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DIGRAPHS WITH LARGE EXPONENT*

S. KIRKLAND', D. D. OLESKY?#, AND P. VAN DEN DRIESSCHE!

Abstract. Primitive digraphs on n vertices with exponents at least |wn/2| + 2, where wp
= (n — 1)2 + 1, are considered. For n > 3, all such digraphs containing a Hamilton cycle are
characterized; and for n > 6, all such digraphs containing a cycle of length n — 1 are characterized.
Each eigenvalue of any stochastic matrix having a digraph in one of these two classes is proved to
be geometrically simple.
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1. Introduction. A directed graph (digraph) D is primitive if for some positive
integer m there is a (directed) walk of length m between any two vertices u and v
(including © = v). The minimum such m is the exponent of D, denoted by exp(D).
It is well known that D is primitive iff it is strongly connected and the ged of its
cycle lengths is 1. A nonnegative matrix A is primitive if A™ is entrywise positive
for some positive integer m. If D = D(A), the digraph of a primitive matrix A, then
exp(D) = exp(A), which is the minimum m such that A™ is entrywise positive.

Denoting (n — 1)? + 1 by w,,, the best upper bound for exp(D) when a primitive
digraph D has n > 2 vertices is given by exp(D) < w,, with equality holding iff
D = D(W,) where W, is a Wielandt matrix; see, e.g., [2, Theorem 3.5.6]. When
n = 2, then D(Ws), consisting of a 1 cycle and a 2 cycle, has exponent equal to 2.
Henceforth we assume that n > 3. The digraph D(W,,) consists of a Hamilton cycle
(i.e., a cycle of length n) and one more arc, between a pair of vertices that are distance
two apart on the Hamilton cycle, giving a cycle of length n — 1.

The following result of Lewin and Vitek [6, Theorem 3.1], see also [2, Theorem
3.5.8], is the basis for our discussion of digraphs with large exponent.

THEOREM 1.1. If D has n > 3 vertices and is primitive with sufficiently large
exponent, namely

(1) exp(D) > |wn/2] + 2, with w, = (n —1)® +1,

then D has cycles of exactly two different lengths j, k withn >k > j.
We say that a primitive digraph D on n vertices satisfying (1) has a large exponent.
Note that in Theorem 1.1, ged(j, k) = 1 since D is primitive. If ged(j, k) = 1, then
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every integer greater than or equal to (j —1)(k — 1) can be written as ¢1j + cok, where
¢; are nonnegative integers. The value (5 — 1)(k — 1) is the smallest such integer, and
is called the Frobenius-Schur index for the two relatively prime integers j and k; see,
e.g., [2, Lemma 3.5.5].

The Frobenius-Schur index is used to prove the following result that gives a
necessary and sufficient condition for the existence of a primitive digraph with large
exponent and cycles of two specified lengths.

THEOREM 1.2. Let k and j be such that gcd(j, k) = 1 and n > k > j. There
exists a primitive digraph D on n vertices having only cycle lengths k and j and
eap(D) > |wn/2) +2 iff j(k —2) > [wa/2] +2 —n.

Proof. Suppose that D is a digraph with large exponent and cycle lengths &k and
j < k <n. We claim that for any pair of vertices u and v, there is a walk from u to
v of length at most £ +n —j — 1 > n that goes through a vertex on a k cycle and a
vertex on a j cycle. To prove this claim, note that from the proof of Theorem 1 in
[4], there are no pairs of vertex disjoint cycles in D; that is, any pair of cycles share
at least one common vertex. If there is a walk from u to v of length less than or equal
to n that passes through at least one vertex on a k cycle and at least one vertex on
a j cycle, then the claim is proved.

So suppose that this is not the case. In particular, assume that v and v are only
on k (resp. j) cycles, and any path from u to v passes only through vertices not on
any j (resp. k) cycle. Consider the first case. Let [ be the number of vertices not
on a j cycle, and note that 2 <[ < n — 7. Since a shortest path from u to v goes
only through vertices not on a j cycle, the length p of such a path satisfies p <1 —1.
Consider the walk from u to v formed by first traversing a k cycle at u (necessarily
going through a vertex on a j cycle), then taking the path of length p from u to v.
This generates a walk from u to v that goes through a vertex on a k cycle and one
on a j cycle, and its lengthisk+p < k+[1—1<k+n—j—1. The second case
follows by interchanging k& and j and noting that j + n -k -1 < k+n—j — 1.
Thus the claim is proved. By the Frobenius-Schur index, there is a walk from u to
voflengthk+n—j—1+ (k-1 -1 =n+j(k—2) for any pair u,v. Thus
n+ j(k —2) > exp(D) > |wn/2] + 2, giving the condition on &k and j.

For the converse, assume the condition on k£ and j, and consider the digraph
D consisting of the k cycle 1l k> k—-1— - 5 k+j—-n+1—-k+j—n—
k+j—-n—-1—---—>2—1,andarcsl > k+1 = k+2—>--- > n—1—-n—> k+j5—n.
Thus D has exactly one k cycle and one j cycle. Consider the length of a walk from
ktok+j—mn+1. Such a walk has lengthn —j—lork+n—j—14c1k+ cyj for
some nonnegative integers ¢;, and (from the Frobenius-Schur index) there is no walk
of length k +n—j—1+ (k—1)(j — 1) — 1. Thus

exp(D)>k+n—7—-1+(k-1)G—-1)=n+jk—-2)> |w,/2]+2. O

Note that for D primitive with only cycles of lengths k and j with j < k < n, the
bound on exp(D) found in the above proof, namely exp(D) < n + j(k — 2), improves
the bound in [4, Lemma 1] and includes the converse. Furthermore, Theorem 1.2 does
not include additional assumptions as in [6, Theorem 4.1].
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We assume that D has a large exponent and focus on the graph theoretic aspects
of this condition. In Section 2, we characterize the case when D has a Hamilton
cycle (k = n > 3); and in Section 3, we characterize the case k = n — 1. Our
characterizations give some information on the case for general ¥ < n when n >
4, since a result of Beasley and Kirkland [1, Theorem 1] implies that any induced
subdigraph on k vertices that is primitive also has large exponent (relative to |wg/2|+
2), so the structure of some such induced subdigraphs is known from our results. It
is known from results in [6] exactly which numbers > |w,/2] + 2 are attainable as
exponents of primitive digraphs. (Note that there are some gaps in this exponent
set.) Our work in Sections 2 and 3 focuses on describing the corresponding digraphs
when k£ >n — 1.

Some algebraic consequences of the large exponent condition (1) for a stochastic
matrix A with D(A) = D have been investigated in [4] and [5]. The characteristic
polynomial of A has a simple form (see [4, Theorem 1]), and, if n is sufficiently
large, then about half of the eigenvalues of A have modulus close to 1. Kirkland and
Neumann [5] considered the magnitudes of the entries in the group generalized inverse
of I — A (which measures stability of the left Perron vector of A under perturbations).
In Section 4 we use results of Sections 2 and 3 to investigate the multiplicities of
eigenvalues of stochastic matrices with large exponents.

2. The Hamiltonian Case. Assuming that D has large exponent and a Hamil-
ton cycle, we begin by finding possible lengths for other cycles in D.

LemMMA 2.1. Suppose that D is a primitive digraph on n > 3 wvertices with
exp(D) > |wn/2] + 2 and that D has a Hamilton cycle. Then D has precisely one
Hamilton cycle, and all other cycles have length j, where n > j > [(n —1)/2].

Proof. By Theorem 1.1, D contains cycles of exactly two lengths, n = k > j.
W.l.o.g. take the given Hamilton cycleas 1 - n —-n—-1— .-+ -2 — 1, and assume
that the arc 1 — j lies on a second Hamilton cycle. Note that the only possible
arcs from any vertex 4 are i — i — 1 (mod n) and i — i+ j —1 (mod n). Since
the arc j + 1 — j is not on the second Hamilton cycle, this cycle must include the
arcj+1— (j+1)+j—1=2j (mod n). Similarly, there is an arc on the second
Hamilton cycle from (m—1)j+1to mj (mod n), form =1,...,n. As ged(j,n) =1, D
contains the digraph of a primitive circulant. By [3, Theorem 2.1], exp(D) < (n — 1)
or exp(D) < |n/2], thus exp(D) < |wn/2] + 2 . Hence, there is no second Hamilton
cycle in D. For the lower bound on j, take £ = n in Theorem 1.2; see also [4, Theorem
1]. O

If D has large exponent and k = n = 3, then Lemma 2.1 implies that j € {1,2}.
For j = 1, D consisting of a 3 cycle and a 1 cycle has exponent equal to 4 = |w3/2] +2.
For j =2 =n—1, either D = D(W3) with exponent equal to 5 = w3, or D consists of
a 3 cycle with two 2 cycles and has exponent equal to 4. This last case is an example
of the result that a digraph D on n vertices has exp(D) = (n—1)? iff D is isomorphic
to an n cycle with two additional arcs from consecutive vertices forming two n — 1
cycles; see, e.g., [2, pp. 82-83].

These observations motivate our next two theorems, which describe the Hamilto-
nian digraphs with large exponent. Most cases are covered in Theorem 2.2, but, if n
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is odd, then the case j = (n — 1)/2 is slightly different and is given in Theorem 2.3.

THEOREM 2.2. Suppose that j > n/2. Then D is a primitive digraph on n > 3
vertices with exp(D) > |wn/2] + 2 and cycle lengths n and j iff D is isomorphic to
a (primitive) subdigraph of the digraph formed by taking the cycle 1 - n —n—1 —
-+ =2 =1, and adding in the arcsi —i+j—1for1<i<n—j+1.

Proof. Assume that D is primitive with large exponent and has a Hamilton cycle.
Then by Lemma 2.1, D has only one Hamilton cycle and other cycles of length j,
which by assumption is at least n/2. W.lo.g. assume that the Hamilton cycle is
l->n—-n—-1—---—= 2 =1, and that D contains the arc 1 — j. Since D has
cycles of just two different lengths, each vertex ¢ of D has outdegree < 2, and if the
outdegree is 2, then the outarcs from vertex i are i -4 — 1 and i — i + j — 1. Here
and throughout the proof, all indices are mod n. As 1 — j, the outdegree of vertex
iis 1foreachi € {n—j+2,...,5}, since otherwise 1l - j - j—1— --- > i —
i+j—1-n—>i+j—2—n— --- = 2 — lisacycle of length less than j. Consequently
if the outdegree of vertex ¢ € {2,...,5}is 2, thenin fact i € {2,...,n—j+1}. If there
is no such ¢, then D has the desired structure, since D has at most n—j+1 consecutive
vertices on the Hamilton cycle (namely 1 and j+1,...,n) of outdegree 2. Henceforth
suppose that there exists i € {2,...,n — j + 1} with outdegree 2, and let i; be the
maximum such ¢; thus iy =41 +j—1€ {j+1,...,n}. As before, the outdegree is 1
for each vertex € {n—j+i1+1,...,j+41 — 1}. In particular, if n —j+ iy +1 < j+1,
then the only vertices that can have outdegree 2 are 1,...,4; and j+1i1,...,n, that is
n—j+1 consecutive vertices, as desired. So suppose henceforth that n—j+i; > j, that
is i3 > 2§ —n > 0. Suppose also that there exists iy such that n —j +iy > iy > j+1
with i3 having outdegree 2. Then ia - is+j—1. Nown+iy —1>ix+75—12> 25,
sothatio+j—1 (modn) =iz +j—1—n € {2j—mn,...,iy —1}. But then there is a
cycleiy, > i1+j—1—>i1+j—-2—> - =iy = ia+j—1-n—ir+j—-2—-n— - —
2—-1—»j—j—1—--- =iy +1— i, which has length 3j — n. As there is only
one Hamilton cycle (Lemma 2.1), this implies that 3j —n = j, giving a contradiction,
since ged(n, j) = 1. Thus again each of vertices i1 + 1,...,j 4+ — 1 has outdegree 1,
and so at most n — j + 1 consecutive vertices have outdegree 2, as desired.

For the converse, consider the maximal such digraph D with the above Hamilton
cycle and the n — 7 + 1 additional arcs. Note that each of the verticesn—j+2,...,n
has outdegree 1, and each of the vertices 1,2,...,7 — 1 has indegree 1, so the only
path from nto 1isn - n —1— --- — 1 with length n — 1. By Frobenius-Schur, it
follows that there is no walk from n to 1 of length n — 1+ (n — 1)(j — 1) — 1; hence
exp(D) > j(n —1). Since ged(n,j) = 1, it follows that j = n/2 is inadmissible. Thus
j > n/2 implies that j > (n+1)/2, and so j(n —1) > (n®> —1)/2 > |w, /2] + 2. Since
D is maximal, any primitive subdigraph has exponent at least as large as exp(D). O

THEOREM 2.3. Suppose that n > 3 is odd and j = (n —1)/2. Then D is a
primitive digraph on n vertices with exp(D) > |wn/2] + 2 and cycle lengths n and
J iff D is isomorphic to a (primitive) subdigraph of the digraph formed by taking the
cyclel > n->n—-—1— --- = 2 = 1, and adding in the arcs t — i +j — 1 for
1<i<(n-1)/2=j.

Proof. First assume that exp(D) > |wn/2] +2 = (n — 1)2/2 + 2. Observe
that if vertex ¢ is on a j cycle, then (by Frobenius-Schur) there is a walk of length
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<(n-1)4+m-1)G—-1) =jn—-1) = (n—1)%/2 from i to each vertex of D. It
follows that there must be a vertex with distance 2 to the nearest j cycle. W.l.o.g.
that vertex is n, with vertex n —2 on a j cycle. In fact that j cycleisn—2 - n—-3 —
-+ = (n—-1)/2=j - n—2, otherwise n—1 or n is on a j cycle. None of the vertices
j+1,74+2,---,n can have outdegree 2 (otherwise one of n — 1 or n is on a j cycle).
However, the j — 1 additional arcs i — i+j—1fori =1,2,...,7 —1 may be included
in D. Thus it follows that D is a subdigraph of the digraph that has the n — 1 cycle
and the additional j arcs as in the theorem statement.

For the converse, note that if D is isomorphic to a subdigraph of the specified
digraph, then a walk from n to n — 1 of length greater than 1 must traverse the
entire Hamilton cycle, so walks from n to n — 1 have length 1 or n+ 1 4+ ¢c1n + ¢2j
where ¢; and ¢y are nonnegative integers. Thus (by Frobenius-Schur) there is no walk
from n ton —1 of lengthn + 1+ (n —1)(n —3)/2 -1 = (n — 1)?/2 + 1, so that
exp(D) > (n — 1)%/2 + 2, as desired. O

Using the structures of Hamiltonian digraphs D with large exponents given in
Theorems 2.2 and 2.3, we determine the exact value of exp(D) in terms of a parameter
a that depends on which j cycles occur in D.

COROLLARY 2.4. Suppose that D is a primitive digraph on n > 3 vertices with
exp(D) > |wn/2] + 2, a Hamilton cycle and all other cycles of length j, where n >
Jj > [(n—1)/2]. Suppose that the Hamilton cycle is1 - n—->n—-1—--- =2 — 1.
Let1<a<n—j+1ifj>n/2,and1 <a<jifj=(n—1)/2. Suppose that D also
contains the arc(s) 1 — j and a — a + j — 1, and that if i is a vertex of outdegree 2,
then1 <i<a. Thenexp(D)=n—a+1+ (n—2)j.

Proof. The shortest walk from n to a+ j that passes through a vertex on a j cycle
has length n —a — j +n, so it follows (by Frobenius Schur) that there is no walk from
ntoa+joflengthn—a—j+n+(n—1)(j—1)—1. Thus exp(D) > n—a+1+(n—2)j.
Further, since there is a walk between any two vertices of length at most n—a—j+n
that goes through a vertex on a j cycle, it follows that exp(D) < n—a+1+ (n—2)j,
and thus ezp(D) =n—a+1+ (n—2)j. O

If j > n/2, note that exp(D) = n—a+1+(n—-2)j > jin—1)forl <a<n—j+1,
giving the result of [6, Corollary 3.1] when k = n without the additional assumption.
Also note that if j = n — 1 and a = 1, then exp(D) achieves its maximum value of
wn, and D = D(W,,), as described in Section 1. It is interesting to note that in the
above corollary, it is only the value of a that influences the value of the exponent; if
2 <i < a—1, the presence or absence of the arc i — i + j — 1 does not affect the
exponent. For fixed n and j, this result gives a range of values of exp(D) in which
there are no gaps; see [6].

3. The Case k =n—1. If D on n vertices has large exponent with cycle lengths
n —1 and j < n — 1, then Theorem 1.2 shows that j > [n/2] provided that n > 5.
(There are no such digraphs for n < 4.) Our next two theorems characterize these
digraphs for n > 6. As in the Hamiltonian case, most digraphs are covered by the
first result (Theorem 3.3), but the case j = n/2 (when n is even) is different, and is
given by the second result (Theorem 3.4). Before proving our main results, we give a
definition and a preliminary Lemma. Note that since there is a cycle of length n — 1,
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indices are taken mod (n — 1). Vertex n replicates vertex v € {1,...,n — 1} in a
digraph D on n vertices if for all a,b € {1,...,.n—1},a > niffa > vandn - b

iff v — b. Thus in the adjacency matrix A with D = D(A), the rows (and columns)
corresponding to vertices n and v are the same.

LEMMA 3.1. Let D be a strongly connected digraph on n > 5 vertices, with cycle
lengths n — 1 and j, where n —1 > j > 3. Suppose that1 - n—1— --- =2 — 1 is
an n—1 cycle, and that ¢ - n. Then n has outdegree at most 2, with eithern — c—2
orn — c+j —2 or both. Furthermore, if the outdegree of n is 2, then the indegree of
n s 1.

Proof. First suppose that there is an arc n — a. Then there is a cycle n - a —
a—1—---—sc—>noflengtha—c+2ifa>c,orlengthn+14+a—-cifc>a. In
the former case, a — ¢+ 2 = j or n — 1, from which it follows that a = ¢+ j — 2 or
¢ — 2; in the latter case similarly a = ¢+ j — 2 or ¢ — 2. This establishes the possible
outarcs from n. Finally, assume that n - ¢—2 and n — ¢+ j — 2. Suppose that
d — n for some d # c. As above the two outarcs from n can be written as d — 2 and
d+j—2. Asd#c,it follows that d —2 =c+j—2and ¢ — 2 =d+ j — 2. Hence
d—c=jand ¢c—d=j, giving a contradiction. Thus the indegree of n is 1. O

COROLLARY 3.2. Let D be as in Lemma 3.1. If n — ¢, then either c+2 — n or
c+ 2 —j — n or both. Furthermore, if the indegree of n is 2, then the outdegree of n
s 1.

Proof. Form D' by reversing the orientation of each arc in D. Then Lemma 3.1
applies to D', and the result follows. O

THEOREM 3.3. Suppose thatn > 6 and n—1> j > n/2. Then D is a primitive
digraph on n vertices with exp(D) > |wn /2| + 2 and cycle lengths n — 1 and j iff (up
to relabeling of vertices and reversal of each arc) D is a (primitive) subdigraph of a
digraph formed by taking ann —1 cyclel > n—1—->n—-2— --- = 2 — 1, adding
inthearcsa—a+j—1 forl <a<mn-—j, and one of the following:

(a) arcs so that n replicates i for a fized ig € {1,...,n — 1},

(b) arcsl = n,n—>n—2andn —j—1.

Proof. First suppose that D is primitive with ezp(D) > |wn/2]| + 2 and cycle
lengths n — 1 and j. By relabeling the vertices and/or reversing each arc in D if
necessary, we may assume that the n — 1 cycle is as above, and that vertex n has
indegree 1 (Lemma 3.1 and Corollary 3.2). If the subdigraph induced by {1,...,n—1}
is not primitive, then this subdigraph is just the n — 1 cycle, and without loss of
generality 1 — n, so by Lemma 3.1 the outarcs of n are a subset of those given in (b).
So suppose that the subdigraph induced by {1,...,n —1} is primitive. It follows from
a result of Beasley and Kirkland [1, Theorem 1], that the exponent of this induced
subdigraph is at least |wy /2], which in turn is at least |w,—1/2] + 2. Hence without
loss of generality, take the subdigraph to contain the arc 1 — j, and (by Theorem
2.2 ) to have the property that if a - a+j — 1, then 1 < a < n —j. Let ap be
the maximum such a. Suppose that i — n and note from Lemma 3.1 that the only
possible outarcs from n are n — i — 2 and n — i + j — 2. Consider the two cases: (i)
nAi+ji—2,(i)n—>i+j—2.

Case (i) n A i+ j —2: Vertex n has outdegree 1 with n — 7 — 2 (and indegree 1
with ¢ — n). From the structure of the subgraph induced by {1,...,n—1} (described
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above), D is a subdigraph of one constructed as in (a) (with ip =i — 1).

Case (ii): n —>i+j—2:Uf1<i—1<n—jorn—1>i—1>ap+j—1,then Disa
subdigraph of one of the ones constructed in (a) (ifi # 1, with ip = i+j—1) orin (b) (if
i =1). Suppose now that n—j+1<i—1<ap+j—2. Thenn <i+j—2<apg+2j—3,
sothat 1 <i+j—2—(n—1)<ap+2j—3—(n—1) <ag—2. Note that D contains
the closed walk a9 v ap+j—1—ao+j—-2—...2i—>n—i+j—-2—(n—1) —
i+j—-3-(n—-1)—..—>1—>j—j—1—..— ag, which has length 35 — (n — 1).
Any closed walk can be decomposed into cycles, thus 3j — (n — 1) = ¢15 + co(n — 1)
for some nonnegative integers c;,cs. Since j < 3j — (n — 1) < 2(n — 1), the only
possible cases are that 3j — (n — 1) is one of n — 1 (with ¢; = 0,¢; = 1), 25 (with
¢1 =2,c2=0) and j +n — 1 (with ¢; = 1,¢3 = 1). The last two of these imply that
j =n —1 (a contradiction). The first of these three can only occur if 35 = 2(n — 1),
and since j and n — 1 are relatively prime, this is also impossible. Consequently, it
must be the casethat 1 <i—1<n—jorn—1>i—1>ap+j—1,s0that Disa
subgraph of one of the ones constructed in (a) or (b).

For the converse, consider a maximal digraph H constructed as in (a). Since n
replicates ig, exp(H) = exp(H') where H' is formed from H by deleting n and its
incident arcs. Now H' is Hamiltonian on n — 1 vertices and has the digraph structure
of Theorem 2.2, thus exp(H') > |wn—1/2] + 2. Applying Corollary 2.4 to H' with n
replaced by n —1 and a =n — j, exp(H') = j(n —2) > |wn /2] + 2, since j > n/2 and
n > 6. For case (b), observe that there is no walk from n—1 to 1 of length (n—2)j—1
(by the usual Frobenius- Schur argument), so that the exponent is at least (n — 2)7,
giving the required result as in (a). O

Note that the result of Theorem 3.3 does not hold for small values of n. For
example, if n = 5 a digraph as in (a) of Theorem 3.3 with exponent equal to 9 < 10 =
|ws/2] + 2 can be constructed by taking a Hamiltonian digraph on 4 vertices with
two additional arcs from consecutive vertices forming two 3—cycles (see, e.g., [2, pp.
82-83]) and vertex 5 replicating vertex 1.

THEOREM 3.4. Suppose that n > 6 is even and j = n/2. Then D is a primitive
digraph on n vertices with exp(D) > |wn /2| + 2 and cycle lengths n — 1 and j iff (up
to relabeling of vertices and reversal of each arc) D is a (primitive) subdigraph of a
digraph formed by taking ann —1 cyclel > n—1—->n—-2— --- = 2 — 1, adding
inthe arcsi —i+j—1 for 1 <i<n/2—3, and one of the constructions (a) or (b)
in Theorem 3.3.

Proof. First suppose that D is primitive with exp(D) > |w,/2| + 2 and cycle
lengths n — 1 and j. As in the proof of Theorem 3.3, assume that the n — 1 cycle is
as above, that the subdigraph induced by {1,...,n — 1} is primitive, with 1 — j, and
with the property that if a = a + j — 1, then 1 < a < n — j. Finally, also suppose
that ¢ — n. By Lemma 3.1 and Corollary 3.2 there are two cases to consider: (i) D
contains exactly one of the arcs n — i+ j —2 and i — j — n, (ii) D contains neither
the arc n — i + 7 — 2 nor the arc i — j — n.

Case (i): We claim that we may assume that n — i + j — 2. To see the claim,
observe that if instead we have the arc i —j — n (and thus, by Lemma 3.1, n — i —2),
we can reverse every arc in D and relabel vertices 1,...,n—1 by sending ¢ to n —t for
each such ¢t. With this relabeling, it follows from Lemma 3.1 that n — ¢ + 2 — n and
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n — n—1t+j. With n—i+2 replaced by ¢, this digraph contains the arc n — ¢+ j — 2.
So without loss of generality, we assume that the arc n — i 4+ j — 2 is in D. Since
vertex n is on a j-cycle and since D has diameter at most n — 1, it follows that there
is a walk from n to any vertex of length n—1+(n—2)(n/2—1) = (n> —2n+2)/2, and
similarly that from any vertex in D there is a walk to n of length (n?—2n+2)/2. Since
exp(D) > |wn/2] +2 = (n® — 2n +6)/2, it must be the case that there are vertices u
and v € {1,...,n—1} such that there is no walk from u to v of length (n? —2n +4)/2.

Observe that for any vertex w € {1,...,n — 1} that is on a j-cycle, there is a walk
from w to every vertex in {1,...,n—1} of length n—2+(n—2)(n/2—1) = (n?—2n)/2.
As a result, the shortest walk from u to a vertex in {1,...,n — 1} that is on a j-cycle

must have length at least 3. It follows from this that in fact vertex n — 1 must be
at least 3 steps from the nearest j-cycle, so that in particular, none of n — 1, n — 2
and n — 3 can be on a j-cycle. Thusin D,n—j An—-1,n—j—1+4n—2and
n—j—24n—-3andsoifa—a+j—1,then a <n—j—3=n/2—3. Further, it
must be the case that 1 <i < n—j—2, otherwise one of verticesn—1,n—2 and n—3
is on a j-cycle (involving vertices i and n). Consequently, D can be relabeled to yield
a subdigraph of one of those constructed in (a) with io =7 —1 (if2<i<n—j—2),
or (b) (ifi =1).

Case (ii): If D contains neither the arc n — i + j — 2 nor the arc ¢ — j — n,
then n has both indegree and outdegree 1, with ¢ — n — 7 — 2. Now if D contains
either of the arcs i —1 — i+ j —2 or i —j — i — 1, then the labels of vertices
i — 1 and n can be exchanged and case (i) above applies. On the other hand if D
contains neither of those two arcs, then ¢ — 1 has indegree and outdegree 1, with
i —i—1—i—2,so that vertex n replicates vertex i — 1. Thus exp(D) = exp(D’)
where D' is formed from D by deleting vertex n and the arcs incident with it. From
Corollary 2.4 with n replaced by n — 1, ezp(D') = n —1—a+ 1+ (n — 3)j where
a = maz{b is a vertex in D' : thearc b - b+ j — 1 isin D'}. Thus exp(D') =
exp(D) = n—a+ (n—3)n/2 > (n®> — 2n + 6)/2, which implies that a < n/2 — 3.
Consequently D is a subdigraph of one of those constructed in (a) with ig =4 — 1.

For the converse, consider a digraph H constructed as in (a). Since n replicates
i0, exp(H) = exp(H'), where H' is formed from H by deleting n and its incident
arcs. Appealing to Corollary 2.4 with n replaced by n — 1, a =n/2—3, and j = n/2,
exp(H') = (n®> —2n + 6)/2 = |w, /2| + 2 if n is even. Finally, consider the digraph
H constructed in (b). Evidently the walks from vertex n — 1 to n — 3 can only have
lengths equal to 2, or to 2+ mn — 1 + ¢;(n — 1) + ¢»j for nonnegative integers ¢; and
c2. It follows that there is no walk from n — 1 to n — 3 of length (n? — 2n + 4)/2, so
that exp(H) > (n®> —2n +6)/2. O

4. Eigenvalue Results. In this section we explore results on the multiplicities of
eigenvalues of primitive stochastic matrices having large exponent. These complement
eigenvalue results in [4]. Our first theorem gives conditions for a stochastic matrix
with large exponent to have a multiple nonzero eigenvalue. This result, which is not
restricted to kK = n or k = n — 1, shows that a multiple nonzero eigenvalue must be
negative with algebraic multiplicity 2.
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THEOREM 4.1. Let A be a primitive, row stochastic n-by-n matriz with n > 3 and
exp(A) > |wn/2] +2. Let k and j be the two cycle lengths in D(A) withn >k > j.
Then A has a multiple nonzero eigenvalue X iff A = —r, where r is the unique positive
root of kxl + jx* =k — j. When this is the case, k is odd and j is even.

Proof. By Theorem 1 in [4], the characteristic equation of A is 2™ —az" 7 — (1 —
a)z"~* =0, for some « € (0,1). Thus a nonzero eigenvalue satisfies

(2) 2F—azFl —(1—-a)=0.

Note that 1 is always an eigenvalue, and (by Descartes’ rule of signs) there is no other
positive eigenvalue. Let A = pe'’ be an eigenvalue with p > 0 and 0 < § < 27. By
differentiating, if A is a multiple eigenvalue, then it also satisfies A = a(k — j)/k,
giving p! = a(k — j)/k and § = 2xl/j for some positive integer [ < j. Further
differentiation shows that the algebraic multiplicity of A is 2. By taking imaginary
parts of the characteristic equation, p*sin(kf) = ap*Jsin((k —j)#). On substituting
for p/, this gives (k — j)sin(kf) = ksin((k — 7)) = ksin((k — j)2n1/j) = ksin(k0).
Thus sin(kf) = 0, so that § = 7m/k for some positive integer m. Hence 2lk = mj, and
since ged(k, j) = 1 and j divides 2I, it must be that j = 2I. Asaresult 8 =7, \ = —p,
j is even, k is odd and a = kp?/(k — j). Substituting into (2) gives kp/ + jp* =k —j.
The converse is straightforward. O

From the characteristic equation, a matrix satisfying the conditions of Theorem
4.1 has zero as an eigenvalue iff ¥ < n, and its algebraic multiplicity is n — k.

The digraph characterizations in Sections 2 and 3 lead to results about the geo-
metric multiplicities of eigenvalues of primitive, stochastic matrices with large expo-
nent.

THEOREM 4.2. Let A be a primitive, row stochastic n-by-n matriz with n > 3
and exp(A) > |wn/2| + 2. If D(A) is Hamiltonian, then each eigenvalue of A is
geometrically simple.

Proof. Let the length of the shorter cycle(s) in D(A) be j > [(n—1)/2] by Lemma
2.1. For j > n/2takep=n—j+1, and for j = (n—1)/2 take p = (n—1)/2. Then by
Theorems 2.2 and 2.3, without loss of generality by permutation similarity A = [a;;]
has the following form: a1, =1—-a;; 05,1 =1—a; for 2 <i <p; a;;-1 =1 for
p+1<14<n;a,4j—1 =a; for 1 <i < p;and all other a;; = 0. Here «; satisfy
0<a; <land0<aq; <1for2<i<p Thusforalj>[(n—1)/2], Ais an
unreduced Hessenberg matrix. By deleting row 1 and column n, it can be seen that
rank A > (n — 1) [7, Exercise 22, p. 274]. Similarly, rank (A — AI) = n — 1 for each
eigenvalue A of A. This implies that each eigenvalue has geometric multiplicity one.
d

As an example of the above eigenvalue results, consider the 3-by-3 row stochastic
matrix A having kK = 3 and j = 2 as in the proof of Theorem 4.2 with a; = ay = 1/2.
Note that ezp(A) = 4. The characteristic equation of A4 is z*> — az — (1 — @) = 0,
with o = 3/4; thus A has eigenvalues 1,—1/2,—1/2. Here —1/2 is an eigenvalue of
algebraic multiplicity 2 (as predicted by Theorem 4.1), but geometric multiplicity 1
(as predicted by Theorem 4.2).

THEOREM 4.3. Let A be a primitive, row stochastic n-by-n matriz with n > 6
and exp(A) > |wn/2| + 2. If the mazimal cycle length in D(A) is n — 1, then each
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eigenvalue of A is geometrically simple.

Proof. Since k =n — 1, A = 0 is a simple eigenvalue of A. Let the length of the
shorter cycle(s) in D(A) be j > [n/2] by Theorem 1.2. For simplicity, only the proof
for the case j > n/2 is given, the case j = n/2 is essentially the same. For j > n/2,
by Theorem 3.3, without loss of generality by permutation similarity A = [a;;], or its
transpose, must have one of two forms corresponding to (a) or (b).

In case (a), without loss of generality n can be taken to replicate a vertex with
outdegree 1. (This is because, by Lemma 3.1, n has either indegree or outdegree 1,
so, if necessary, take AT.) Let vertex n replicate vertex i where n —1 >4 > n — j.
Consider the matrix A — AI, where A # 0 and the digraph of A is as in Theorem
3.3(a). Form B from A — AI by deleting the first row and the last column. Then B
is block upper triangular with a (1,1) block of order i — 2 and a (2,2) block of order
n — 4+ 1. Since the (1,1) block is upper triangular with positive diagonal entries,
it is nonsingular. The (2,2) block has the first n — ¢ diagonal entries positive, —A
in each superdiagonal entry, and a 1 in the last row first column. Every other entry
in the (2,2) block is zero. By expanding about the first row, the determinant of the
(2,2) block has magnitude A\"~%. As a result, B is nonsingular, so that A — AI has a
submatrix of rank n — 1.

In case (b), Qi i+j—1 = O for 1 S ) S n —j; A1pn—-1 = 61; a1.n = 1- ] — 61;
ajji—1 =1—a;for2<i<n—jya-1=1forn—j+1<i<n—-1;a,;-1 = Vn;
apn—2 = 1 —v,; and all other a;; = 0. Here the parameters satisfy: 0 < oy < 1;
0<pri<lil—a—-B3>00<a;<1lfor2<i<n-—j and 0< v, <1, such
that A is primitive. Deleting row n and column n — 1, the remaining submatrix of
A — M is upper Hessenberg, and has rank n — 1 for all values of A\, because it has a
unique nonzero transversal of length n — 1 (from the subdiagonal and (1,n) entries of
A— ).

Thus rank (A — AI) = n — 1 for every eigenvalue A of A, and the geometric
multiplicity of each eigenvalue is one. O

We close the paper with a class of examples to show that for £ < n — 2, a
row stochastic matrix with large exponent can have an eigenvalue of large geometric
multiplicity.

EXAMPLE 4.4. For a fixed n, take k < n — 2 so that w, > |wn/2] + 2. Select
a such that 0 < a < 1, and form the primitive row stochastic n-by-n matrix A with
nonzero entries as follows: a1 1 = a, a1 = 1=, a;,1 = Lfori € {2,3}U{5,...,k},
ag; =1/(n—k+1)forie {3}U{k+1,...,n},and a; = 1fori € {k+1,...n}. The
digraph of A can be formed by starting from D(W}) and taking each of the vertices
k+1,...,n replicating vertex 3. Since vertex 3 is replicated n — k times, there is a
walk involving any of the vertices k + 1,...,n in D(A) iff there is a corresponding
walk involving vertex 3 in D(W). Thus exp(A) = exp(D(W})) = wi, > |wn/2] + 2.
Observe that since each of rows k+1 through n is a copy of row 3, A has nullity at least
n — k. Further, from the statement after Theorem 4.1, the algebraic multiplicity of 0
as an eigenvalue of A is equal to n— k. Thus the algebraic and geometric multiplicities
of 0 coincide, with common value n — k > 2 . The smallest example in this class has
n =9,k = 7 with other cycles of length 6. In this case, 0 is an eigenvalue of (algebraic
and geometric) multiplicity 2.
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