DIGRAPHS WITH LARGE EXPONENT*

S. KIRKLAND ${ }^{\dagger}$, D. D. OLESKY \ddagger, AND P. VAN DEN DRIESSCHE \S

Abstract

Primitive digraphs on n vertices with exponents at least $\left\lfloor\omega_{n} / 2\right\rfloor+2$, where ω_{n} $=(n-1)^{2}+1$, are considered. For $n \geq 3$, all such digraphs containing a Hamilton cycle are characterized; and for $n \geq 6$, all such digraphs containing a cycle of length $n-1$ are characterized. Each eigenvalue of any stochastic matrix having a digraph in one of these two classes is proved to be geometrically simple.

Key words. primitive directed graph, exponent.
AMS subject classifications. 15A48, 05C20

1. Introduction. A directed graph (digraph) D is primitive if for some positive integer m there is a (directed) walk of length m between any two vertices u and v (including $u=v$). The minimum such m is the exponent of D, denoted by $\exp (D)$. It is well known that D is primitive iff it is strongly connected and the $g c d$ of its cycle lengths is 1 . A nonnegative matrix A is primitive if A^{m} is entrywise positive for some positive integer m. If $D=D(A)$, the digraph of a primitive matrix A, then $\exp (D)=\exp (A)$, which is the minimum m such that A^{m} is entrywise positive.

Denoting $(n-1)^{2}+1$ by ω_{n}, the best upper bound for $\exp (D)$ when a primitive digraph D has $n \geq 2$ vertices is given by $\exp (D) \leq \omega_{n}$, with equality holding iff $D=D\left(W_{n}\right)$ where W_{n} is a Wielandt matrix; see, e.g., [2, Theorem 3.5.6]. When $n=2$, then $D\left(W_{2}\right)$, consisting of a 1 cycle and a 2 cycle, has exponent equal to 2 . Henceforth we assume that $n \geq 3$. The digraph $D\left(W_{n}\right)$ consists of a Hamilton cycle (i.e., a cycle of length n) and one more arc, between a pair of vertices that are distance two apart on the Hamilton cycle, giving a cycle of length $n-1$.

The following result of Lewin and Vitek [6, Theorem 3.1], see also [2, Theorem 3.5.8], is the basis for our discussion of digraphs with large exponent.

THEOREM 1.1. If D has $n \geq 3$ vertices and is primitive with sufficiently large exponent, namely

$$
\begin{equation*}
\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2, \text { with } \omega_{n}=(n-1)^{2}+1 \tag{1}
\end{equation*}
$$

then D has cycles of exactly two different lengths j, k with $n \geq k>j$.
We say that a primitive digraph D on n vertices satisfying (1) has a large exponent. Note that in Theorem 1.1, $\operatorname{gcd}(j, k)=1$ since D is primitive. If $\operatorname{gcd}(j, k)=1$, then

[^0]every integer greater than or equal to $(j-1)(k-1)$ can be written as $c_{1} j+c_{2} k$, where c_{i} are nonnegative integers. The value $(j-1)(k-1)$ is the smallest such integer, and is called the Frobenius-Schur index for the two relatively prime integers j and k; see, e.g., [2, Lemma 3.5.5].

The Frobenius-Schur index is used to prove the following result that gives a necessary and sufficient condition for the existence of a primitive digraph with large exponent and cycles of two specified lengths.

Theorem 1.2. Let k and j be such that $\operatorname{gcd}(j, k)=1$ and $n \geq k>j$. There exists a primitive digraph D on n vertices having only cycle lengths k and j and $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$ iff $j(k-2) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2-n$.

Proof. Suppose that D is a digraph with large exponent and cycle lengths k and $j<k \leq n$. We claim that for any pair of vertices u and v, there is a walk from u to v of length at most $k+n-j-1 \geq n$ that goes through a vertex on a k cycle and a vertex on a j cycle. To prove this claim, note that from the proof of Theorem 1 in [4], there are no pairs of vertex disjoint cycles in D; that is, any pair of cycles share at least one common vertex. If there is a walk from u to v of length less than or equal to n that passes through at least one vertex on a k cycle and at least one vertex on a j cycle, then the claim is proved.

So suppose that this is not the case. In particular, assume that u and v are only on k (resp. j) cycles, and any path from u to v passes only through vertices not on any j (resp. k) cycle. Consider the first case. Let l be the number of vertices not on a j cycle, and note that $2 \leq l \leq n-j$. Since a shortest path from u to v goes only through vertices not on a j cycle, the length p of such a path satisfies $p \leq l-1$. Consider the walk from u to v formed by first traversing a k cycle at u (necessarily going through a vertex on a j cycle), then taking the path of length p from u to v. This generates a walk from u to v that goes through a vertex on a k cycle and one on a j cycle, and its length is $k+p \leq k+l-1 \leq k+n-j-1$. The second case follows by interchanging k and j and noting that $j+n-k-1<k+n-j-1$. Thus the claim is proved. By the Frobenius-Schur index, there is a walk from u to v of length $k+n-j-1+(k-1)(j-1)=n+j(k-2)$ for any pair u, v. Thus $n+j(k-2) \geq \exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$, giving the condition on k and j.

For the converse, assume the condition on k and j, and consider the digraph D consisting of the k cycle $1 \rightarrow k \rightarrow k-1 \rightarrow \cdots \rightarrow k+j-n+1 \rightarrow k+j-n \rightarrow$ $k+j-n-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, and $\operatorname{arcs} 1 \rightarrow k+1 \rightarrow k+2 \rightarrow \cdots \rightarrow n-1 \rightarrow n \rightarrow k+j-n$. Thus D has exactly one k cycle and one j cycle. Consider the length of a walk from k to $k+j-n+1$. Such a walk has length $n-j-1$ or $k+n-j-1+c_{1} k+c_{2} j$ for some nonnegative integers c_{i}, and (from the Frobenius-Schur index) there is no walk of length $k+n-j-1+(k-1)(j-1)-1$. Thus

$$
\exp (D) \geq k+n-j-1+(k-1)(j-1)=n+j(k-2) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2
$$

Note that for D primitive with only cycles of lengths k and j with $j<k \leq n$, the bound on $\exp (D)$ found in the above proof, namely $\exp (D) \leq n+j(k-2)$, improves the bound in [4, Lemma 1] and includes the converse. Furthermore, Theorem 1.2 does not include additional assumptions as in [6, Theorem 4.1].

We assume that D has a large exponent and focus on the graph theoretic aspects of this condition. In Section 2, we characterize the case when D has a Hamilton cycle ($k=n \geq 3$); and in Section 3, we characterize the case $k=n-1$. Our characterizations give some information on the case for general $k \leq n$ when $n \geq$ 4, since a result of Beasley and Kirkland [1, Theorem 1] implies that any induced subdigraph on k vertices that is primitive also has large exponent (relative to $\left\lfloor\omega_{k} / 2\right\rfloor+$ 2), so the structure of some such induced subdigraphs is known from our results. It is known from results in [6] exactly which numbers $\geq\left\lfloor\omega_{n} / 2\right\rfloor+2$ are attainable as exponents of primitive digraphs. (Note that there are some gaps in this exponent set.) Our work in Sections 2 and 3 focuses on describing the corresponding digraphs when $k \geq n-1$.

Some algebraic consequences of the large exponent condition (1) for a stochastic matrix A with $D(A)=D$ have been investigated in [4] and [5]. The characteristic polynomial of A has a simple form (see [4, Theorem 1]), and, if n is sufficiently large, then about half of the eigenvalues of A have modulus close to 1 . Kirkland and Neumann [5] considered the magnitudes of the entries in the group generalized inverse of $I-A$ (which measures stability of the left Perron vector of A under perturbations). In Section 4 we use results of Sections 2 and 3 to investigate the multiplicities of eigenvalues of stochastic matrices with large exponents.
2. The Hamiltonian Case. Assuming that D has large exponent and a Hamilton cycle, we begin by finding possible lengths for other cycles in D.

Lemma 2.1. Suppose that D is a primitive digraph on $n \geq 3$ vertices with $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$ and that D has a Hamilton cycle. Then D has precisely one Hamilton cycle, and all other cycles have length j, where $n>j \geq\lceil(n-1) / 2\rceil$.

Proof. By Theorem 1.1, D contains cycles of exactly two lengths, $n=k>j$. W.l.o.g. take the given Hamilton cycle as $1 \rightarrow n \rightarrow n-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, and assume that the arc $1 \rightarrow j$ lies on a second Hamilton cycle. Note that the only possible arcs from any vertex i are $i \rightarrow i-1(\bmod n)$ and $i \rightarrow i+j-1(\bmod n)$. Since the arc $j+1 \rightarrow j$ is not on the second Hamilton cycle, this cycle must include the arc $j+1 \rightarrow(j+1)+j-1=2 j(\bmod n)$. Similarly, there is an arc on the second Hamilton cycle from $(m-1) j+1$ to $m j(\bmod n)$, for $m=1, \ldots, n$. As $\operatorname{gcd}(j, n)=1, D$ contains the digraph of a primitive circulant. By [3, Theorem 2.1], $\exp (D) \leq(n-1)$ or $\exp (D) \leq\lfloor n / 2\rfloor$, thus $\exp (D)<\left\lfloor\omega_{n} / 2\right\rfloor+2$. Hence, there is no second Hamilton cycle in D. For the lower bound on j, take $k=n$ in Theorem 1.2; see also [4, Theorem 1]. ㅁ

If D has large exponent and $k=n=3$, then Lemma 2.1 implies that $j \in\{1,2\}$. For $j=1, D$ consisting of a 3 cycle and a 1 cycle has exponent equal to $4=\left\lfloor\omega_{3} / 2\right\rfloor+2$. For $j=2=n-1$, either $D=D\left(W_{3}\right)$ with exponent equal to $5=\omega_{3}$, or D consists of a 3 cycle with two 2 cycles and has exponent equal to 4 . This last case is an example of the result that a digraph D on n vertices has $\exp (D)=(n-1)^{2}$ iff D is isomorphic to an n cycle with two additional arcs from consecutive vertices forming two $n-1$ cycles; see, e.g., [2, pp. 82-83].

These observations motivate our next two theorems, which describe the Hamiltonian digraphs with large exponent. Most cases are covered in Theorem 2.2, but, if n
is odd, then the case $j=(n-1) / 2$ is slightly different and is given in Theorem 2.3.
THEOREM 2.2. Suppose that $j \geq n / 2$. Then D is a primitive digraph on $n \geq 3$ vertices with $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$ and cycle lengths n and j iff D is isomorphic to a (primitive) subdigraph of the digraph formed by taking the cycle $1 \rightarrow n \rightarrow n-1 \rightarrow$ $\cdots \rightarrow 2 \rightarrow 1$, and adding in the arcs $i \rightarrow i+j-1$ for $1 \leq i \leq n-j+1$.

Proof. Assume that D is primitive with large exponent and has a Hamilton cycle. Then by Lemma 2.1, D has only one Hamilton cycle and other cycles of length j, which by assumption is at least $n / 2$. W.l.o.g. assume that the Hamilton cycle is $1 \rightarrow n \rightarrow n-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, and that D contains the arc $1 \rightarrow j$. Since D has cycles of just two different lengths, each vertex i of D has outdegree ≤ 2, and if the outdegree is 2 , then the outarcs from vertex i are $i \rightarrow i-1$ and $i \rightarrow i+j-1$. Here and throughout the proof, all indices are $\bmod n$. As $1 \rightarrow j$, the outdegree of vertex i is 1 for each $i \in\{n-j+2, \ldots, j\}$, since otherwise $1 \rightarrow j \rightarrow j-1 \rightarrow \cdots \rightarrow i \rightarrow$ $i+j-1-n \rightarrow i+j-2-n \rightarrow \cdots \rightarrow 2 \rightarrow 1$ is a cycle of length less than j. Consequently if the outdegree of vertex $i \in\{2, \ldots, j\}$ is 2 , then in fact $i \in\{2, \ldots, n-j+1\}$. If there is no such i, then D has the desired structure, since D has at most $n-j+1$ consecutive vertices on the Hamilton cycle (namely 1 and $j+1, \ldots, n$) of outdegree 2. Henceforth suppose that there exists $i \in\{2, \ldots, n-j+1\}$ with outdegree 2 , and let i_{1} be the maximum such i; thus $i_{1} \rightarrow i_{1}+j-1 \in\{j+1, \ldots, n\}$. As before, the outdegree is 1 for each vertex $\in\left\{n-j+i_{1}+1, \ldots, j+i_{1}-1\right\}$. In particular, if $n-j+i_{1}+1 \leq j+1$, then the only vertices that can have outdegree 2 are $1, \ldots, i_{1}$ and $j+i_{1}, \ldots, n$, that is $n-j+1$ consecutive vertices, as desired. So suppose henceforth that $n-j+i_{1}>j$, that is $i_{1}>2 j-n \geq 0$. Suppose also that there exists i_{2} such that $n-j+i_{1} \geq i_{2} \geq j+1$ with i_{2} having outdegree 2 . Then $i_{2} \rightarrow i_{2}+j-1$. Now $n+i_{1}-1 \geq i_{2}+j-1 \geq 2 j$, so that $i_{2}+j-1(\bmod n)=i_{2}+j-1-n \in\left\{2 j-n, \ldots, i_{1}-1\right\}$. But then there is a cycle $i_{1} \rightarrow i_{1}+j-1 \rightarrow i_{1}+j-2 \rightarrow \cdots \rightarrow i_{2} \rightarrow i_{2}+j-1-n \rightarrow i_{2}+j-2-n \rightarrow \cdots \rightarrow$ $2 \rightarrow 1 \rightarrow j \rightarrow j-1 \rightarrow \cdots \rightarrow i_{1}+1 \rightarrow i_{1}$, which has length $3 j-n$. As there is only one Hamilton cycle (Lemma 2.1), this implies that $3 j-n=j$, giving a contradiction, since $\operatorname{gcd}(n, j)=1$. Thus again each of vertices $i_{1}+1, \ldots, j+i_{1}-1$ has outdegree 1 , and so at most $n-j+1$ consecutive vertices have outdegree 2 , as desired.

For the converse, consider the maximal such digraph D with the above Hamilton cycle and the $n-j+1$ additional arcs. Note that each of the vertices $n-j+2, \ldots, n$ has outdegree 1 , and each of the vertices $1,2, \ldots, j-1$ has indegree 1 , so the only path from n to 1 is $n \rightarrow n-1 \rightarrow \cdots \rightarrow 1$ with length $n-1$. By Frobenius-Schur, it follows that there is no walk from n to 1 of length $n-1+(n-1)(j-1)-1$; hence $\exp (D) \geq j(n-1)$. Since $\operatorname{gcd}(n, j)=1$, it follows that $j=n / 2$ is inadmissible. Thus $j \geq n / 2$ implies that $j \geq(n+1) / 2$, and so $j(n-1) \geq\left(n^{2}-1\right) / 2 \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$. Since D is maximal, any primitive subdigraph has exponent at least as large as $\exp (D)$. \square

Theorem 2.3. Suppose that $n \geq 3$ is odd and $j=(n-1) / 2$. Then D is a primitive digraph on n vertices with $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$ and cycle lengths n and j iff D is isomorphic to a (primitive) subdigraph of the digraph formed by taking the cycle $1 \rightarrow n \rightarrow n-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, and adding in the arcs $i \rightarrow i+j-1$ for $1 \leq i \leq(n-1) / 2=j$.

Proof. First assume that $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2=(n-1)^{2} / 2+2$. Observe that if vertex i is on a j cycle, then (by Frobenius-Schur) there is a walk of length
$\leq(n-1)+(n-1)(j-1)=j(n-1)=(n-1)^{2} / 2$ from i to each vertex of D. It follows that there must be a vertex with distance 2 to the nearest j cycle. W.l.o.g. that vertex is n, with vertex $n-2$ on a j cycle. In fact that j cycle is $n-2 \rightarrow n-3 \rightarrow$ $\cdots \rightarrow(n-1) / 2=j \rightarrow n-2$, otherwise $n-1$ or n is on a j cycle. None of the vertices $j+1, j+2, \cdots, n$ can have outdegree 2 (otherwise one of $n-1$ or n is on a j cycle). However, the $j-1$ additional $\operatorname{arcs} i \rightarrow i+j-1$ for $i=1,2, \ldots, j-1$ may be included in D. Thus it follows that D is a subdigraph of the digraph that has the $n-1$ cycle and the additional j arcs as in the theorem statement.

For the converse, note that if D is isomorphic to a subdigraph of the specified digraph, then a walk from n to $n-1$ of length greater than 1 must traverse the entire Hamilton cycle, so walks from n to $n-1$ have length 1 or $n+1+c_{1} n+c_{2} j$ where c_{1} and c_{2} are nonnegative integers. Thus (by Frobenius-Schur) there is no walk from n to $n-1$ of length $n+1+(n-1)(n-3) / 2-1=(n-1)^{2} / 2+1$, so that $\exp (D) \geq(n-1)^{2} / 2+2$, as desired.

Using the structures of Hamiltonian digraphs D with large exponents given in Theorems 2.2 and 2.3, we determine the exact value of $\exp (D)$ in terms of a parameter a that depends on which j cycles occur in D.

Corollary 2.4. Suppose that D is a primitive digraph on $n \geq 3$ vertices with $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$, a Hamilton cycle and all other cycles of length j, where $n>$ $j \geq\lceil(n-1) / 2\rceil$. Suppose that the Hamilton cycle is $1 \rightarrow n \rightarrow n-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1$. Let $1 \leq a \leq n-j+1$ if $j \geq n / 2$, and $1 \leq a \leq j$ if $j=(n-1) / 2$. Suppose that D also contains the $\operatorname{arc}(s) 1 \rightarrow j$ and $a \rightarrow a+j-1$, and that if i is a vertex of outdegree 2, then $1 \leq i \leq a$. Then $\exp (D)=n-a+1+(n-2) j$.

Proof. The shortest walk from n to $a+j$ that passes through a vertex on a j cycle has length $n-a-j+n$, so it follows (by Frobenius Schur) that there is no walk from n to $a+j$ of length $n-a-j+n+(n-1)(j-1)-1$. Thus $\exp (D) \geq n-a+1+(n-2) j$. Further, since there is a walk between any two vertices of length at most $n-a-j+n$ that goes through a vertex on a j cycle, it follows that $\exp (D) \leq n-a+1+(n-2) j$, and thus $\exp (D)=n-a+1+(n-2) j$. \square

If $j \geq n / 2$, note that $\exp (D)=n-a+1+(n-2) j \geq j(n-1)$ for $1 \leq a \leq n-j+1$, giving the result of [6, Corollary 3.1] when $k=n$ without the additional assumption. Also note that if $j=n-1$ and $a=1$, then $\exp (D)$ achieves its maximum value of ω_{n}, and $D=D\left(W_{n}\right)$, as described in Section 1. It is interesting to note that in the above corollary, it is only the value of a that influences the value of the exponent; if $2 \leq i \leq a-1$, the presence or absence of the arc $i \rightarrow i+j-1$ does not affect the exponent. For fixed n and j, this result gives a range of values of $\exp (D)$ in which there are no gaps; see [6].
3. The Case $k=n-1$. If D on n vertices has large exponent with cycle lengths $n-1$ and $j<n-1$, then Theorem 1.2 shows that $j \geq\lceil n / 2\rceil$ provided that $n \geq 5$. (There are no such digraphs for $n \leq 4$.) Our next two theorems characterize these digraphs for $n \geq 6$. As in the Hamiltonian case, most digraphs are covered by the first result (Theorem 3.3), but the case $j=n / 2$ (when n is even) is different, and is given by the second result (Theorem 3.4). Before proving our main results, we give a definition and a preliminary Lemma. Note that since there is a cycle of length $n-1$,
indices are taken $\bmod (n-1)$. Vertex n replicates vertex $v \in\{1, \ldots, n-1\}$ in a digraph D on n vertices if for all $a, b \in\{1, \ldots, n-1\}, a \rightarrow n$ iff $a \rightarrow v$ and $n \rightarrow b$ iff $v \rightarrow b$. Thus in the adjacency matrix A with $D=D(A)$, the rows (and columns) corresponding to vertices n and v are the same.

Lemma 3.1. Let D be a strongly connected digraph on $n \geq 5$ vertices, with cycle lengths $n-1$ and j, where $n-1>j \geq 3$. Suppose that $1 \rightarrow n-1 \rightarrow \cdots \rightarrow 2 \rightarrow 1$ is an $n-1$ cycle, and that $c \rightarrow n$. Then n has outdegree at most 2 , with either $n \rightarrow c-2$ or $n \rightarrow c+j-2$ or both. Furthermore, if the outdegree of n is 2 , then the indegree of n is 1 .

Proof. First suppose that there is an $\operatorname{arc} n \rightarrow a$. Then there is a cycle $n \rightarrow a \rightarrow$ $a-1 \rightarrow \cdots \rightarrow c \rightarrow n$ of length $a-c+2$ if $a>c$, or length $n+1+a-c$ if $c>a$. In the former case, $a-c+2=j$ or $n-1$, from which it follows that $a=c+j-2$ or $c-2$; in the latter case similarly $a=c+j-2$ or $c-2$. This establishes the possible outarcs from n. Finally, assume that $n \rightarrow c-2$ and $n \rightarrow c+j-2$. Suppose that $d \rightarrow n$ for some $d \neq c$. As above the two outarcs from n can be written as $d-2$ and $d+j-2$. As $d \neq c$, it follows that $d-2=c+j-2$ and $c-2=d+j-2$. Hence $d-c=j$ and $c-d=j$, giving a contradiction. Thus the indegree of n is 1 .

Corollary 3.2. Let D be as in Lemma 3.1. If $n \rightarrow c$, then either $c+2 \rightarrow n$ or $c+2-j \rightarrow n$ or both. Furthermore, if the indegree of n is 2 , then the outdegree of n is 1 .

Proof. Form D^{\prime} by reversing the orientation of each arc in D. Then Lemma 3.1 applies to D^{\prime}, and the result follows.

Theorem 3.3. Suppose that $n \geq 6$ and $n-1>j>n / 2$. Then D is a primitive digraph on n vertices with $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$ and cycle lengths $n-1$ and j iff (up to relabeling of vertices and reversal of each arc) D is a (primitive) subdigraph of a digraph formed by taking an $n-1$ cycle $1 \rightarrow n-1 \rightarrow n-2 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, adding in the arcs $a \rightarrow a+j-1$ for $1 \leq a \leq n-j$, and one of the following:
(a) arcs so that n replicates i_{0} for a fixed $i_{0} \in\{1, \ldots, n-1\}$,
(b) arcs $1 \rightarrow n, n \rightarrow n-2$ and $n \rightarrow j-1$.

Proof. First suppose that D is primitive with $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$ and cycle lengths $n-1$ and j. By relabeling the vertices and/or reversing each arc in D if necessary, we may assume that the $n-1$ cycle is as above, and that vertex n has indegree 1 (Lemma 3.1 and Corollary 3.2). If the subdigraph induced by $\{1, \ldots, n-1\}$ is not primitive, then this subdigraph is just the $n-1$ cycle, and without loss of generality $1 \rightarrow n$, so by Lemma 3.1 the outarcs of n are a subset of those given in (b). So suppose that the subdigraph induced by $\{1, \ldots, n-1\}$ is primitive. It follows from a result of Beasley and Kirkland [1, Theorem 1], that the exponent of this induced subdigraph is at least $\left\lfloor\omega_{n} / 2\right\rfloor$, which in turn is at least $\left\lfloor\omega_{n-1} / 2\right\rfloor+2$. Hence without loss of generality, take the subdigraph to contain the arc $1 \rightarrow j$, and (by Theorem 2.2) to have the property that if $a \rightarrow a+j-1$, then $1 \leq a \leq n-j$. Let a_{0} be the maximum such a. Suppose that $i \rightarrow n$ and note from Lemma 3.1 that the only possible outarcs from n are $n \rightarrow i-2$ and $n \rightarrow i+j-2$. Consider the two cases: (i) $n \nrightarrow i+j-2$, (ii) $n \rightarrow i+j-2$.

Case (i) $n \nrightarrow i+j-2$: Vertex n has outdegree 1 with $n \rightarrow i-2$ (and indegree 1 with $i \rightarrow n$). From the structure of the subgraph induced by $\{1, \ldots, n-1\}$ (described
above), D is a subdigraph of one constructed as in (a) (with $i_{0}=i-1$).
Case (ii): $n \rightarrow i+j-2$: If $1 \leq i-1 \leq n-j$ or $n-1 \geq i-1 \geq a_{0}+j-1$, then D is a subdigraph of one of the ones constructed in (a) (if $i \neq 1$, with $i_{0}=i+j-1$) or in (b) (if $i=1$). Suppose now that $n-j+1 \leq i-1 \leq a_{0}+j-2$. Then $n \leq i+j-2 \leq a_{0}+2 j-3$, so that $1 \leq i+j-2-(n-1) \leq a_{0}+2 j-3-(n-1)<a_{0}-2$. Note that D contains the closed walk $a_{0} \rightarrow a_{0}+j-1 \rightarrow a_{0}+j-2 \rightarrow \ldots \rightarrow i \rightarrow n \rightarrow i+j-2-(n-1) \rightarrow$ $i+j-3-(n-1) \rightarrow \ldots \rightarrow 1 \rightarrow j \rightarrow j-1 \rightarrow \ldots \rightarrow a_{0}$, which has length $3 j-(n-1)$. Any closed walk can be decomposed into cycles, thus $3 j-(n-1)=c_{1} j+c_{2}(n-1)$ for some nonnegative integers c_{1}, c_{2}. Since $j<3 j-(n-1)<2(n-1)$, the only possible cases are that $3 j-(n-1)$ is one of $n-1$ (with $c_{1}=0, c_{2}=1$), $2 j$ (with $c_{1}=2, c_{2}=0$) and $j+n-1$ (with $c_{1}=1, c_{2}=1$). The last two of these imply that $j=n-1$ (a contradiction). The first of these three can only occur if $3 j=2(n-1)$, and since j and $n-1$ are relatively prime, this is also impossible. Consequently, it must be the case that $1 \leq i-1 \leq n-j$ or $n-1 \geq i-1 \geq a_{0}+j-1$, so that D is a subgraph of one of the ones constructed in (a) or (b).

For the converse, consider a maximal digraph H constructed as in (a). Since n replicates $i_{0}, \exp (H)=\exp \left(H^{\prime}\right)$ where H^{\prime} is formed from H by deleting n and its incident arcs. Now H^{\prime} is Hamiltonian on $n-1$ vertices and has the digraph structure of Theorem 2.2, thus $\exp \left(H^{\prime}\right) \geq\left\lfloor\omega_{n-1} / 2\right\rfloor+2$. Applying Corollary 2.4 to H^{\prime} with n replaced by $n-1$ and $a=n-j, \exp \left(H^{\prime}\right)=j(n-2) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$, since $j>n / 2$ and $n \geq 6$. For case (b), observe that there is no walk from $n-1$ to 1 of length ($n-2$) $j-1$ (by the usual Frobenius- Schur argument), so that the exponent is at least $(n-2) j$, giving the required result as in (a).

Note that the result of Theorem 3.3 does not hold for small values of n. For example, if $n=5$ a digraph as in (a) of Theorem 3.3 with exponent equal to $9<10=$ $\left\lfloor\omega_{5} / 2\right\rfloor+2$ can be constructed by taking a Hamiltonian digraph on 4 vertices with two additional arcs from consecutive vertices forming two 3 -cycles (see, e.g., [2, pp. 82-83]) and vertex 5 replicating vertex 1 .

Theorem 3.4. Suppose that $n \geq 6$ is even and $j=n / 2$. Then D is a primitive digraph on n vertices with $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$ and cycle lengths $n-1$ and j iff (up to relabeling of vertices and reversal of each arc) D is a (primitive) subdigraph of a digraph formed by taking an $n-1$ cycle $1 \rightarrow n-1 \rightarrow n-2 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, adding in the arcs $i \rightarrow i+j-1$ for $1 \leq i \leq n / 2-3$, and one of the constructions (a) or (b) in Theorem 3.3.

Proof. First suppose that D is primitive with $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$ and cycle lengths $n-1$ and j. As in the proof of Theorem 3.3, assume that the $n-1$ cycle is as above, that the subdigraph induced by $\{1, \ldots, n-1\}$ is primitive, with $1 \rightarrow j$, and with the property that if $a \rightarrow a+j-1$, then $1 \leq a \leq n-j$. Finally, also suppose that $i \rightarrow n$. By Lemma 3.1 and Corollary 3.2 there are two cases to consider: (i) D contains exactly one of the arcs $n \rightarrow i+j-2$ and $i-j \rightarrow n$, (ii) D contains neither the arc $n \rightarrow i+j-2$ nor the arc $i-j \rightarrow n$.

Case (i): We claim that we may assume that $n \rightarrow i+j-2$. To see the claim, observe that if instead we have the arc $i-j \rightarrow n$ (and thus, by Lemma 3.1, $n \rightarrow i-2$), we can reverse every arc in D and relabel vertices $1, \ldots, n-1$ by sending t to $n-t$ for each such t. With this relabeling, it follows from Lemma 3.1 that $n-i+2 \rightarrow n$ and
$n \rightarrow n-i+j$. With $n-i+2$ replaced by i, this digraph contains the arc $n \rightarrow i+j-2$. So without loss of generality, we assume that the arc $n \rightarrow i+j-2$ is in D. Since vertex n is on a j-cycle and since D has diameter at most $n-1$, it follows that there is a walk from n to any vertex of length $n-1+(n-2)(n / 2-1)=\left(n^{2}-2 n+2\right) / 2$, and similarly that from any vertex in D there is a walk to n of length $\left(n^{2}-2 n+2\right) / 2$. Since $\exp (D) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2=\left(n^{2}-2 n+6\right) / 2$, it must be the case that there are vertices u and $v \in\{1, \ldots, n-1\}$ such that there is no walk from u to v of length $\left(n^{2}-2 n+4\right) / 2$. Observe that for any vertex $w \in\{1, \ldots, n-1\}$ that is on a j-cycle, there is a walk from w to every vertex in $\{1, \ldots, n-1\}$ of length $n-2+(n-2)(n / 2-1)=\left(n^{2}-2 n\right) / 2$. As a result, the shortest walk from u to a vertex in $\{1, \ldots, n-1\}$ that is on a j-cycle must have length at least 3. It follows from this that in fact vertex $n-1$ must be at least 3 steps from the nearest j-cycle, so that in particular, none of $n-1, n-2$ and $n-3$ can be on a j-cycle. Thus in $D, n-j \nrightarrow n-1, n-j-1 \nrightarrow n-2$ and $n-j-2 \nrightarrow n-3$, and so if $a \rightarrow a+j-1$, then $a \leq n-j-3=n / 2-3$. Further, it must be the case that $1 \leq i \leq n-j-2$, otherwise one of vertices $n-1, n-2$ and $n-3$ is on a j-cycle (involving vertices i and n). Consequently, D can be relabeled to yield a subdigraph of one of those constructed in (a) with $i_{0}=i-1$ (if $2 \leq i \leq n-j-2$), or (b) (if $i=1$).

Case (ii): If D contains neither the arc $n \rightarrow i+j-2$ nor the arc $i-j \rightarrow n$, then n has both indegree and outdegree 1 , with $i \rightarrow n \rightarrow i-2$. Now if D contains either of the arcs $i-1 \rightarrow i+j-2$ or $i-j \rightarrow i-1$, then the labels of vertices $i-1$ and n can be exchanged and case (i) above applies. On the other hand if D contains neither of those two arcs, then $i-1$ has indegree and outdegree 1 , with $i \rightarrow i-1 \rightarrow i-2$, so that vertex n replicates vertex $i-1$. Thus $\exp (D)=\exp \left(D^{\prime}\right)$ where D^{\prime} is formed from D by deleting vertex n and the arcs incident with it. From Corollary 2.4 with n replaced by $n-1, \exp \left(D^{\prime}\right)=n-1-a+1+(n-3) j$ where $a=\max \left\{b\right.$ is a vertex in D^{\prime} : the arc $b \rightarrow b+j-1$ is in $\left.D^{\prime}\right\}$. Thus $\exp \left(D^{\prime}\right)=$ $\exp (D)=n-a+(n-3) n / 2 \geq\left(n^{2}-2 n+6\right) / 2$, which implies that $a \leq n / 2-3$. Consequently D is a subdigraph of one of those constructed in (a) with $i_{0}=i-1$.

For the converse, consider a digraph H constructed as in (a). Since n replicates $i_{0}, \exp (H)=\exp \left(H^{\prime}\right)$, where H^{\prime} is formed from H by deleting n and its incident arcs. Appealing to Corollary 2.4 with n replaced by $n-1, a=n / 2-3$, and $j=n / 2$, $\exp \left(H^{\prime}\right)=\left(n^{2}-2 n+6\right) / 2=\left\lfloor\omega_{n} / 2\right\rfloor+2$ if n is even. Finally, consider the digraph H constructed in (b). Evidently the walks from vertex $n-1$ to $n-3$ can only have lengths equal to 2 , or to $2+n-1+c_{1}(n-1)+c_{2} j$ for nonnegative integers c_{1} and c_{2}. It follows that there is no walk from $n-1$ to $n-3$ of length $\left(n^{2}-2 n+4\right) / 2$, so that $\exp (H) \geq\left(n^{2}-2 n+6\right) / 2$. \square
4. Eigenvalue Results. In this section we explore results on the multiplicities of eigenvalues of primitive stochastic matrices having large exponent. These complement eigenvalue results in [4]. Our first theorem gives conditions for a stochastic matrix with large exponent to have a multiple nonzero eigenvalue. This result, which is not restricted to $k=n$ or $k=n-1$, shows that a multiple nonzero eigenvalue must be negative with algebraic multiplicity 2 .

THEOREM 4.1. Let A be a primitive, row stochastic $n-b y-n$ matrix with $n \geq 3$ and $\exp (A) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$. Let k and j be the two cycle lengths in $D(A)$ with $n \geq k>j$. Then A has a multiple nonzero eigenvalue λ iff $\lambda=-r$, where r is the unique positive root of $k x^{j}+j x^{k}=k-j$. When this is the case, k is odd and j is even.

Proof. By Theorem 1 in [4], the characteristic equation of A is $z^{n}-\alpha z^{n-j}-(1-$ $\alpha) z^{n-k}=0$, for some $\alpha \in(0,1)$. Thus a nonzero eigenvalue satisfies

$$
\begin{equation*}
z^{k}-\alpha z^{k-j}-(1-\alpha)=0 \tag{2}
\end{equation*}
$$

Note that 1 is always an eigenvalue, and (by Descartes' rule of signs) there is no other positive eigenvalue. Let $\lambda=\rho e^{i \theta}$ be an eigenvalue with $\rho>0$ and $0<\theta<2 \pi$. By differentiating, if λ is a multiple eigenvalue, then it also satisfies $\lambda^{j}=\alpha(k-j) / k$, giving $\rho^{j}=\alpha(k-j) / k$ and $\theta=2 \pi l / j$ for some positive integer $l<j$. Further differentiation shows that the algebraic multiplicity of λ is 2. By taking imaginary parts of the characteristic equation, $\rho^{k} \sin (k \theta)=\alpha \rho^{k-j} \sin ((k-j) \theta)$. On substituting for ρ^{j}, this gives $(k-j) \sin (k \theta)=k \sin ((k-j) \theta)=k \sin ((k-j) 2 \pi l / j)=k \sin (k \theta)$. Thus $\sin (k \theta)=0$, so that $\theta=\pi m / k$ for some positive integer m. Hence $2 l k=m j$, and since $\operatorname{gcd}(k, j)=1$ and j divides $2 l$, it must be that $j=2 l$. As a result $\theta=\pi, \lambda=-\rho$, j is even, k is odd and $\alpha=k \rho^{j} /(k-j)$. Substituting into (2) gives $k \rho^{j}+j \rho^{k}=k-j$. The converse is straightforward.

From the characteristic equation, a matrix satisfying the conditions of Theorem 4.1 has zero as an eigenvalue iff $k<n$, and its algebraic multiplicity is $n-k$.

The digraph characterizations in Sections 2 and 3 lead to results about the geometric multiplicities of eigenvalues of primitive, stochastic matrices with large exponent.

Theorem 4.2. Let A be a primitive, row stochastic n-by-n matrix with $n \geq 3$ and $\exp (A) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$. If $D(A)$ is Hamiltonian, then each eigenvalue of A is geometrically simple.

Proof. Let the length of the shorter cycle(s) in $D(A)$ be $j \geq\lceil(n-1) / 2\rceil$ by Lemma 2.1. For $j \geq n / 2$ take $p=n-j+1$, and for $j=(n-1) / 2$ take $p=(n-1) / 2$. Then by Theorems 2.2 and 2.3 , without loss of generality by permutation similarity $A=\left[a_{i j}\right]$ has the following form: $a_{1, n}=1-\alpha_{1} ; a_{i, i-1}=1-\alpha_{i}$ for $2 \leq i \leq p ; a_{i, i-1}=1$ for $p+1 \leq i \leq n ; a_{i, i+j-1}=\alpha_{i}$ for $1 \leq i \leq p$; and all other $a_{i j}=0$. Here α_{i} satisfy $0<\alpha_{1}<1$ and $0 \leq \alpha_{i}<1$ for $2 \leq i \leq p$. Thus for all $j \geq\lceil(n-1) / 2\rceil$, A is an unreduced Hessenberg matrix. By deleting row 1 and column n, it can be seen that $\operatorname{rank} A \geq(n-1)$ [7, Exercise 22, p. 274]. Similarly, rank $(A-\lambda I)=n-1$ for each eigenvalue λ of A. This implies that each eigenvalue has geometric multiplicity one. —

As an example of the above eigenvalue results, consider the 3 -by- 3 row stochastic matrix A having $k=3$ and $j=2$ as in the proof of Theorem 4.2 with $\alpha_{1}=\alpha_{2}=1 / 2$. Note that $\exp (A)=4$. The characteristic equation of A is $z^{3}-\alpha z-(1-\alpha)=0$, with $\alpha=3 / 4$; thus A has eigenvalues $1,-1 / 2,-1 / 2$. Here $-1 / 2$ is an eigenvalue of algebraic multiplicity 2 (as predicted by Theorem 4.1), but geometric multiplicity 1 (as predicted by Theorem 4.2).

THEOREM 4.3. Let A be a primitive, row stochastic $n-b y-n$ matrix with $n \geq 6$ and $\exp (A) \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$. If the maximal cycle length in $D(A)$ is $n-1$, then each
eigenvalue of A is geometrically simple.
Proof. Since $k=n-1, \lambda=0$ is a simple eigenvalue of A. Let the length of the shorter cycle(s) in $D(A)$ be $j \geq\lceil n / 2\rceil$ by Theorem 1.2. For simplicity, only the proof for the case $j>n / 2$ is given, the case $j=n / 2$ is essentially the same. For $j>n / 2$, by Theorem 3.3, without loss of generality by permutation similarity $A=\left[a_{i j}\right]$, or its transpose, must have one of two forms corresponding to (a) or (b).

In case (a), without loss of generality n can be taken to replicate a vertex with outdegree 1 . (This is because, by Lemma $3.1, n$ has either indegree or outdegree 1 , so, if necessary, take A^{T}.) Let vertex n replicate vertex i where $n-1 \geq i>n-j$. Consider the matrix $A-\lambda I$, where $\lambda \neq 0$ and the digraph of A is as in Theorem 3.3(a). Form B from $A-\lambda I$ by deleting the first row and the last column. Then B is block upper triangular with a $(1,1)$ block of order $i-2$ and a $(2,2)$ block of order $n-i+1$. Since the $(1,1)$ block is upper triangular with positive diagonal entries, it is nonsingular. The $(2,2)$ block has the first $n-i$ diagonal entries positive, $-\lambda$ in each superdiagonal entry, and a 1 in the last row first column. Every other entry in the $(2,2)$ block is zero. By expanding about the first row, the determinant of the $(2,2)$ block has magnitude λ^{n-i}. As a result, B is nonsingular, so that $A-\lambda I$ has a submatrix of rank $n-1$.

In case (b), $a_{i, i+j-1}=\alpha_{i}$ for $1 \leq i \leq n-j ; a_{1, n-1}=\beta_{1} ; a_{1, n}=1-\alpha_{1}-\beta_{1}$; $a_{i, i-1}=1-\alpha_{i}$ for $2 \leq i \leq n-j ; a_{i, i-1}=1$ for $n-j+1 \leq i \leq n-1 ; a_{n, j-1}=\gamma_{n}$; $a_{n, n-2}=1-\gamma_{n}$; and all other $a_{i j}=0$. Here the parameters satisfy: $0 \leq \alpha_{1}<1$; $0<\beta_{1}<1 ; 1-\alpha_{1}-\beta_{1}>0 ; 0 \leq \alpha_{i}<1$ for $2 \leq i \leq n-j$; and $0<\gamma_{n} \leq 1$, such that A is primitive. Deleting row n and column $n-1$, the remaining submatrix of $A-\lambda I$ is upper Hessenberg, and has rank $n-1$ for all values of λ, because it has a unique nonzero transversal of length $n-1$ (from the subdiagonal and $(1, n)$ entries of $A-\lambda I)$.

Thus rank $(A-\lambda I)=n-1$ for every eigenvalue λ of A, and the geometric multiplicity of each eigenvalue is one. \square

We close the paper with a class of examples to show that for $k \leq n-2$, a row stochastic matrix with large exponent can have an eigenvalue of large geometric multiplicity.

Example 4.4. For a fixed n, take $k \leq n-2$ so that $\omega_{k} \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$. Select α such that $0<\alpha<1$, and form the primitive row stochastic n-by- n matrix A with nonzero entries as follows: $a_{1, k-1}=\alpha, a_{1 k}=1-\alpha, a_{i, i-1}=1$ for $i \in\{2,3\} \cup\{5, \ldots, k\}$, $a_{4 i}=1 /(n-k+1)$ for $i \in\{3\} \cup\{k+1, \ldots, n\}$, and $a_{i 2}=1$ for $i \in\{k+1, \ldots n\}$. The digraph of A can be formed by starting from $D\left(W_{k}\right)$ and taking each of the vertices $k+1, \ldots, n$ replicating vertex 3 . Since vertex 3 is replicated $n-k$ times, there is a walk involving any of the vertices $k+1, \ldots, n$ in $D(A)$ iff there is a corresponding walk involving vertex 3 in $D\left(W_{k}\right)$. Thus $\exp (A)=\exp \left(D\left(W_{k}\right)\right)=\omega_{k} \geq\left\lfloor\omega_{n} / 2\right\rfloor+2$. Observe that since each of rows $k+1$ through n is a copy of row $3, A$ has nullity at least $n-k$. Further, from the statement after Theorem 4.1, the algebraic multiplicity of 0 as an eigenvalue of A is equal to $n-k$. Thus the algebraic and geometric multiplicities of 0 coincide, with common value $n-k \geq 2$. The smallest example in this class has $n=9, k=7$ with other cycles of length 6 . In this case, 0 is an eigenvalue of (algebraic and geometric) multiplicity 2 .

REFERENCES

[1] L.B. Beasley and S. Kirkland. On the exponent of a primitive matrix containing a primitive submatrix. Linear Algebra Appl. 261:195-205, 1997.
[2] R.A. Brualdi and H.J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, 1991.
[3] D. Huang. On circulant Boolean matrices. Linear Algebra Appl. 136:107-117, 1990.
[4] S. Kirkland. A note on the eigenvalues of a primitive matrix with large exponent. Linear Algebra Appl. 253:103-112 (1997).
[5] S. Kirkland and M. Neumann. Regular Markov chains for which the transition matrix has large exponent. Preprint, 1999.
[6] M. Lewin and Y. Vitek. A system of gaps in the exponent set of primitive matrices. Illinois J. Math., 25:87-98, 1981.
[7] G.W. Stewart. Introduction to Matrix Computations. Academic Press, 1973.

[^0]: *Received by the editors on 26 January 2000. Accepted for publication on 21 February 2000. Handling editor: Richard A. Brualdi.
 \dagger Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada (kirkland@math.uregina.ca). Research supported in part by an NSERC Research Grant.
 \ddagger Department of Computer Science, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada (dolesky@csr.uvic.ca). Research supported in part by an NSERC Research Grant.
 ${ }^{\S}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, V8W 3P4, Canada (pvdd@math.uvic.ca). Research supported in part by an NSERC Research Grant.

