex of the latter are nonzero.

Theorem 5.6. Let G be a connected graph with mr(G) = 2 and v be a vertex of

G. Then

• v is a nonzero vertex if and only if v is either a non-dominating vertex of an

induced paw of G or else is the dominating vertex of an induced K3,3,1.

• v is a nil vertex if and only if v is in an independent set of size three or

greater.

• v is a neutral vertex if and only if it does not meet either of the previous two

conditions.

Proof. The reverse implication of each of the first two statements follows from

Theorem 5.1 and Corollary 5.5. It now suffices to show the reverse implication of the

third statement.

Let v be a vertex not meeting the stated conditions to be a nil or nonzero vertex.

In the case that K3,3 is induced in G, every vertex not in the two independent sets of

size three or greater is a dominating vertex in an induced K3,3,1 and so there are no

such v. In this case Theorem 5.6 is satisfied and G has only nil and nonzero vertices.

We now need only consider cases where G has at most one independent set of size

three or greater and may without loss of generality let

G = (Kk ∪ Km1,n1
∪ · · · ∪ Kmr,nr

∪ sK2 ∪ tK1)
c,
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where s, t ≥ 0, k ∈ {0, 3, 4, . . . }, and none of the Kmi,ni
are K2’s or K1’s. Note G

does not have K3,3,1 as an induced subgraph. We identify all vertices that are non-

dominating vertices in an induced paw. Since Gc is the union of at least two graphs

(else G would not be connected or mr(G) 6= 2), if K2,1 is an induced subgraph of

Gc, the paw = (K2,1 ∪ K1)
c is an induced subgraph of G. Since the non-dominating

vertices of the paw correspond to the K2,1, all vertices of G corresponding to the

Kmi,ni
are non-dominating vertices of induced paws. The remaining vertices that are

not in an independent set of size three or greater correspond to the K1’s and K2’s.

The K1’s are dominating vertices in G, and hence cannot be non-dominating vertices

of an induced paw. The vertices of the K2’s will have the same neighborhood and be

nonadjacent in G, and hence cannot be two non-dominating vertices of an induced

paw. Thus all vertices of G corresponding to the non-dominating vertices of induced

paws are exactly those vertices corresponding to the Kmi,ni
. Therefore v corresponds

to vertices of the K1’s and K2’s.

Given a matrix in MR(G), we show the vertices corresponding to the K1’s and

K2’s can have either zero or nonzero corresponding diagonal entries. The methods

used here are used extensively and to greater effect in the succeeding section and

thus may serve as a familiarization to the reader. For the moment we simply use the

following vectors to construct matrices in MR(G). Let

x = [a, a], y = [a,−a],

ui = [cos θi, sin θi], vi = [sin θi, cos θi],

where 0 < θ1 < θ2 < · · · < θr+s+t < π
4 . Define X to be the 2 × 2 matrix with the

vector x in each row; Ui to be the (mi + ni)× 2 matrix with the vector ui in the first

mi rows, and vi in the last ni rows for each 1 ≤ i ≤ r; and Wi to be the 2× 2 matrix

with the vector ui in the first row and vi in the second row for each r +1 ≤ i ≤ r + s.

Suppose k = 0 and s, t ≥ 1. We now construct a matrix B ∈ MR(G) with zero

diagonal entries corresponding to one K2 and one K1 and nonzero diagonal entries

corresponding to all other vertices. Let

A =
[

UT
1 · · · UT

r XT WT
r+2 · · · WT

r+s yT uT
r+s+2 · · · uT

r+s+t

]T
.

(If s or t = 1, then there are no Wi’s or ui’s in A, respectively.) Then

B = A

[

1 0

0 −1

]

AT

has rank 2. (By Lemma 6.1 B has partial inertia (1,1). This is necessary since B

could not have zero entries on the diagonal as desired if it were positive semi-definite.)

With the reflection matrix in the product, both x and y are “self orthogonal” but not
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orthogonal to each other, or any of the ui or vi. Also, ui and vi are orthogonal with

the reflection but not orthogonal to themselves, or any other uj or vj , by our choices

of the θi’s. Thus we see the Ui’s correspond to the Kmi,ni
’s, X corresponds to the K2

with zeros on the diagonal, the Wi’s correspond to the K2’s with nonzero diagonal

entries, y corresponds to the K1 with zero diagonal, and the ui’s correspond to the

K1’s with nonzero diagonal entries. So B ∈ S(G), and hence in MR(G). We have

shown that any diagonal entry corresponding to a K1 or K2 can be zero (though not

all at once). We have similarly shown that if s > 1 and t > 1, any corresponding

diagonal entry can be nonzero and, by replacing X with Wr+1 and y with ur+s+1, all

can be nonzero at once. This replacement argument shows that we have proven the

case s or t = 1. Thus the vertices corresponding to the K2’s and K1’s are neutral.

In the case that k ≥ 3 and s, t ≥ 1, the vertices corresponding to Kk are nil.

Since only vectors of the form x and y will give zero diagonals in the product above,

we can only create matrices with one K2 or one K1 with zero diagonals, not both.

Let Z be a k × 2 matrix with k rows of x, and construct A as before, but insert Z

at the beginning and use either one of X and y. The same argument shows that the

vertices corresponding to the K2’s and K1’s are neutral.

If both s, t = 0, we have nothing to show. If one of s or t = 0, leave X or

y, respectively, out of A. Note that if s or t = 0, the Wi’s or ui’s, respectively,

are automatically not included. Construct A as such, with Z included or excluded

depending on whether k ≥ 3 or k = 0. The arguments for the cases above show

that the vertices corresponding to whichever of the K2’s or K1’s that are present are

neutral.

The preceding results can be summarized as follows:

Theorem 5.7. Let G be a connected graph with mr(G) = 2 and write G =

(Kk ∪Kℓ ∪Km1,n1
∪ · · · ∪Kmr,nr

∪ sK2 ∪ tK1)
c, where k, ℓ ∈ {0, 3, 4, 5, . . . }, s, t ≥ 0,

and none of the Kmi,ni
are K2’s or K1’s. Then the vertices of G corresponding to

• Kk and Kℓ are nil vertices.

• the Kmi,ni
’s are nonzero vertices.

• the K2’s and K1’s are nonzero vertices if k, ℓ ≥ 3 and neutral vertices other-

wise.

6. A solution for the inverse eigenvalue problem for graphs whose min-

imum rank is two. In this section, we will use our results on the inertia sets of

connected minimum rank 2 graphs and our results on the structure of these minimum

rank matrices to investigate the Inverse Eigenvalue Problem for graphs whose mini-

mum rank is 2. We will solve this problem in the case of minimum rank matrices for

these graphs. Our result resembles a result in [1] where the authors show that the
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multiplicity list alone is not sufficient to determine the solution to the inverse eigen-

value problem for a tree. Certain magnitudinal issues are critical. Similarly, we show

that the inertia set alone of a minimum rank two graph does not give all restrictions

on possible eigenvalues of the graph. In three cases there are additional conditions.

We include some standard results from matrix theory that we will use extensively.

Lemma 6.1. A symmetric n×n matrix M has partial inertia (r, s) with r+s = k

if and only if M has a factorization

M = A























1
. . . 0

1

−1

0
. . .

−1























AT ,

where A is an n × k matrix, and we have 1 occurring r times on the diagonal, and

−1 occurring s times.

If M is positive semidefinite, then Lemma 6.1 simply states that M is the Gram

matrix of some set of vectors, M = AAT .

Lemma 6.2. [9, Theorem 1.3.20] Suppose A is m × n and B n × m with m ≤ n.

Then BA has the same eigenvalues as AB, counting multiplicity, together with an

additional n − m eigenvalues equal to 0.

Our strategy will be to look at several cases based on the characterization of

minimum rank 2 graphs in Theorem 4.3 and each possible inertia, and figure out the

general structure of A in the factorization from Lemma 6.1 to guarantee the matrix

corresponds to the graph. Then we will multiply in the reverse order, to attain a

smaller matrix (in our case 2 × 2) whose eigenvalues we can compute easily.

Theorem 6.3. Let G be a connected graph whose minimum rank is 2. Then we

have the following restrictions in the Inverse Eigenvalue Problem:

• If G = (K1 ∪ Km,n)c, m,n ≥ 1, (that is, G is a vertex sum of two cliques),

then a rank minimizing matrix for G cannot have a nonzero eigenvalue of

multiplicity two.

• If G = (Kk ∪ Kℓ)
c = Kk,ℓ, k, ℓ ≥ 3, then the two nonzero eigenvalues of a

rank minimizing matrix for G must sum to 0.

• If G = (Kk∪Kℓ∪K1)
c = Kk,ℓ∨K1, k, ℓ ≥ 3, then the two nonzero eigenvalues

of a rank minimizing matrix for G cannot sum to 0.

Any two nonzero eigenvalues not ruled out by the inertia set or the restrictions above
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can be attained by a rank minimizing matrix for a graph whose minimum rank is 2.

Proof.

I. First we will consider the positive semidefinite case (partial inertia (2, 0)). By

Theorem 3.3, any connected graph with minimum positive semidefinite rank 2 is the

complement of the union of complete bipartite graphs. In our computations, we will

consider K1 separately from other complete bipartite graphs.

Case 1. First let G = (pK1 ∪ Km1,n1
∪ · · · ∪ Kmr,nr

)c, r ≥ 1, p ≥ 2, mi, ni ≥ 1

(if r = 0 then G is complete and does not have minimum rank 2). First consider the

case r ≥ 2. Let

z =
[

1√
p
, a√

p

]

, w =
[

1√
p
,− (p−1)a√

p

]

,

u1 =
[ √

x√
m1

, 0
]

, v1 =
[

0,
√

y√
n1

]

,

ui =

[

cos θi√
(r−1)mi

, sin θi√
(r−1)mi

]

, vi =

[

− sin θi√
(r−1)ni

, cos θi√
(r−1)ni

]

for i = 2, . . . , r,

where x, y > 0, 0 < θ2 < · · · < θr < π
4 , and a is chosen so that z and w are not

orthogonal to any of the other vectors (any a > 1 will guarantee z and w are not

orthogonal, and that z is not orthogonal to any of the ui or vi; then choose a so that

w is not orthogonal to any of the ui and vi). Also note that ui and vi are orthogonal

to each other, but to none of the other vectors. Let Z be the (p− 1)× 2 matrix with

the vector z in each row, and Ui the (mi + ni)× 2 matrix with ui in the first mi rows

and vi in the last ni rows.

Let

A =

















Z

w

U1

...

Ur

















.

Then AAT ∈ S(G), has rank 2, and is positive semidefinite. Multiplying in the other

order, we get

AT A =

[

2 + x 0

0 1 + (p − 1)a2 + y

]

.

With the appropriate choice of x and y, it is clear that, after scaling, we can attain

any two positive eigenvalues we wish (including a positive eigenvalue of multiplicity
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2). Note also that if r = 1, simply leave out U2, . . . , Ur from A, then

AT A =

[

1 + x 0

0 (p − 1)a2 + y

]

and the same argument works.

Case 2. Now consider p = 0, G = (Km1,n1
∪ · · · ∪ Kmr,nr

)c, r ≥ 2 (if r = 1 we

get a disconnected graph which we will not consider). For this case, keep ui, vi the

same as they were before, and let

A =







U1

...

Ur






.

Then AAT ∈ S(G), and

AT A =

[

1 + x 0

0 1 + y

]

.

After scaling, we can clearly attain any two positive eigenvalues we wish with this.

Case 3. Now suppose p = 1 and r ≥ 2. Let

z =
[

3
2 ,−1

]

,

u1 =
[ √

x√
m1

, 0
]

, v1 =
[

0,
√

y√
n1

]

,

u2 =
[ √

2√
m2

,
√

2√
m2

]

, v2 =
[

−
√

2
2
√

n2
,

√
2

2
√

n2

]

,

ui =

[

cos θi√
(r−2)mi

, sin θi√
(r−2)mi

]

, vi =

[

− sin θi√
(r−2)ni

, cos θi√
(r−2)ni

]

for i = 3, . . . , r,

and let

A =











z

U1

...

Ur











,

where U1, . . . , Ur are defined in terms of these ui and vi as before.

Then AAT ∈ S(G) and for r ≥ 3,

AT A =

[

23
4 + x 0

0 9
2 + y

]

.
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It is clear that after scaling, the appropriate choice of x and y yields any two positive

eigenvalues we wish (including a multiplicity 2 eigenvalue). Note that if r = 2, simply

leave out U3, . . . , Ur. Then

AT A =

[

19
4 + x 0

0 7
2 + y

]

and the same argument works.

Case 4. Now suppose p = 1 and r = 1. Any rank 2 positive semidefinite matrix

in S(G) can be factored AAT , where A is n × 2, and the m1 rows corresponding

to the first m1 vertices in Km1,n1
in the complement must be orthogonal to the n1

rows corresponding to the other n1 vertices in the Km1,n1
. For any such matrix,

multiplication by a 2 × 2 rotation matrix on the right puts those rows in “standard

position,” that is, where rows have the form (a, 0) and (0, b). So without loss of

generality, we may assume that

A =



























x y

a1 0
...

am1
0

0 b1

...

0 bn1



























and thus

AT A =

[

x2 +
∑

a2
i xy

xy y2 +
∑

b2
i

]

.

If this has an eigenvalue of multiplicity 2, then it is similar to a multiple of the identity,

and thus is a multiple of the identity. Therefore, xy = 0, which implies that either

x = 0 or y = 0, but that would not correspond to the graph that we are considering.

Thus, a positive eigenvalue of multiplicity 2 is impossible in this case.

To get any other possibility, just take

z =
[√

x,
√

x
]

, u1 =

[

1√
m1

, 0

]

, v1 =

[

0,
1√
n1

]

,

and set A =

[

z

U1

]

. Then AAT ∈ S(G) and

AT A =

[

x + 1 x

x x + 1

]

=

[

x x

x x

]

+ I.
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The matrix

[

x x

x x

]

has rank 1 and trace 2x, so its eigenvalues are 0 and 2x. Thus

the eigenvalues of AT A are 1 and 1 + 2x. It is clear that, after scaling, we can attain

any two distinct, positive eigenvalues that we wish.

This case gives the first restriction in the statement of the theorem.

II. Now we will consider the inertia (1, 1) case. With Lemma 6.1 in mind, we

define an indefinite inner product 〈·, ·〉 on R
2 by

〈a, b〉 = a

[

1 0

0 −1

]

bT .

Again, K1 will be considered separately from other complete bipartite graphs.

First let G = (Kk ∪ Kℓ ∪ Km1,n1
∪ · · · ∪ Kmr,nr

)c, where k, ℓ ≥ 3, r ≥ 2, and

ni,mi ≥ 1 for all i (so no K1’s are in the complement, but we do allow K2’s).

Let s > 0, t ≥ 0, and let

x =
[√

s√
k
,
√

s√
k

]

, y =
[√

s√
ℓ
,−

√
s√
ℓ

]

,

u1 =
[√

t+s√
m1

, 0
]

, v1 =
[

0,
√

s√
n1

]

,

ui =

[ √
s cos θi√
(r−1)mi

,
√

s sin θi√
(r−1)mi

]

, vi =

[ √
s sin θi√
(r−1)ni

,
√

s cos θi√
(r−1)ni

]

for i = 2, . . . , r,

where 0 < θ2 < θ3 < · · · < θr < π
4 . Define X to be the k × 2 matrix with the

vector x in each row, Y to be the ℓ × 2 matrix with y in each row, and Ui to be the

(mi +ni)×2 matrix with the vector ui in the first mi rows, and vi in the last ni rows.

Notice that both x and y are “self orthogonal” under our new inner product, but are

not orthogonal to each other, or any of the ui or vi. Also, ui and vi are orthogonal

under this inner product, but are not orthogonal to themselves, or any other uj or

vj , by our choices of θi.

Let

A =
[

XT Y T UT
1 · · · UT

r

]T
.

Then the matrix

A

[

1 0

0 −1

]

AT ∈ S(G)

and has rank 2 and partial inertia (1, 1). Multiplying in the other order, we get

[

1 0

0 −1

]

AT A =

[

2s + (t + s) + s 2s
∑r

i=2
cos θi sin θi

r−1

−2s
∑r

i=2
cos θi sin θi

r−1 −(2s + s + s)

]

=

[

t + 4s 2sα

−2sα −4s

]

,
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where α =
∑r

i=2
cos θi sin θi

r−1 . Note in particular that α < 1. This matrix has the same

nonzero eigenvalues. The trace is t, and the determinant is (t + 4s)(−4s) + 4s2α2 =

−4st − 16s2 + 4s2α2 = −4st − s2(16 − 4α2). Thus the characteristic polynomial is

λ2 − tλ − 4(st + s2(4 − α2))

and the eigenvalues are

1

2

(

t ±
√

t2 + 16(st + s2(4 − α2))
)

.

Then given λ1 > 0 and λ2 < 0 where, without loss of generality, λ1 ≥ |λ2|, let

t = λ1 + λ2. Then since λ2 < 0, λ1 − λ2 > t. Notice that for s ∈ (0,∞), the range

of
√

t2 + 4(4st + s2(16 − 4α2)) is (t,∞) (since t ≥ 0 and α < 1), so choose s so that

λ1 − λ2 =
√

t2 + 4(4st + s2(16 − 4α2)). This choice of t and s give λ1 and λ2 as

eigenvalues.

In the following table, we will look at several different cases using the above idea.

We will still take G = (Kk ∪ Kℓ ∪ pK1 ∪ Km1,n1
∪ · · · ∪ Kmr,nr

)c but we will look

at cases where some of the graphs are possibly missing. We will still assume that

ni,mi ≥ 1, so that none of those complete bipartite graphs are K1, and K1 will be

considered separately. As a convention for convenience, if either of k or ℓ is 0, that

simply means that that complete graph does not occur in the complement. In all the

cases we look at we will take k and ℓ either to be 0 or at least 3. In the table, the first

column describes the graph G by stating which graphs are in the complement, the

second column gives the matrix A (with X, Y , and Ui as above) that will guarantee

A

[

1 0

0 −1

]

AT ∈ S(G), the third column shows the matrix we get when we multiply

in the other order, and the last column the eigenvalues of this matrix. We repeat the

case above to give a complete reference.

For u > 0 (and we still have t ≥ 0 and s > 0), define the vectors

z =
[√

2s√
p

,
√

s√
2p

]

, z′ =
[

1√
p−1

,−
√

u√
p−1

]

,

w =
[√

u√
p
, 0

]

, w′ = [
√

u, 1] ,

v′
1 =

[

0,
√

5s√
2n1

]

,

Define the matrix Z to be the p×2 matrix with z in all its rows, Z ′ the (p−1)×2

matrix with z′ in all its rows, W the p × 2 matrix with w in all its rows, and U ′
1

the matrix with u1 in the first m1 rows and v′
1 in the last n1 rows. We need z not

orthogonal (with respect to the inner product defined at the beginning of II) to any

of the ui or vi. To do so we only need θi 6= arctan 1
2 for all i.
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G A

[

1 0

0 −1

]

AT A Eigenvalues

1

p = 0,

k, ℓ ≥ 3,

r ≥ 2

















X

Y

U1

.

.

.

Ur

















[

t + 4s 2sα

−2sα −4s

]

1

2

(

t ±
√

t2 + 16(st + s2(4 − α2))
)

2

p = 0,

k ≥ 3,

ℓ = 0,

r ≥ 2













X

U1

.

..

Ur













[

t + 3s s + 2sα

−s − 2sα −3s

]

1

2

(

t ±
√

t2 + 4(3st + 4s2(2 − α − α2))
)

3

p = 0,

k ≥ 3,

ℓ = 0,

r = 1

[

X

U1

] [

t + 2s s

−s −2s

]

1

2

(

t ±
√

t2 + 8st + 12s2

)

4

p = 0,

k, ℓ = 0,

r ≥ 2









U1

.

.

.

Ur









[

t + 2s 2sα

−2sα −2s

]

1

2

(

t ±
√

t2 + 8(ts + 2s2(1 − α2))
)

5

p = 0,

k, ℓ ≥ 3,

r = 1





X

Y

U1





[

t + 3s 0

0 −3s

]

t + 3s,−3s

6

p = 0,

k, ℓ ≥ 3,

r = 0

[

X

Y

] [

2s 0

0 −2s

]

2s,−2s

7

p ≥ 1,

k, ℓ = 0,

r ≥ 2

















Z

U ′
1

U2

.

..

Ur

















[

t + 4s s + 2sα

−s − 2sα −4s

]

1

2

(

t ±
√

t2 + 4(4st + s2(15 − 4α − 4α2))
)

8

p ≥ 1,

k, ℓ = 0,

r = 1

[

Z

U ′
1

] [

t + 3s s

−s −3s

]

1

2

(

t ±
√

t2 + 12ts + 32s2

)
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G A

[

1 0

0 −1

]

AT A Eigenvalues

9

p ≥ 1,

k, ℓ ≥ 3,

r ≥ 2

























X

Y

Z

U ′
1

U2

.

.

.

Ur

























[

t + 6s s + 2sα

−s − 2sα −6s

]

1

2

(

t ±
√

t2 + 4(6ts + s2(35 − 4α − 4α2))
)

10

p ≥ 1,

k, ℓ ≥ 3,

r = 1









X

Y

Z

U ′
1









[

t + 5s s

−s −5s

]

1

2

(

t ±
√

t2 + 4(5ts + 24s2)
)

11

p ≥ 1,

k ≥ 3,

ℓ = 0,

r ≥ 2





















X

Z

U ′
1

U2

.

..

Ur





















[

t + 5s 2s + 2sα

−2s − 2sα −5s

]

1

2

(

t ±
√

t2 + 4(5st + s2(21 − 8α − 4α2))
)

12

p ≥ 1,

k ≥ 3,

ℓ = 0,

r = 1





X

Z

U ′
1





[

t + 4s 2s

−2s −4s

]

1

2

(

t ±
√

t2 + 4(4st + 12s2)
)

13

p ≥ 2,

k, ℓ ≥ 3,

r = 0





X

Y

W





[

2s + u 0

0 −2s

]

2s + u,−2s

14

p = 1,

k, ℓ ≥ 3,

r = 0





X

Y

w





[

2s + u 0

0 −2s

]

2s + u,−2s

15

p ≥ 1,

k ≥ 3,

ℓ = 0,

r = 0

[

X

W

] [

s + u s

−s −s

]

1

2

(

u ±
√

u2 + 4su
)

In Cases 2–4 and 7–12, it is straightforward to check that the same argument that
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we used in Case 1 works to show that we can achieve any positive and any negative

eigenvalue that we wish (recall that α < 1). In Case 5, it is clear that the appropriate

choice of s > 0 and t ≥ 0 gives any eigenvalues we want.

In Case 6, the matrix constructed has trace zero, but by Theorem 5.1, all of the

diagonal entries must be zero, so this gives all possibilities for this case. This gives

the second restriction in the statement of the theorem.

In Case 13, since u > 0, this does not allow for eigenvalues that add to zero,

but after scaling, gives any other eigenvalues we wish. To attain equal and opposite

eigenvalues, take A =









X

Y

Z ′

w′









. For this case take u > 1 so that z′ and w′ are not

orthogonal to x or y. Then A

[

1 0

0 −1

]

AT ∈ S(G) and multiplying in the other order

gives

[

2s + 1 + u 0

0 −2s − 1 − u

]

which has trace 0, so after scaling, we can achieve any equal and opposite eigenvalues.

In Case 14, since u > 0, this does not allow for eigenvalues that add to zero,

but after scaling, gives any other eigenvalues we wish. Note that by Theorem 5.7,

each diagonal entry corresponding to a vertex in one of the complete graphs in the

complement must be 0, and the diagonal entry corresponding to K1 in the complement

cannot be 0. Thus we have exactly one nonzero entry on the diagonal, so the trace

cannot be 0. Thus our construction gives all possibilities for this case. This is the

final restriction in the statement of the theorem.

In Case 15, using an argument similar to the first case, we can attain any two

eigenvalues of opposite sign we wish, as long as they do not add up to 0 (recall u > 0

is the trace). However, for p > 1, consider the matrix

M =



























p − 1 1 · · · 1
√

p − 1 · · · √
p − 1

1 −1 · · · −1 1 1
...

...
. . .

...
... · · ·

...

1 −1 · · · −1 1 1√
p − 1 1 · · · 1 0 · · · 0
...

...
. . .

√
p − 1 1 · · · 1 0 · · · 0



























∈ S(G).

This matrix has only 3 distinct rows, and multiplying the second row by −(
√

p − 1)
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and adding it to the first row gives
√

p times the last row. Thus, M has rank 2, and

has trace 0 by construction. Thus, it has one positive and one negative eigenvalue

which are opposite. So by multiplying M by the appropriate scalar, we can attain

any two opposite eigenvalues we wish.

For p = 1, just take the appropriate multiple of











0 1 · · · 1

1 0 · · · 0
...

. . .

1 0 · · · 0











to attain equal and opposite eigenvalues.

By Theorem 4.3, we have covered every connected graph whose minimum rank is

2.

7. Conclusion. In summary, we have characterized all graphs G with mr(G) = 2

and mr+(G) = k for any k and showed that mr+(G) = α(G) for such graphs. This

characterization solves the inverse inertia problem for graphs whose minimum rank is

two. We next considered the structure of rank minimizing matrices for these graphs

and classified all the nil, nonzero, and neutral vertices. Lastly, we solved the inverse

eigenvalue problem for rank minimizing matrices for graphs whose minimum rank is

two.

A few related open questions are listed below.

Question 7.1. For a graph G with mr(G) 6= 2, how are mr+(G) and α(G)

related?

Question 7.2. For a graph G when is a vertex v a nil vertex? When is v a

nonzero vertex?

For more results about the above question, see [2].

Question 7.3. Given a graph G with mr(G) = 2 and mr+(G) = k 6= 2, what

is the solution to the inverse eigenvalue problem for matrices in S(G) with inertia

(k, 0)?

Question 7.4. Can the techniques used for the inverse eigenvalue problem in

this paper be extended to graphs whose minimum rank is not two?
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