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DIGRAPHS WITH LARGE EXPONENT�

S. KIRKLANDy, D. D. OLESKYz, AND P. VAN DEN DRIESSCHEx

Abstract. Primitive digraphs on n vertices with exponents at least b!n=2c + 2, where !n
= (n � 1)2 + 1, are considered. For n � 3, all such digraphs containing a Hamilton cycle are
characterized; and for n � 6, all such digraphs containing a cycle of length n� 1 are characterized.
Each eigenvalue of any stochastic matrix having a digraph in one of these two classes is proved to
be geometrically simple.
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1. Introduction. A directed graph (digraph) D is primitive if for some positive
integer m there is a (directed) walk of length m between any two vertices u and v
(including u = v). The minimum such m is the exponent of D, denoted by exp(D).
It is well known that D is primitive i� it is strongly connected and the gcd of its
cycle lengths is 1. A nonnegative matrix A is primitive if Am is entrywise positive
for some positive integer m. If D = D(A), the digraph of a primitive matrix A, then
exp(D) = exp(A), which is the minimum m such that Am is entrywise positive.

Denoting (n� 1)2 + 1 by !n, the best upper bound for exp(D) when a primitive
digraph D has n � 2 vertices is given by exp(D) � !n, with equality holding i�
D = D(Wn) where Wn is a Wielandt matrix; see, e.g., [2, Theorem 3.5.6]. When
n = 2, then D(W2), consisting of a 1 cycle and a 2 cycle, has exponent equal to 2.
Henceforth we assume that n � 3. The digraph D(Wn) consists of a Hamilton cycle
(i.e., a cycle of length n) and one more arc, between a pair of vertices that are distance
two apart on the Hamilton cycle, giving a cycle of length n� 1.

The following result of Lewin and Vitek [6, Theorem 3.1], see also [2, Theorem
3.5.8], is the basis for our discussion of digraphs with large exponent.

Theorem 1.1. If D has n � 3 vertices and is primitive with suÆciently large
exponent, namely

exp(D) � b!n=2c+ 2;with !n = (n� 1)2 + 1;(1)

then D has cycles of exactly two di�erent lengths j; k with n � k > j.
We say that a primitive digraphD on n vertices satisfying (1) has a large exponent.

Note that in Theorem 1.1, gcd(j; k) = 1 since D is primitive. If gcd(j; k) = 1, then
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every integer greater than or equal to (j�1)(k�1) can be written as c1j+c2k, where
ci are nonnegative integers. The value (j� 1)(k� 1) is the smallest such integer, and
is called the Frobenius-Schur index for the two relatively prime integers j and k; see,
e.g., [2, Lemma 3.5.5].

The Frobenius-Schur index is used to prove the following result that gives a
necessary and suÆcient condition for the existence of a primitive digraph with large
exponent and cycles of two speci�ed lengths.

Theorem 1.2. Let k and j be such that gcd(j; k) = 1 and n � k > j. There
exists a primitive digraph D on n vertices having only cycle lengths k and j and
exp(D) � b!n=2c+ 2 i� j(k � 2) � b!n=2c+ 2� n.

Proof. Suppose that D is a digraph with large exponent and cycle lengths k and
j < k � n. We claim that for any pair of vertices u and v, there is a walk from u to
v of length at most k + n� j � 1 � n that goes through a vertex on a k cycle and a
vertex on a j cycle. To prove this claim, note that from the proof of Theorem 1 in
[4], there are no pairs of vertex disjoint cycles in D; that is, any pair of cycles share
at least one common vertex. If there is a walk from u to v of length less than or equal
to n that passes through at least one vertex on a k cycle and at least one vertex on
a j cycle, then the claim is proved.

So suppose that this is not the case. In particular, assume that u and v are only
on k (resp. j) cycles, and any path from u to v passes only through vertices not on
any j (resp. k) cycle. Consider the �rst case. Let l be the number of vertices not
on a j cycle, and note that 2 � l � n � j. Since a shortest path from u to v goes
only through vertices not on a j cycle, the length p of such a path satis�es p � l� 1.
Consider the walk from u to v formed by �rst traversing a k cycle at u (necessarily
going through a vertex on a j cycle), then taking the path of length p from u to v.
This generates a walk from u to v that goes through a vertex on a k cycle and one
on a j cycle, and its length is k + p � k + l � 1 � k + n � j � 1. The second case
follows by interchanging k and j and noting that j + n � k � 1 < k + n � j � 1.
Thus the claim is proved. By the Frobenius-Schur index, there is a walk from u to
v of length k + n � j � 1 + (k � 1)(j � 1) = n + j(k � 2) for any pair u; v. Thus
n+ j(k � 2) � exp(D) � b!n=2c+ 2, giving the condition on k and j.

For the converse, assume the condition on k and j, and consider the digraph
D consisting of the k cycle 1 ! k ! k � 1 ! � � � ! k + j � n + 1 ! k + j � n !
k+j�n�1! � � � ! 2! 1, and arcs 1! k+1! k+2! � � � ! n�1! n! k+j�n.
Thus D has exactly one k cycle and one j cycle. Consider the length of a walk from
k to k + j � n+ 1. Such a walk has length n� j � 1 or k + n� j � 1 + c1k + c2j for
some nonnegative integers ci, and (from the Frobenius-Schur index) there is no walk
of length k + n� j � 1 + (k � 1)(j � 1)� 1. Thus

exp(D) � k + n� j � 1 + (k � 1)(j � 1) = n+ j(k � 2) � b!n=2c+ 2:

Note that for D primitive with only cycles of lengths k and j with j < k � n, the
bound on exp(D) found in the above proof, namely exp(D) � n+ j(k � 2), improves
the bound in [4, Lemma 1] and includes the converse. Furthermore, Theorem 1.2 does
not include additional assumptions as in [6, Theorem 4.1].
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We assume that D has a large exponent and focus on the graph theoretic aspects
of this condition. In Section 2, we characterize the case when D has a Hamilton
cycle (k = n � 3); and in Section 3, we characterize the case k = n � 1. Our
characterizations give some information on the case for general k � n when n �
4, since a result of Beasley and Kirkland [1, Theorem 1] implies that any induced
subdigraph on k vertices that is primitive also has large exponent (relative to b!k=2c+
2), so the structure of some such induced subdigraphs is known from our results. It
is known from results in [6] exactly which numbers � b!n=2c + 2 are attainable as
exponents of primitive digraphs. (Note that there are some gaps in this exponent
set.) Our work in Sections 2 and 3 focuses on describing the corresponding digraphs
when k � n� 1.

Some algebraic consequences of the large exponent condition (1) for a stochastic
matrix A with D(A) = D have been investigated in [4] and [5]. The characteristic
polynomial of A has a simple form (see [4, Theorem 1]), and, if n is suÆciently
large, then about half of the eigenvalues of A have modulus close to 1. Kirkland and
Neumann [5] considered the magnitudes of the entries in the group generalized inverse
of I�A (which measures stability of the left Perron vector of A under perturbations).
In Section 4 we use results of Sections 2 and 3 to investigate the multiplicities of
eigenvalues of stochastic matrices with large exponents.

2. The Hamiltonian Case. Assuming that D has large exponent and a Hamil-
ton cycle, we begin by �nding possible lengths for other cycles in D.

Lemma 2.1. Suppose that D is a primitive digraph on n � 3 vertices with
exp(D) � b!n=2c + 2 and that D has a Hamilton cycle. Then D has precisely one
Hamilton cycle, and all other cycles have length j, where n > j � d(n� 1)=2e.

Proof. By Theorem 1.1, D contains cycles of exactly two lengths, n = k > j.
W.l.o.g. take the given Hamilton cycle as 1! n! n� 1! � � � ! 2! 1, and assume
that the arc 1 ! j lies on a second Hamilton cycle. Note that the only possible
arcs from any vertex i are i ! i � 1 (mod n) and i ! i + j � 1 (mod n). Since
the arc j + 1 ! j is not on the second Hamilton cycle, this cycle must include the
arc j + 1 ! (j + 1) + j � 1 = 2j (mod n). Similarly, there is an arc on the second
Hamilton cycle from (m�1)j+1 tomj (mod n), form = 1; : : : ; n. As gcd(j; n) = 1, D
contains the digraph of a primitive circulant. By [3, Theorem 2.1], exp(D) � (n� 1)
or exp(D) � bn=2c, thus exp(D) < b!n=2c+ 2 . Hence, there is no second Hamilton
cycle in D. For the lower bound on j, take k = n in Theorem 1.2; see also [4, Theorem
1].

If D has large exponent and k = n = 3, then Lemma 2.1 implies that j 2 f1; 2g:
For j = 1, D consisting of a 3 cycle and a 1 cycle has exponent equal to 4 = b!3=2c+2.
For j = 2 = n�1, either D = D(W3) with exponent equal to 5 = !3, or D consists of
a 3 cycle with two 2 cycles and has exponent equal to 4. This last case is an example
of the result that a digraph D on n vertices has exp(D) = (n�1)2 i� D is isomorphic
to an n cycle with two additional arcs from consecutive vertices forming two n � 1
cycles; see, e.g., [2, pp. 82{83].

These observations motivate our next two theorems, which describe the Hamilto-
nian digraphs with large exponent. Most cases are covered in Theorem 2.2, but, if n
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is odd, then the case j = (n� 1)=2 is slightly di�erent and is given in Theorem 2.3.

Theorem 2.2. Suppose that j � n=2. Then D is a primitive digraph on n � 3
vertices with exp(D) � b!n=2c+ 2 and cycle lengths n and j i� D is isomorphic to
a (primitive) subdigraph of the digraph formed by taking the cycle 1 ! n ! n� 1 !
� � � ! 2! 1, and adding in the arcs i! i+ j � 1 for 1 � i � n� j + 1.

Proof. Assume that D is primitive with large exponent and has a Hamilton cycle.
Then by Lemma 2.1, D has only one Hamilton cycle and other cycles of length j,
which by assumption is at least n=2. W.l.o.g. assume that the Hamilton cycle is
1 ! n ! n � 1 ! � � � ! 2 ! 1; and that D contains the arc 1 ! j. Since D has
cycles of just two di�erent lengths, each vertex i of D has outdegree � 2, and if the
outdegree is 2, then the outarcs from vertex i are i ! i� 1 and i ! i+ j � 1. Here
and throughout the proof, all indices are mod n. As 1 ! j, the outdegree of vertex
i is 1 for each i 2 fn � j + 2; : : : ; jg, since otherwise 1 ! j ! j � 1 ! � � � ! i !
i+j�1�n! i+j�2�n! � � � ! 2! 1 is a cycle of length less than j. Consequently
if the outdegree of vertex i 2 f2; : : : ; jg is 2, then in fact i 2 f2; : : : ; n�j+1g. If there
is no such i, then D has the desired structure, sinceD has at most n�j+1 consecutive
vertices on the Hamilton cycle (namely 1 and j+1; : : : ; n) of outdegree 2. Henceforth
suppose that there exists i 2 f2; : : : ; n � j + 1g with outdegree 2, and let i1 be the
maximum such i; thus i1 ! i1 + j � 1 2 fj + 1; : : : ; ng. As before, the outdegree is 1
for each vertex 2 fn� j+ i1+1; : : : ; j+ i1�1g: In particular, if n� j+ i1+1 � j+1,
then the only vertices that can have outdegree 2 are 1; : : : ; i1 and j+ i1; : : : ; n, that is
n�j+1 consecutive vertices, as desired. So suppose henceforth that n�j+i1 > j, that
is i1 > 2j �n � 0. Suppose also that there exists i2 such that n� j + i1 � i2 � j +1
with i2 having outdegree 2. Then i2 ! i2 + j � 1. Now n+ i1 � 1 � i2 + j � 1 � 2j,
so that i2+ j� 1 (mod n) = i2+ j� 1�n 2 f2j� n; : : : ; i1� 1g. But then there is a
cycle i1 ! i1+j�1! i1+j�2! � � � ! i2 ! i2+j�1�n! i2+j�2�n! � � � !
2 ! 1 ! j ! j � 1 ! � � � ! i1 + 1 ! i1; which has length 3j � n. As there is only
one Hamilton cycle (Lemma 2.1), this implies that 3j�n = j, giving a contradiction,
since gcd(n; j) = 1. Thus again each of vertices i1+1; : : : ; j + i1� 1 has outdegree 1,
and so at most n� j + 1 consecutive vertices have outdegree 2, as desired.

For the converse, consider the maximal such digraph D with the above Hamilton
cycle and the n� j+1 additional arcs. Note that each of the vertices n� j+2; : : : ; n
has outdegree 1, and each of the vertices 1; 2; : : : ; j � 1 has indegree 1, so the only
path from n to 1 is n ! n� 1 ! � � � ! 1 with length n � 1. By Frobenius-Schur, it
follows that there is no walk from n to 1 of length n� 1 + (n � 1)(j � 1)� 1; hence
exp(D) � j(n� 1). Since gcd(n; j) = 1, it follows that j = n=2 is inadmissible. Thus
j � n=2 implies that j � (n+1)=2, and so j(n� 1) � (n2� 1)=2 � b!n=2c+2. Since
D is maximal, any primitive subdigraph has exponent at least as large as exp(D).

Theorem 2.3. Suppose that n � 3 is odd and j = (n � 1)=2. Then D is a
primitive digraph on n vertices with exp(D) � b!n=2c + 2 and cycle lengths n and
j i� D is isomorphic to a (primitive) subdigraph of the digraph formed by taking the
cycle 1 ! n ! n � 1 ! � � � ! 2 ! 1, and adding in the arcs i ! i + j � 1 for
1 � i � (n� 1)=2 = j.

Proof. First assume that exp(D) � b!n=2c + 2 = (n � 1)2=2 + 2. Observe
that if vertex i is on a j cycle, then (by Frobenius-Schur) there is a walk of length
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� (n � 1) + (n � 1)(j � 1) = j(n � 1) = (n � 1)2=2 from i to each vertex of D. It
follows that there must be a vertex with distance 2 to the nearest j cycle. W.l.o.g.
that vertex is n, with vertex n�2 on a j cycle. In fact that j cycle is n�2! n�3!
� � � ! (n�1)=2 = j ! n�2, otherwise n�1 or n is on a j cycle. None of the vertices
j + 1; j + 2; � � � ; n can have outdegree 2 (otherwise one of n� 1 or n is on a j cycle).
However, the j�1 additional arcs i! i+ j�1 for i = 1; 2; : : : ; j�1 may be included
in D. Thus it follows that D is a subdigraph of the digraph that has the n� 1 cycle
and the additional j arcs as in the theorem statement.

For the converse, note that if D is isomorphic to a subdigraph of the speci�ed
digraph, then a walk from n to n � 1 of length greater than 1 must traverse the
entire Hamilton cycle, so walks from n to n � 1 have length 1 or n + 1 + c1n + c2j
where c1 and c2 are nonnegative integers. Thus (by Frobenius-Schur) there is no walk
from n to n � 1 of length n + 1 + (n � 1)(n � 3)=2 � 1 = (n � 1)2=2 + 1, so that
exp(D) � (n� 1)2=2 + 2, as desired.

Using the structures of Hamiltonian digraphs D with large exponents given in
Theorems 2.2 and 2.3, we determine the exact value of exp(D) in terms of a parameter
a that depends on which j cycles occur in D.

Corollary 2.4. Suppose that D is a primitive digraph on n � 3 vertices with
exp(D) � b!n=2c + 2, a Hamilton cycle and all other cycles of length j, where n >
j � d(n� 1)=2e. Suppose that the Hamilton cycle is 1 ! n ! n� 1 ! � � � ! 2! 1.
Let 1 � a � n� j+1 if j � n=2, and 1 � a � j if j = (n� 1)=2. Suppose that D also
contains the arc(s) 1! j and a! a+ j � 1, and that if i is a vertex of outdegree 2,
then 1 � i � a. Then exp(D) = n� a+ 1 + (n� 2)j.

Proof. The shortest walk from n to a+j that passes through a vertex on a j cycle
has length n�a� j+n, so it follows (by Frobenius Schur) that there is no walk from
n to a+j of length n�a�j+n+(n�1)(j�1)�1. Thus exp(D) � n�a+1+(n�2)j.
Further, since there is a walk between any two vertices of length at most n�a� j+n
that goes through a vertex on a j cycle, it follows that exp(D) � n�a+1+(n� 2)j,
and thus exp(D) = n� a+ 1 + (n� 2)j.

If j � n=2, note that exp(D) = n�a+1+(n�2)j � j(n�1) for 1 � a � n�j+1,
giving the result of [6, Corollary 3.1] when k = n without the additional assumption.
Also note that if j = n � 1 and a = 1, then exp(D) achieves its maximum value of
!n, and D = D(Wn), as described in Section 1. It is interesting to note that in the
above corollary, it is only the value of a that inuences the value of the exponent; if
2 � i � a � 1, the presence or absence of the arc i ! i + j � 1 does not a�ect the
exponent. For �xed n and j, this result gives a range of values of exp(D) in which
there are no gaps; see [6].

3. The Case k = n�1. If D on n vertices has large exponent with cycle lengths
n � 1 and j < n � 1, then Theorem 1.2 shows that j � dn=2e provided that n � 5.
(There are no such digraphs for n � 4.) Our next two theorems characterize these
digraphs for n � 6. As in the Hamiltonian case, most digraphs are covered by the
�rst result (Theorem 3.3), but the case j = n=2 (when n is even) is di�erent, and is
given by the second result (Theorem 3.4). Before proving our main results, we give a
de�nition and a preliminary Lemma. Note that since there is a cycle of length n� 1,
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indices are taken mod (n � 1). Vertex n replicates vertex v 2 f1; : : : ; n � 1g in a
digraph D on n vertices if for all a; b 2 f1; : : : ; n � 1g; a ! n i� a ! v and n ! b
i� v ! b. Thus in the adjacency matrix A with D = D(A), the rows (and columns)
corresponding to vertices n and v are the same.

Lemma 3.1. Let D be a strongly connected digraph on n � 5 vertices, with cycle
lengths n� 1 and j, where n� 1 > j � 3. Suppose that 1 ! n� 1! � � � ! 2! 1 is
an n�1 cycle, and that c! n. Then n has outdegree at most 2, with either n! c�2
or n! c+ j � 2 or both. Furthermore, if the outdegree of n is 2, then the indegree of
n is 1.

Proof. First suppose that there is an arc n ! a. Then there is a cycle n ! a !
a� 1! � � � ! c! n of length a� c+ 2 if a > c, or length n+ 1 + a� c if c > a. In
the former case, a � c + 2 = j or n � 1, from which it follows that a = c + j � 2 or
c� 2; in the latter case similarly a = c+ j � 2 or c� 2. This establishes the possible
outarcs from n. Finally, assume that n ! c � 2 and n ! c + j � 2. Suppose that
d ! n for some d 6= c. As above the two outarcs from n can be written as d� 2 and
d + j � 2. As d 6= c, it follows that d � 2 = c + j � 2 and c � 2 = d + j � 2. Hence
d� c = j and c� d = j, giving a contradiction. Thus the indegree of n is 1.

Corollary 3.2. Let D be as in Lemma 3.1. If n! c, then either c+ 2! n or
c+ 2� j ! n or both. Furthermore, if the indegree of n is 2, then the outdegree of n
is 1.

Proof. Form D0 by reversing the orientation of each arc in D. Then Lemma 3.1
applies to D0, and the result follows.

Theorem 3.3. Suppose that n � 6 and n� 1 > j > n=2. Then D is a primitive
digraph on n vertices with exp(D) � b!n=2c+2 and cycle lengths n� 1 and j i� (up
to relabeling of vertices and reversal of each arc) D is a (primitive) subdigraph of a
digraph formed by taking an n � 1 cycle 1 ! n� 1 ! n � 2 ! � � � ! 2 ! 1, adding
in the arcs a! a+ j � 1 for 1 � a � n� j, and one of the following:

(a) arcs so that n replicates i0 for a �xed i0 2 f1; : : : ; n� 1g,
(b) arcs 1! n; n! n� 2 and n! j � 1.
Proof. First suppose that D is primitive with exp(D) � b!n=2c + 2 and cycle

lengths n � 1 and j. By relabeling the vertices and/or reversing each arc in D if
necessary, we may assume that the n � 1 cycle is as above, and that vertex n has
indegree 1 (Lemma 3.1 and Corollary 3.2). If the subdigraph induced by f1; : : : ; n�1g
is not primitive, then this subdigraph is just the n � 1 cycle, and without loss of
generality 1! n, so by Lemma 3.1 the outarcs of n are a subset of those given in (b).
So suppose that the subdigraph induced by f1; : : : ; n�1g is primitive. It follows from
a result of Beasley and Kirkland [1, Theorem 1], that the exponent of this induced
subdigraph is at least b!n=2c, which in turn is at least b!n�1=2c+2. Hence without
loss of generality, take the subdigraph to contain the arc 1 ! j, and (by Theorem
2.2 ) to have the property that if a ! a + j � 1, then 1 � a � n � j. Let a0 be
the maximum such a. Suppose that i ! n and note from Lemma 3.1 that the only
possible outarcs from n are n! i� 2 and n! i+ j � 2. Consider the two cases: (i)
n 6! i+ j � 2, (ii) n! i+ j � 2.

Case (i) n 6! i+ j � 2: Vertex n has outdegree 1 with n! i� 2 (and indegree 1
with i! n). From the structure of the subgraph induced by f1; : : : ; n�1g (described
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above), D is a subdigraph of one constructed as in (a) (with i0 = i� 1).

Case (ii): n! i+j�2: If 1 � i�1 � n�j or n�1 � i�1 � a0+j�1, then D is a
subdigraph of one of the ones constructed in (a) (if i 6= 1, with i0 = i+j�1) or in (b) (if
i = 1). Suppose now that n�j+1 � i�1 � a0+j�2. Then n � i+j�2 � a0+2j�3,
so that 1 � i+ j � 2� (n� 1) � a0+2j � 3� (n� 1) < a0� 2: Note that D contains
the closed walk a0 ! a0 + j � 1! a0 + j � 2! :::! i! n! i+ j � 2� (n� 1)!
i+ j � 3� (n� 1)! ::: ! 1! j ! j � 1! ::: ! a0, which has length 3j � (n� 1).
Any closed walk can be decomposed into cycles, thus 3j � (n� 1) = c1j + c2(n� 1)
for some nonnegative integers c1; c2. Since j < 3j � (n � 1) < 2(n � 1), the only
possible cases are that 3j � (n � 1) is one of n � 1 (with c1 = 0; c2 = 1), 2j (with
c1 = 2; c2 = 0) and j + n� 1 (with c1 = 1; c2 = 1). The last two of these imply that
j = n� 1 (a contradiction). The �rst of these three can only occur if 3j = 2(n� 1),
and since j and n � 1 are relatively prime, this is also impossible. Consequently, it
must be the case that 1 � i� 1 � n� j or n� 1 � i� 1 � a0 + j � 1, so that D is a
subgraph of one of the ones constructed in (a) or (b).

For the converse, consider a maximal digraph H constructed as in (a). Since n
replicates i0, exp(H) = exp(H 0) where H 0 is formed from H by deleting n and its
incident arcs. Now H 0 is Hamiltonian on n� 1 vertices and has the digraph structure
of Theorem 2.2, thus exp(H 0) � b!n�1=2c+ 2: Applying Corollary 2.4 to H 0 with n
replaced by n� 1 and a = n� j, exp(H 0) = j(n� 2) � b!n=2c+2, since j > n=2 and
n � 6. For case (b), observe that there is no walk from n�1 to 1 of length (n�2)j�1
(by the usual Frobenius- Schur argument), so that the exponent is at least (n� 2)j,
giving the required result as in (a).

Note that the result of Theorem 3.3 does not hold for small values of n. For
example, if n = 5 a digraph as in (a) of Theorem 3.3 with exponent equal to 9 < 10 =
b!5=2c + 2 can be constructed by taking a Hamiltonian digraph on 4 vertices with
two additional arcs from consecutive vertices forming two 3�cycles (see, e.g., [2, pp.
82-83]) and vertex 5 replicating vertex 1.

Theorem 3.4. Suppose that n � 6 is even and j = n=2. Then D is a primitive
digraph on n vertices with exp(D) � b!n=2c+2 and cycle lengths n� 1 and j i� (up
to relabeling of vertices and reversal of each arc) D is a (primitive) subdigraph of a
digraph formed by taking an n � 1 cycle 1 ! n� 1 ! n � 2 ! � � � ! 2 ! 1, adding
in the arcs i! i+ j � 1 for 1 � i � n=2� 3, and one of the constructions (a) or (b)
in Theorem 3.3.

Proof. First suppose that D is primitive with exp(D) � b!n=2c + 2 and cycle
lengths n� 1 and j. As in the proof of Theorem 3.3, assume that the n � 1 cycle is
as above, that the subdigraph induced by f1; : : : ; n� 1g is primitive, with 1! j, and
with the property that if a ! a + j � 1, then 1 � a � n � j. Finally, also suppose
that i ! n. By Lemma 3.1 and Corollary 3.2 there are two cases to consider: (i) D
contains exactly one of the arcs n ! i+ j � 2 and i� j ! n, (ii) D contains neither
the arc n! i+ j � 2 nor the arc i� j ! n.

Case (i): We claim that we may assume that n ! i + j � 2. To see the claim,
observe that if instead we have the arc i�j ! n (and thus, by Lemma 3.1, n! i�2),
we can reverse every arc in D and relabel vertices 1; : : : ; n�1 by sending t to n� t for
each such t. With this relabeling, it follows from Lemma 3.1 that n� i+ 2! n and
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n! n� i+j. With n� i+2 replaced by i, this digraph contains the arc n! i+j�2.
So without loss of generality, we assume that the arc n ! i + j � 2 is in D. Since
vertex n is on a j-cycle and since D has diameter at most n� 1, it follows that there
is a walk from n to any vertex of length n�1+(n�2)(n=2�1) = (n2�2n+2)=2, and
similarly that from any vertex in D there is a walk to n of length (n2�2n+2)=2. Since
exp(D) � b!n=2c+2 = (n2 � 2n+6)=2, it must be the case that there are vertices u
and v 2 f1; : : : ; n�1g such that there is no walk from u to v of length (n2�2n+4)=2.
Observe that for any vertex w 2 f1; : : : ; n � 1g that is on a j-cycle, there is a walk
from w to every vertex in f1; : : : ; n�1g of length n�2+(n�2)(n=2�1) = (n2�2n)=2.
As a result, the shortest walk from u to a vertex in f1; : : : ; n� 1g that is on a j-cycle
must have length at least 3. It follows from this that in fact vertex n � 1 must be
at least 3 steps from the nearest j-cycle, so that in particular, none of n � 1, n � 2
and n � 3 can be on a j-cycle. Thus in D, n � j 6! n � 1, n � j � 1 6! n � 2 and
n� j � 2 6! n� 3, and so if a! a+ j � 1, then a � n� j � 3 = n=2� 3. Further, it
must be the case that 1 � i � n�j�2, otherwise one of vertices n�1, n�2 and n�3
is on a j-cycle (involving vertices i and n). Consequently, D can be relabeled to yield
a subdigraph of one of those constructed in (a) with i0 = i� 1 (if 2 � i � n� j � 2),
or (b) (if i = 1).

Case (ii): If D contains neither the arc n ! i + j � 2 nor the arc i � j ! n,
then n has both indegree and outdegree 1, with i ! n ! i � 2. Now if D contains
either of the arcs i � 1 ! i + j � 2 or i � j ! i � 1, then the labels of vertices
i � 1 and n can be exchanged and case (i) above applies. On the other hand if D
contains neither of those two arcs, then i � 1 has indegree and outdegree 1, with
i ! i � 1 ! i� 2, so that vertex n replicates vertex i � 1. Thus exp(D) = exp(D0)
where D0 is formed from D by deleting vertex n and the arcs incident with it. From
Corollary 2.4 with n replaced by n � 1, exp(D0) = n � 1 � a + 1 + (n � 3)j where
a = maxfb is a vertex in D0 : the arc b ! b + j � 1 is in D0g. Thus exp(D0) =
exp(D) = n � a + (n � 3)n=2 � (n2 � 2n + 6)=2, which implies that a � n=2 � 3.
Consequently D is a subdigraph of one of those constructed in (a) with i0 = i� 1.

For the converse, consider a digraph H constructed as in (a). Since n replicates
i0, exp(H) = exp(H 0), where H 0 is formed from H by deleting n and its incident
arcs. Appealing to Corollary 2.4 with n replaced by n� 1, a = n=2� 3; and j = n=2,
exp(H 0) = (n2 � 2n + 6)=2 = b!n=2c+ 2 if n is even. Finally, consider the digraph
H constructed in (b). Evidently the walks from vertex n� 1 to n� 3 can only have
lengths equal to 2, or to 2 + n� 1 + c1(n � 1) + c2j for nonnegative integers c1 and
c2. It follows that there is no walk from n� 1 to n� 3 of length (n2 � 2n+ 4)=2, so
that exp(H) � (n2 � 2n+ 6)=2.

4. Eigenvalue Results. In this section we explore results on the multiplicities of
eigenvalues of primitive stochastic matrices having large exponent. These complement
eigenvalue results in [4]. Our �rst theorem gives conditions for a stochastic matrix
with large exponent to have a multiple nonzero eigenvalue. This result, which is not
restricted to k = n or k = n � 1, shows that a multiple nonzero eigenvalue must be
negative with algebraic multiplicity 2.
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Theorem 4.1. Let A be a primitive, row stochastic n-by-n matrix with n � 3 and
exp(A) � b!n=2c+ 2. Let k and j be the two cycle lengths in D(A) with n � k > j.
Then A has a multiple nonzero eigenvalue � i� � = �r, where r is the unique positive
root of kxj + jxk = k � j. When this is the case, k is odd and j is even.

Proof. By Theorem 1 in [4], the characteristic equation of A is zn��zn�j � (1�
�)zn�k = 0, for some � 2 (0; 1). Thus a nonzero eigenvalue satis�es

zk � �zk�j � (1� �) = 0:(2)

Note that 1 is always an eigenvalue, and (by Descartes' rule of signs) there is no other
positive eigenvalue. Let � = �ei� be an eigenvalue with � > 0 and 0 < � < 2�: By
di�erentiating, if � is a multiple eigenvalue, then it also satis�es �j = �(k � j)=k,
giving �j = �(k � j)=k and � = 2�l=j for some positive integer l < j. Further
di�erentiation shows that the algebraic multiplicity of � is 2. By taking imaginary
parts of the characteristic equation, �ksin(k�) = ��k�jsin((k�j)�). On substituting
for �j , this gives (k � j)sin(k�) = ksin((k � j)�) = ksin((k � j)2�l=j) = ksin(k�).
Thus sin(k�) = 0, so that � = �m=k for some positive integerm. Hence 2lk = mj, and
since gcd(k; j) = 1 and j divides 2l, it must be that j = 2l. As a result � = �; � = ��,
j is even, k is odd and � = k�j=(k� j). Substituting into (2) gives k�j + j�k = k� j.
The converse is straightforward.

From the characteristic equation, a matrix satisfying the conditions of Theorem
4.1 has zero as an eigenvalue i� k < n, and its algebraic multiplicity is n� k.

The digraph characterizations in Sections 2 and 3 lead to results about the geo-
metric multiplicities of eigenvalues of primitive, stochastic matrices with large expo-
nent.

Theorem 4.2. Let A be a primitive, row stochastic n-by-n matrix with n � 3
and exp(A) � b!n=2c + 2. If D(A) is Hamiltonian, then each eigenvalue of A is
geometrically simple.

Proof. Let the length of the shorter cycle(s) in D(A) be j � d(n�1)=2e by Lemma
2.1. For j � n=2 take p = n�j+1, and for j = (n�1)=2 take p = (n�1)=2. Then by
Theorems 2.2 and 2.3, without loss of generality by permutation similarity A = [aij ]
has the following form: a1;n = 1 � �1; ai;i�1 = 1 � �i for 2 � i � p; ai;i�1 = 1 for
p + 1 � i � n; ai;i+j�1 = �i for 1 � i � p; and all other aij = 0. Here �i satisfy
0 < �1 < 1 and 0 � �i < 1 for 2 � i � p. Thus for all j � d(n � 1)=2e, A is an
unreduced Hessenberg matrix. By deleting row 1 and column n, it can be seen that
rank A � (n � 1) [7, Exercise 22, p. 274]. Similarly, rank (A� �I) = n� 1 for each
eigenvalue � of A. This implies that each eigenvalue has geometric multiplicity one.

As an example of the above eigenvalue results, consider the 3-by-3 row stochastic
matrix A having k = 3 and j = 2 as in the proof of Theorem 4.2 with �1 = �2 = 1=2.
Note that exp(A) = 4. The characteristic equation of A is z3 � �z � (1 � �) = 0,
with � = 3=4; thus A has eigenvalues 1;�1=2;�1=2. Here �1=2 is an eigenvalue of
algebraic multiplicity 2 (as predicted by Theorem 4.1), but geometric multiplicity 1
(as predicted by Theorem 4.2).

Theorem 4.3. Let A be a primitive, row stochastic n-by-n matrix with n � 6
and exp(A) � b!n=2c + 2. If the maximal cycle length in D(A) is n � 1, then each
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eigenvalue of A is geometrically simple.
Proof. Since k = n � 1, � = 0 is a simple eigenvalue of A. Let the length of the

shorter cycle(s) in D(A) be j � dn=2e by Theorem 1.2. For simplicity, only the proof
for the case j > n=2 is given, the case j = n=2 is essentially the same. For j > n=2,
by Theorem 3.3, without loss of generality by permutation similarity A = [aij ], or its
transpose, must have one of two forms corresponding to (a) or (b).

In case (a), without loss of generality n can be taken to replicate a vertex with
outdegree 1. (This is because, by Lemma 3.1, n has either indegree or outdegree 1,
so, if necessary, take AT .) Let vertex n replicate vertex i where n � 1 � i > n � j.
Consider the matrix A � �I , where � 6= 0 and the digraph of A is as in Theorem
3.3(a). Form B from A � �I by deleting the �rst row and the last column. Then B
is block upper triangular with a (1; 1) block of order i� 2 and a (2; 2) block of order
n � i + 1. Since the (1; 1) block is upper triangular with positive diagonal entries,
it is nonsingular. The (2; 2) block has the �rst n � i diagonal entries positive, ��
in each superdiagonal entry, and a 1 in the last row �rst column. Every other entry
in the (2; 2) block is zero. By expanding about the �rst row, the determinant of the
(2; 2) block has magnitude �n�i. As a result, B is nonsingular, so that A� �I has a
submatrix of rank n� 1.

In case (b), ai;i+j�1 = �i for 1 � i � n � j; a1;n�1 = �1; a1;n = 1 � �1 � �1;
ai;i�1 = 1� �i for 2 � i � n � j; ai;i�1 = 1 for n � j + 1 � i � n � 1; an;j�1 = n;
an;n�2 = 1 � n; and all other aij = 0. Here the parameters satisfy: 0 � �1 < 1;
0 < �1 < 1; 1 � �1 � �1 > 0; 0 � �i < 1 for 2 � i � n � j; and 0 < n � 1, such
that A is primitive. Deleting row n and column n � 1, the remaining submatrix of
A � �I is upper Hessenberg, and has rank n� 1 for all values of �, because it has a
unique nonzero transversal of length n� 1 (from the subdiagonal and (1; n) entries of
A� �I).

Thus rank (A � �I) = n � 1 for every eigenvalue � of A, and the geometric
multiplicity of each eigenvalue is one.

We close the paper with a class of examples to show that for k � n � 2, a
row stochastic matrix with large exponent can have an eigenvalue of large geometric
multiplicity.

Example 4.4. For a �xed n, take k � n � 2 so that !k � b!n=2c+ 2. Select
� such that 0 < � < 1, and form the primitive row stochastic n-by-n matrix A with
nonzero entries as follows: a1;k�1 = �, a1k = 1��, ai;i�1 = 1 for i 2 f2; 3g[f5; : : : ; kg,
a4i = 1=(n� k+1) for i 2 f3g[fk+1; : : : ; ng, and ai2 = 1 for i 2 fk+1; : : : ng. The
digraph of A can be formed by starting from D(Wk) and taking each of the vertices
k + 1; : : : ; n replicating vertex 3. Since vertex 3 is replicated n � k times, there is a
walk involving any of the vertices k + 1; : : : ; n in D(A) i� there is a corresponding
walk involving vertex 3 in D(Wk). Thus exp(A) = exp(D(Wk)) = !k � b!n=2c+ 2.
Observe that since each of rows k+1 through n is a copy of row 3, A has nullity at least
n� k. Further, from the statement after Theorem 4.1, the algebraic multiplicity of 0
as an eigenvalue of A is equal to n�k. Thus the algebraic and geometric multiplicities
of 0 coincide, with common value n� k � 2 . The smallest example in this class has
n = 9; k = 7 with other cycles of length 6. In this case, 0 is an eigenvalue of (algebraic
and geometric) multiplicity 2.
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