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Abstract. Let B(n, g) be the class of bicyclic graphs on n vertices with girth g. In this paper,

the graphs in B(n, g) with the largest signless Laplacian spectral radius are characterized.
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1. Introduction. All graphs considered in this paper are finite, undirected and

simple. Graph theoretical terms used but not defined can be found in Bollobás [1].

Let G = (V,E) be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} and

edge set E(G) = {e1, e2, . . . , em}. If m = n−1+c, then G is called a c-cyclic graph. If

c = 0, 1 and 2, then G is a tree, unicyclic graph, and bicyclic graph, respectively. We

denote by Pn, Cn and Sn the path, the cycle and the star on n vertices, respectively.

Set N(vi) = {u|uvi ∈ E(G)} and N [vi] = N(vi)∪{vi}. Denote by dG(vi)(= |N(vi)|),

or briefly by dvi
, the degree of vertex vi of G.

The signless Laplacian of a graph G is the matrix Q(G) = D(G) + A(G), where

A(G) and D(G) denote respectively the (0, 1) adjacency matrix and the diagonal

matrix of vertex degrees of G. If R is the vertex-edge incidence matrix of G, then

Q(G) = RRT . The matrix L(G) = D(G) − A(G) is known as the Laplacian matrix

of G. Recently, the matrix Q(G) has attracted the attention of many researchers.

Some have expressed the view that, in comparison to the spectra of other commonly

used graph matrices (such as the Laplacian and the adjacency matrix), the signless

Laplacian seems to be the most convenient for use in studying graph properties [2].

One natural line of research to pursue find upper bounds on the spectral radius of

the signless Laplacian and characterize the graphs attaining these bounds. Now many

papers on the signless Laplacian spectrum have been published. In [3, 4], X.D. Zhang

studied the signless Laplacian spectral radius of trees and unicyclic graphs with given
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degree sequences. In [5], Fan et. al. discussed the signless Laplacian spectral radius

of bicyclic graph with fixed order. In [6], the author characterized the extremal graph

of bicyclic graphs with k pendant vertices with maximal signless Laplacian spectral

radius. For further details, we refer the reader to the recent paper by D. Cvetković

[7], which is a wonderful survey on the signless Laplacian, and the cited references

therein.

For a connected graph G, it is well known that Q(G) is a positive semidefinite

matrix, that is, all its eigenvalues are nonnegative. Furthermore, by the Perron-

Frobeniuns Theorem, the largest eigenvalue µ(G) of Q(G) is simple and there is a

unique positive unit eigenvector X = (X(v1), . . . ,X(vn))T . We shall refer to such an

eigenvector as the Perron vector of Q(G).

Let B(n, g) be the class of bicyclic graphs on n vertices with girth g. In this

paper, we study the signless Laplacian spectral radius and determine the graph with

the largest signless Laplacian spectral radius in B(n, g).

2. Preliminaries. In this section, we list some known results which will be used

in this paper.

Let G be a connected graph, and uv ∈ E(G). The graph Gu,v is obtained from G

by subdividing the edge uv, i.e., adding a new vertex w and edges wu,wv in G− uv.

Hoffman and Smith [8] define an internal path of G as a walk u0u1 · · ·us(s ≥ 1) such

that the vertices u0, u1, . . . , us−1 are distinct, d(u0) > 2, d(us) > 2, and d(ui) = 2,

whenever 0 < i < s. An internal path is closed if u0 = us.

Lemma 2.1. [9, 10] Let G be a connected graph and uv be an edge on an internal

path of G. Then µ(Gu,v) < µ(G).

Lemma 2.2. [11] Let G be a connected graph. Suppose u1 and u2 are vertices

each of degree at least three and u1u2 is an edge of G. Let G′ be the connected graph

obtained from G by contracting u1u2 (i.e., deleting the edge and identifying u1 and

u2). Then µ(G) < µ(G′).

Lemma 2.3. [11] Let G be a connected graph and P be a pendant path in G.

Suppose e is an edge in P and G′ is the graph obtained from G by subdividing e.

Then µ(G) < µ(G′).

Lemma 2.4. [11] Let G be a connected graph of order n and S, T be nonempty ver-

tex subsets. Suppose S = {u1, u2, . . . , us} and the neighbors of ui in T are ui1, ui2, . . .,

uili (li ≥ 1, i = 1, 2, . . . , s). Let X = (X(v1),X(v2), . . . ,X(vn))T be the Perron

vector of Q(G), where X(vk) corresponds to the vertex vk (1 ≤ k ≤ n). Suppose

X(u1) = max{X(ui) : i = 1, 2, . . . , s}. Let H be the graph obtained from G by delet-

ing edges uiuij and adding the edges u1uij (i = 2, 3, . . . , s, j = 1, 2, . . . , li). Then
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µ(G) < µ(H).

Lemma 2.5. [12] Let G be a graph on n vertices with at least one edge and the

maximum degree of G be △. Then µ(G) ≥ △+ 1. The equality holds if and only if G

is a star.

Lemma 2.6. [6] For a connected graph G, µ(G) ≤ max{du + mu : u ∈ V (G)},

where mu satisfies dumu =
∑

uv∈E(G) dv. The equality holds if and only if G is regular

or semiregular bipartite.

Lemma 2.7. [13] For a connected graph G,

µ(G) ≤ max

{
dvi

(dvi
+ mvi

) + dvj
(dvj

+ mvj
)

dvi
+ dvj

|vivj ∈ E(G)

}
,

where mvi
satisfies dvi

mvi
=

∑
vivj∈E(G) dvj

.

Lemma 2.8. [5] Let G be a graph with maximal signless Laplacian spectral radius

among connected bicyclic graph, then G is the graph obtained from Sn by adding two

adjacent edges.

3. Main results. In this section, we first consider how the signless Laplacian

spectral radius behaves when the graph is perturbed. Then we characterize the graph

with the largest signless Laplacian spectral radius in B(n, g).

0
G

0
G0

u
0
u1

u

1
u

ku

ku

 

1
G

2
G

!

Fig. 3.1. The graphs G1 and G2.

Lemma 3.1. Let G1, G2 be graphs of the form in Figure 3.1. If X is the Perron

vector of Q(G1), and X(u0) ≥ X(ui), i = 1, 2, . . . , k (k ≥ 2), then µ(G2) > µ(G1).

Proof. Let R be the vertex-edge incidence matrix of G1. Since X is the Perron

vector of Q(G1), then

µ(G1) = XT Q(G1)X = XT RRT X = (RT X)T RT X

=
∑

vivj∈E(G1),1≤i<j≤n

(X(vi) + X(vj))
2.
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Obviously, E(G2) − {u0u2, u0u3, . . . , u0uk} = E(G1) − {u1u2, u2u3, . . . , uk−1uk}.

Then

XT Q(G2)X − XT Q(G1)X

=
∑

vivj∈E(G2),1≤i<j≤n

(X(vi) + X(vj))
2 −

∑

vivj∈E(G1),1≤i<j≤n

(X(vi) + X(vj))
2

= (X(u0) + X(u2))
2 + · · · + (X(u0) + X(uk))2 − [(X(u1) + X(u2))

2 + · · ·

+(X(uk−1) + X(uk))2]

= [(X(u0) + X(u2))
2 − (X(u1) + X(u2))

2] + · · · + [(X(u0) + X(uk))2

− (X(uk−1) + X(uk))2]

≥ 0,

since X(u0) ≥ X(ui) > 0, i = 1, 2, . . . , k. So

µ(G2) = max
Y ∈Rn,||Y ||=1

Y T Q(G2)Y ≥ XT Q(G2)X ≥ XT Q(G1)X = µ(G1).

If µ(G2) = µ(G1), then Q(G1)X = µ(G1)X and Q(G2)X = µ(G2)X. Thus,

µ(G1)X(u0) = (dG0
(u0) + 1)X(u0) +

∑

uu0∈E(G0)

X(u) + X(u1),

µ(G2)X(u0) = (dG0
(u0) + k)X(u0) +

∑

uu0∈E(G0)

X(u) +

k∑

i=1

X(ui),

so we have µ(G2) > µ(G1), a contradiction. Hence, µ(G2) > µ(G1).

If H1,H2 are graphs with V (H1) ∩ V (H2) = v, then G = H1vH2 is defined as a

new graph with V (G) = V (H1) ∪ V (H2) and E(G) = E(H1) ∪ E(H2). We always

assume that in graph GvSl, v is identified with the center of the star Sl in GvSl.

Lemma 3.2. Let H be a graph and Tl 6= Sl be a tree of order l with V (H)∩V (Tl) =

v. Then µ(HvSl) > µ(HvTl).

Proof. Since Tl 6= Sl, it follows that l ≥ 3.

Case 1. Tl = Pl.

Let Pl = vv1 · · · vl−1, NHvPl
(v) \ {v1} = {u1, . . . , us} and X be the Perron vector

of Q(HvPl). Set X(vr) = max{X(w) : w ∈ {v, v1, . . . , vl−1}}. If X(vr) = X(v), then,

by Lemma 3.1, we have µ(HvSl) > µ(HvTl). If X(vr) 6= X(v), deleting the edges vui

(i = 1, . . . , s), and adding the edges uivr, i = 1, . . . , s, denote the resulted graph by

G0, by Lemma 2.4, µ(G0) > µ(HvTl). Let G1 be the graph obtained H by attaching

two pendant paths P 1 = vrvr+1 · · · vl−1 and P 2 = vrvr−1 · · · v at vr, by Lemma 3.1,

we have µ(HvSl) > µ(G1). Obviously, G0
∼= G1, then µ(HvSl) > µ(HvTl).
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Case 2. Tl 6= Pl.

First, contracting all internal paths in Tl, and path P = vv1 · · · vk, where dHvTl
(v)

≥ 3, dTl
(vi) = 2 (i = 1, . . . , vk−1) and dTl

(vk) ≥ 3 (if any), denote the resulted graph

by HvT 1, by Lemma 2.1, µ(HvT 1) > µ(HvTl). Then contracting all edges with

degree of each endvertex at least three in T 1 and edge vvk with dHvT 1(v) ≥ 3 and

dT 1(vk) ≥ 3 (if any), by Lemma 2.2, the signless Laplacian spectral radius increases.

Further, subdividing a pendant path several times if necessary to keep the order of

graph unchanged, denote the resulted graph by G′ = HvT 2
l , by Lemma 2.3, the

signless Laplacian spectral radius also increases. Obviously, G′ is the graph obtained

from H by attaching some pendant paths at v. Similar to the proof of Case 1, we

have µ(HvSl) > µ(HvTl).

Let G be a bicyclic graph. The base of G, denoted by B(G), is the minimal bicyclic

subgraph of G. Obviously, B(G) is the unique bicyclic subgraph of G containing no

pendant vertex, and G can be obtained from B(G) by planting trees to some vertices

of B(G).

1
v

2
v lv

pC qC u v

1pP  

1qP  

1rP  

 

 

 

Fig. 3.2. The bases of B(n, g).

It is well known that bicyclic graphs have the following two types of bases (as

shown in Figure 3.2):

Let B̂(p, l, q) be the graph obtained by joining a new path v1v2 · · · vl between

two cycles Cp and Cq, where v1 ∈ V (Cp) and vl ∈ V (Cq). Let also P (p, q, r) be

the bicyclic graph consisting of three pairwise internal disjoint paths Pp+1, Pq+1, Pr+1

with common endpoints u, v.

Now we can define the following two classes of bicyclic graphs on n vertices with

a given girth g:

B1(n, g) = {G ∈ B(n, g)|B(G) = B̂(p, l, g) for some p ≥ g ≥ 3 and l ≥ 1};

B2(n, g) = {G ∈ B(n, g)|B(G) = P (p, q, r) for some 1 ≤ p ≤ q ≤ r and

p + q = g ≥ 3}.

Then B(n, g) = B1(n, g) ∪ B2(n, g).
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Lemma 3.3. Let G∗ have the maximal signless Laplacian spectral radius among

all graphs in B(n, g). Then G∗ is obtained from B(G∗) by attaching some pendant

edges (if any) to a unique vertex v∗.

Proof. Note that G∗ can be obtained from B(G∗) by attaching trees to some

vertices of B(G∗). By Lemma 3.2, these trees must be stars, since G∗ is the extremal

graph. Let {v1, . . . , vt} be the set of centers of these stars and X be the Perron vector

of Q(G∗). Set Vi = {vi1, vi2, . . . , viri
} be the set of pendent vertices which are adjacent

to vi, i = 1, 2, . . . , t. If t ≥ 2, without loss of generality, let X(v1) = max{X(vi)|1 ≤

i ≤ t}, then by Lemma 2.4,

µ(G∗) < µ(G∗ − {v2v21, . . . , v2v2r2
, . . . , vtvt1, . . . , vtvtrt

}

+{v1v21, . . . , v1v2r2
, . . . , v1vt1, . . . , v1vtrt

},

a contradiction. Thus, t = 1. This completes the proof.

Theorem 3.4. Let G∗ have the maximal signless Laplacian spectral radius among

all graphs in B1(n, g). Then G∗ ∼= B̂(g, 1, g)v1Sn−2g+2 and µ(G∗) < n − 2g + 6

+ 4
n−2g+5 .

Proof. Since G∗ ∈ B1(n, g), B(G∗) ∼= B̂(p, l, g) for some l ≥ 1, p ≥ g.

Suppose l ≥ 2 and Pl = v1v2 · · · vl, where v1 ∈ V (Cp), vl ∈ V (Cg). Let X be the

Perron vector of Q(G∗). Without loss of generality, let X(v1) ≥ X(vl). By Lemma

2.4, we have

µ(G∗) < µ(G∗ −
∑

v∈V (Cg)∩N(vl)

vvl +
∑

v∈V (Cg)∩N(vl)

vv1),

a contradiction. Thus l = 1, that is, V (Cg) ∩ V (Cp) = {v1}.

By Lemma 3.3, G∗ is obtained from B(G∗) by attaching some pendant edges (if

any) to a unique vertex v∗. If v∗ 6= v1, comparing X(v∗) and X(v1), we can similar

find a graph in B1(n, g) which has larger signless Laplacian spectral radius than G∗.

Hence, v∗ = v1.

Let k = n− g − p + 1. If p ≥ g + 1, then n ≥ 2g and k ≤ n− 2g. By Lemma 2.6,

we have

µ(G∗) < max{dx + mx|x ∈ V (G∗)} = k + 4 +
k + 8

k + 4
= k + 5 +

4

k + 4
.

Let f(k) = k + 5 + 4
k+4 , then f(k) is increasing with nonnegative number k. Thus,

µ(G∗) < n − 2g + 5 +
4

n − 2g + 4
≤ n − 2g + 6.
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However, by Lemma 2.5, µ(B̂(g, 1, g)v1Sn−2g+2) ≥ △ + 1 = n − 2g + 6 > µ(G∗), a

contradiction. So p = g.

Hence, G∗ ∼= B̂(g, 1, g)v1Sn−2g+2 and

µ(B̂(g, 1, g)v1Sn−2g+2) < max{dx + mx|x ∈ V (B̂(g, 1, g)v1Sn−2g+2)}

= n − 2g + 6 +
4

n − 2g + 5
.

Lemma 3.5. Let G∗ have the maximal signless Laplacian spectral radius among

all graphs in B2(n, g). Then B(G∗) ∼= P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉).

Proof. Since G∗ ∈ B2(n, g), B(G∗) ∼= P (p, q, r), where

1 ≤ p ≤ q ≤ r, p + q = g.(3.1)

Obviously, n ≥ (p + q + r) − 1 and p + q + r ≥ g + ⌈ g
2⌉, then n ≥ g + ⌈ g

2⌉ − 1.

Case 1. n = g + ⌈ g
2⌉−1. Then G∗ cannot contain pendant edges and p+ q + r =

g + ⌈ g
2⌉. By (3.1), we have r = ⌈ g

2⌉ and p ≤ q ≤ ⌈ g
2⌉. If q ≤ ⌈ g

2⌉−1, then p ≥ ⌊ g
2⌋+1.

Obviously, if g is even, p ≥ g
2 + 1 and q ≤ g

2 − 1, a contradiction; if g is odd,

p ≥ g+1
2 and q ≤ g−1

2 , also a contradiction. Hence, q = ⌈ g
2⌉ and p = ⌊ g

2⌋. Then

G∗ ∼= B(G∗) ∼= P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉).

Case 2. n = g + ⌈ g
2⌉. Then p + q + r ≤ g + ⌈ g

2⌉ + 1. By (3.1), we have

⌈ g
2⌉ ≤ r ≤ ⌈ g

2⌉ + 1 and p ≥ ⌊ g
2⌋ − 1, q ≤ ⌈ g

2⌉ + 1.

If r = ⌈ g
2⌉, similar to Case 1, we have q = ⌈ g

2⌉ and p = ⌊ g
2⌋.

If r = ⌈ g
2⌉+ 1, then G∗ cannot contain pendant edges. If g = 3,

{
p = ⌊ g

2⌋ = 1

q = ⌈ g
2⌉ = 2

since p ≥ 1; If g ≥ 4,

{
p = ⌊ g

2⌋ − 1

q = ⌈ g
2⌉ + 1

or

{
p = ⌊ g

2⌋

q = ⌈ g
2⌉

.

Case 2.1. g = 3. Then G∗ is obtained from P (1, 2, 2) by attaching a pendant

edge to a vertex of P (1, 2, 2) or G∗ ∼= P (1, 2, 3). By direct calculation, we have

µ(P (1, 2, 2)vS2) = 5.7785, µ(P (1, 2, 3)) = 5.1149.

Then B(G∗) ∼= P (1, 2, 2).

Case 2.2. g = 4. Then G∗ is obtained from P (2, 2, 2) by attaching a pendant

edge to a vertex of P (2, 2, 2) or G∗ ∈ {P (1, 3, 3), P (2, 2, 3)}. By direct calculation, we

have

µ(P (2, 2, 2)vS2) = 5.5141, µ(P (1, 3, 3)) = 5.0000, µ(P (2, 2, 3)) = 4.9032.
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Then B(G∗) ∼= P (2, 2, 2).

Case 2.3. g = 5. Then G∗ is obtained from P (2, 3, 3) by attaching a pendant

edge to a vertex of P (2, 3, 3) or G∗ ∈ {P (1, 4, 4), P (2, 3, 4)}. By direct calculation, we

have

µ(P (2, 3, 3)vS2) = 5.3552, µ(P (1, 4, 4)) = 4.9032, µ(P (2, 3, 4)) = 4.7728.

Then B(G∗) ∼= P (2, 3, 3).

Case 2.4. g ≥ 6. Then G is obtained from P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉) by attaching a

pendant edge to a vertex of P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉) or G ∈ {P (⌊ g

2⌋ − 1, ⌈ g
2⌉ + 1, ⌈ g

2⌉ +

1), P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉ + 1)}. By Lemma 2.6, we have

µ
(
P

(
⌊
g

2
⌋ − 1, ⌈

g

2
⌉ + 1, ⌈

g

2
⌉ + 1

))
≤ 5,

µ
(
P

(
⌊
g

2
⌋, ⌈

g

2
⌉, ⌈

g

2
⌉ + 1

))
≤ 5.

And by Lemma 2.5, we have

µ
(
P

(
⌊
g

2
⌋, ⌈

g

2
⌉, ⌈

g

2
⌉
)

vS2

)
> 5.

Then B(G∗) ∼= P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉).

Case 3. n ≥ g + ⌈ g
2⌉ + 1.

If r = ⌈ g
2⌉, Similar to Case 1, we have q = ⌈ g

2⌉ and p = ⌊ g
2⌋.

If r ≥ ⌈ g
2⌉ + 1, let k = n − (p + q + r) + 1, that is, the number of pendant edges

in G∗. Then k ≤ n− g −⌈ g
2⌉. It is easy to see that max{dx + mx|x ∈ V (G∗)} attains

the maximum just when p = 1 and k pendent edges of G∗ are incident to a 3−degree

vertex of P (p, q, r). In this case, by Lemma 2.6, we have

µ(G) ≤ max{dx + mx|x ∈ V (G)} = k + 3 +
k + 7

k + 3

< n − g − ⌈
g

2
⌉ + 4 +

4

n − g − ⌈ g
2⌉ + 3

≤ n − g − ⌈
g

2
⌉ + 5,

since k + 3 + k+7
k+3 is increasing with nonnegative number k. However, by Lemma 2.5,

µ
(
P

(
⌊
g

2
⌋, ⌈

g

2
⌉, ⌈

g

2
⌉
)

vSn−g−⌈ g

2
⌉+2

)
> n − g − ⌈

g

2
⌉ + 5.

Then B(G∗) ∼= P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉).

Theorem 3.6. Let G∗ have the maximal signless Laplacian spectral radius among

all graphs in B2(n, g), n ≥ g + ⌈ g
2⌉ − 1. Then G∗ ∼= P (⌊ g

2⌋, ⌈
g
2⌉, ⌈

g
2⌉)vSn−g−⌈ g

2
⌉+2.
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Proof. Let k = n− g−⌈ g
2⌉+1. By Lemma 3.3 and Lemma 3.5, we know that G∗

is obtained from P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉) by attaching k pendant edges to a unique vertex w.

Case 1. k = 0. Then G∗ ∼= P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉).

Case 2. k = 1.

Case 2.1. g = 3. Let A1 be the graph obtained from P (1, 2, 2) by attaching a

pendant edge to a 2-degree vertex of P (1, 2, 2). Since B2(5, 3) = {A1, P (1, 2, 2)vS2,

P (1, 2, 3)}, by Lemma 3.5, we have

G∗ ∈ {A1, P (1, 2, 2)vS2}.

By direct calculation, we have

µ(A1) = 5.4679, µ(P (1, 2, 2)vS2) = 5.7785.

Case 2.2. g = 4. Let A2 be the graph obtained from P (2, 2, 2) by attaching a

pendant edge to a 2-degree vertex of P (2, 2, 2). Since B2(6, 4) = {A2, P (2, 2, 2)vS2,

P (1, 3, 3), P (2, 2, 3)}, by Lemma 3.5, we have

G∗ ∈ {A2, P (2, 2, 2)vS2}.

By direct calculation, we have

µ(A2) = 5.2361, µ(P (2, 2, 2)vS2) = 5.5141.

3
A

4
A

5
A

Fig. 3.3. The graphs A3, A4 and A5.

Case 2.3. g = 5. Let A3, A4 be the graphs as shown in Figure 3.3. Since

B2(8, 5) = {A3, A4, P (2, 3, 3)vS2, P (1, 4, 4), P (2, 3, 4)},

by Lemma 3.5, we have

G∗ ∈ {A3, A4, P (2, 3, 3)vS2}.
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By direct calculation, we have

µ(A3) = 5.0664, µ(A4) = 4.9891, µ(P (2, 3, 3)vS2) = 5.3552.

Case 2.4. g ≥ 6. By Lemma 3.5, we have B(G∗) ∼= P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉). It

is easy to see that w cannot be simultaneously adjacent to the two 3-degree ver-

tices of P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉) and these two 3-degree vertices are not adjacent. If G 6=

P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉)vS2, by Lemma 2.7, we have

µ(G) ≤ max

{
dvi

(dvi
+ mvi

) + dvj
(dvj

+ mvj
)

dvi
+ dvj

|vivj ∈ E(G)

}

≤ max

{
31

6
,
26

5
,
20

4

}
=

26

5
.

But

µ
(
P

(
⌊
g

2
⌋, ⌈

g

2
⌉, ⌈

g

2
⌉
)

vS2

)
≥ µ(A5) = 5.2361.

Then G∗ ∼= P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉)vS2.

Case 3. k ≥ 2. By Lemma 3.5, we have B(G∗) ∼= P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉). If G∗ 6=

P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉)vSk+1, by Lemma 2.6, we have

µ(G∗) ≤ k + 2 +
k + 6

k + 2
≤ k + 4,

since k ≥ 2. But by Lemma 2.5,

µ
(
P

(
⌊
g

2
⌋, ⌈

g

2
⌉, ⌈

g

2
⌉
)

vSk+1

)
> k + 4,

since P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉)vSk+1 is not a star. Then G∗ ∼= P (⌊ g

2⌋, ⌈
g
2⌉, ⌈

g
2⌉)vSk+1.

Theorem 3.7. Let G∗ have the maximal signless Laplacian spectral radius among

all graphs in B(n, g), n ≥ g + ⌈ g
2⌉ − 1. Then G∗ ∼= P (⌊ g

2⌋, ⌈
g
2⌉, ⌈

g
2⌉)vSn−g−⌈ g

2
⌉+2 and

µ(G∗) < n − g − ⌈ g
2⌉ + 5 + 4

n−g−⌈ g

2
⌉+4 .

Proof. Case 1. g = 3. By Lemma 2.8, we have

µ(B̂(3, 1, 3)v1Sn−4) < µ(P (1, 2, 2)vSn−3).

Case 2. g ≥ 4. By Theorem 3.4,

µ(B̂(g, 1, g)v1Sn−2g+2) < n − 2g + 6 +
4

n − 2g + 5
≤ n − 2g + 7,

since in this case, n ≥ 2g − 1. But by Lemma 2.5,

µ
(
P

(
⌊
g

2
⌋, ⌈

g

2
⌉, ⌈

g

2
⌉
)

vSn−g−⌈ g

2
⌉+2

)
> △ + 1 = n − g − ⌈

g

2
⌉ + 5,
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since P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉)vSn−g−⌈ g

2
⌉+2 is not a star. However

n − g − ⌈
g

2
⌉ + 5 − (n − 2g + 7) = ⌊

g

2
⌋ − 2 ≥ 0,

since g ≥ 4. Hence,

µ(B̂(g, 1, g)v1Sn−2g+2) < µ
(
P

(
⌊
g

2
⌋, ⌈

g

2
⌉, ⌈

g

2
⌉
)

vSn−g−⌈ g

2
⌉+2

)
.

So G∗ ∼= P (⌊ g
2⌋, ⌈

g
2⌉, ⌈

g
2⌉)vSn−g−⌈ g

2
⌉+2. Furthermore, by Lemma 2.6, we have

µ(G∗) < n − g − ⌈
g

2
⌉ + 5 +

4

n − g − ⌈ g
2⌉ + 4

.
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