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EVEN AND ODD TOURNAMENT MATRICES WITH
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Abstract. The (0, 1)-matrix A of order n is a tournament matrix provided

A + AT + I = J,

where I is the identity matrix, and J = Jn is the all 1’s matrix of order n. It was shown by de

Caen and Michael that the rank of a tournament matrix A of order n over a field of characteristic

p satisfies rankp(A) ≥ (n − 1)/2 with equality if and only if n is odd and AAT = O. This article

shows that the rank of a tournament matrix A of even order n over a field of characteristic p satisfies

rankp(A) ≥ n/2 with equality if and only if after simultaneous row and column permutations

AAT =

[
±Jm O

O O

]
,

for a suitable integer m. The results and constructions for even order tournament matrices are

related to and shed light on tournament matrices of odd order with minimum rank.
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1. Introduction. A tournament matrix of order n is a (0, 1)-matrix A that

satisfies

A + AT + I = J,(1.1)

where I denotes the identity matrix of order n, and J = Jn denotes the all 1’s

matrix of order n. The tournament matrix A records the results of a round-robin

tournament among n players; the (i, j)-entry is 1 provided player i defeats player j

and is 0 otherwise. The number of players defeated by player i is the score of player

i; it equals the sum of the entries in row i of A. The joint score of players i and j

is the number of players defeated by both i and j; this equals the (i, j)-entry of the

product AAT .
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Because each entry of A is 0 or 1, we may view A as a matrix over any field. It

is known [3, 5] that a tournament matrix A of order n satisfies

rank(A) ≥ n − 1

over any field of characteristic 0. No satisfactory characterization of the tournament

matrices with the minimal rank n − 1 is known.

Our emphasis in this article is on ranks of tournament matrices over fields of

prime characteristic p. Without loss of generality the underlying field is the field Zp

of integers modulo p. The p-rank of the matrix A is the rank of A over a field of

characteristic p and is denoted by

rankp(A).

The p-rank of a tournament matrix is an important parameter in the study of skew

Hadamard block designs [7, 8].

Let O denote a matrix (of appropriate size) of 0’s, and let Ja,b denote the a by b

matrix of 1’s. Let

χA(x) and µA(x)

denote the characteristic and minimal polynomials, respectively, of the matrix A over

a given field.

1.1. Tournament matrices with minimum rank. The following theorem

gives a general lower bound for p-ranks of tournament matrices and summarizes the

known results about the case of equality.

Theorem 1.1. (de Caen, Michael) Let A be a tournament matrix of order n

(n ≥ 2), and let p be a prime.

(a) The p-rank of A satisfies

rankp(A) ≥
n − 1

2
.(1.2)

(b) The following assertions are equivalent:

(i) rankp(A) = (n − 1)/2,

(ii) n is odd and AAT = O,

(iii) χA(x) = x(n+1)/2(x + 1)(n−1)/2 and µA(x) = x(x + 1).

(c) The equality rankp(A) = (n − 1)/2 implies that (n − 1)/2 ≡ 0 (mod p).

(d) The equality rankp(A) = (n − 1)/2 implies that (n − 1)/2 ≡ 0 (mod 2p) if

p ≡ 3 (mod 4).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 363-377, April 2011



ELA

Tournament Matrices With Minimum Rank 365

The fundamental inequality (1.2) was established by de Caen [1] in 1991. In 1995,

the equivalence of (i) and (ii) in (b) was demonstrated in [6], as was the congruence

condition in (c) for equality. Condition (ii) in (b) gives a combinatorial characteriza-

tion of equality: All scores and joint scores of the tournament must be divisible by p.

Examples of tournament matrices satisfying equality in (1.2) were also constructed

in [6]. Condition (iii) can be extracted from the work in [6]; we provide an explicit

proof in Section 4.2. The congruence condition in (d) was discovered by de Caen [2].

For future reference we note that if the tournament matrix A of order n satisfies

rankp(A) = (n − 1)/2, then the conditions in Theorem 1.1 imply that

O = AAT = A(J − A − I) = AJ − A(A + I) = AJ.(1.3)

1.2. Even tournament matrices with minimum rank. Now suppose that

A is a tournament matrix of even order n. Then (1.2) and the integrality of rankp(A)

imply that

rankp(A) ≥
n

2
.(1.4)

Our main theorem characterizes tournament matrices for which equality holds in (1.4);

our characterizations of equality are analogous to those in Theorem 1.1.

Theorem 1.2. Let A be a tournament matrix of order n (n ≥ 4), and let p be a

prime.

(a) If n is even, then

rankp(A) ≥
n

2
.(1.5)

(b) The following assertions are equivalent:

(i) rankp(A) = n/2,

(ii) n is even, and after simultaneous row and column permutations

AAT =

[
+Jm O

O O

]
for some m ∈ {1, 2, . . . , n − 1}, or

AAT =

[
−Jm O

O O

]
for some m ∈ {0, 1, . . . , n},

(iii) The corresponding characteristic and minimal polynomials of A are

χA(x) = x(n/2)+1(x + 1)(n/2)−1 and µA(x) = x2(x + 1), or

χA(x) = xn/2(x + 1)n/2 and µA(x) = x(x + 1)2 or x(x + 1).

The extreme cases m = 0 and m = n occur in (ii) if and only if µA(x) =

x(x + 1).
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(c) The equality rankp(A) = n/2 implies that m ≡ n/2 ≡ 1 or 0 (mod p), accord-

ing as A satisfies the upper or lower conditions, respectively, in (ii) and (iii).

(d) The equality rankp(A) = n/2 implies that n/2 ≡ 0 (mod 2p) if A satisfies the

lower conditions in (ii) and (iii), and p ≡ 3 (mod 4).

Condition (ii) has a combinatorial interpretation: All scores and joint scores are

divisible by p, except for scores of players in the set {1, . . . ,m} and joint scores

involving two players in this same set; the exceptional scores and joint scores are all

1 more or all 1 less than a multiple of p.

In Section 2, we provide examples of tournament matrices for which equality holds

in Theorem 1.2, and in Section 3, we discuss relationships between the tournament

matrices with minimum rank of even and odd orders. The proof of Theorem 1.2

occurs in Section 5 and relies on the lemmas we establish in Section 4.

2. Equality: (±J)-type tournament matrices. In this section, we construct

some even order tournament matrices of minimum rank. These constructions shed

light on Theorem 1.2.

A tournament matrix An of even order n is a (+J)-type or a (−J)-type matrix of

sub-order m provided that after simultaneous row and column permutations

AnAT
n =

[
+Jm O

O O

]
or AnAT

n =

[
−Jm O

O O

]
,(2.1)

respectively, over Zp. When p = 2, we adopt the convention that An is a (+J)-type

(respectively, (−J)-type) tournament matrix of sub-order m provided AnAT
n is of the

form (2.1), and m is odd (respectively, even).

Note that Theorem 1.2 tells us that if An is a tournament matrix of even order

n satisfying AnAT
n = O, then An is a (−J)-type matrix of sub-order m = 0.

According to Theorem 1.2, the (±J)-type tournament matrices are precisely the

even order tournament matrices of minimum rank. We shall see that (±J)-type tour-

nament matrices are intimately related to the odd order tournament matrices of min-

imum rank, which are characterized in Theorem 1.1. Throughout our constructions

we rely on the characterizations in Theorem 1.1 and Theorem 1.2.

2.1. Transposes. We begin with an observation based directly on matrix ma-

nipulations.

Proposition 2.1. The matrix An is a (+J)-type tournament matrix of order

n and sub-order m if and only if AT
n is a (+J)-type tournament matrix of order n

and sub-order n − m. The same assertion holds for (−J)-type tournament matrices

of order n and sub-order m.
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Proof. Let An be a (±J)-type tournament matrix of order n and sub-order m.

Then

AnAT
n =

[
±Jm O

O O

]
and AnJn =

[
±Jm,n

O

]
.(2.2)

The first equation is the definition of a (±J)-type matrix. Because the ith diagonal

element of AAT is the score of player i modulo p, (that is, the number of 1’s in row i

of A), the second equation follows from the first. Now from (1.1) and (2.2) it follows

that

AT
nAn = (Jn − I − An)(Jn − I − AT

n )

= J2
n − Jn − JnAT − Jn + I + AT

n − AnJn + An + AnAT
n

= (n − 1)Jn − (AnJn + (AnJn)T ) + AnAT
n =

[
O O

O ±Jn−m

]
,

where the last step uses the congruence m ≡ n/2 ≡ 1 or 0 (mod p) from Theorem 1.2.

Thus, AT
n is a (±J)-type tournament matrix of order n and sub-order n−m. Replace

m by n − m in the above computation to establish the reverse implication.

2.2. Construction using two odd tournament matrices. Our first con-

struction produces a (+J)-type tournament matrix from two minimum rank tourna-

ment matrices of odd orders.

Proposition 2.2. Suppose that Am and An−m are tournament matrices of odd

orders m and n − m with

rankp(Am) =
m − 1

2
and rankp(An−m) =

n − m − 1

2
.

Then the tournament matrix

A =

[
Am Jm,n−m

O An−m

]

of even order n satisfies

rankp(A) =
n

2
.

Moreover, A is a (+J)-type tournament matrix of sub-order m.

Proof. The result is clear if n = 2. Suppose that n ≥ 4. Then AmAT
m = O and

An−mAT
n−m = O. Also, (n − m − 1)/2 ≡ 0 (mod p) and so n − m ≡ 1 (mod p). By
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block multiplication and (1.3)

AAT =

[
Am Jm,n−m

O An−m

] [
AT

m O

Jn−m,m AT
n−m

]

=

[
AmAT

m + (n − m)Jm Jm,n−mAT
n−m

An−mJn−m,m An−mAT
n−m

]
=

[
Jm O

O O

]
,

which is of the required form in (2.1). Therefore, rank(A) = n/2, and A is a (+J)-type

tournament matrix of sub-order m.

2.3. Construction using two even tournament matrices. Our second con-

struction produces a (−J)-type tournament matrix from two minimum rank tourna-

ment matrices of even orders.

Proposition 2.3. Suppose that Am and An−m are (−J)-type tournament ma-

trices of even orders m and n − m with

rankp(Am) =
m

2
and rankp(An−m) =

n − m

2

and of extreme sub-orders m and 0, respectively. Then the tournament matrix

A =

[
Am Jm,n−m

O An−m

]

of even order n satisfies

rankp(A) =
n

2
.

Moreover, A is a (−J)-type tournament matrix of sub-order m.

Proof. The proof is similar to the preceding one. We have AmAT
m = −Jm and

An−mAT
n−m = O. The second equation tells us that the number of 1’s in each row of

An−m is 0 modulo p. Thus, An−mJn−m = O. Also, m ≡ n − m ≡ 0 (mod p), and

thus Jm,n−mJn−m,m = O. By block multiplication

AAT =

[
Am Jm,n−m

O An−m

] [
AT

m O

Jn−m,m AT
n−m

]

=

[
AmAT

m + Jm,n−mJn−m,m Jm,n−mAT
n−m

An−mJn−m,m An−mAT
n−m

]
=

[
−Jm O

O O

]
,

which is of the required form in (2.1). Therefore, rank(A) = n/2, and A is a (−J)-type

tournament matrix of sub-order m.
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2.4. Doubly regular tournament matrices. A doubly regular tournament

matrix D4t−1 is a (0, 1)-matrix of order 4t − 1 that satisfies

D4t−1 + DT
4t−1 + I = J and D4t−1D

T
4t−1 = tI + (t − 1)J

(over the field of rational numbers) for some positive integer t.

Doubly regular tournament matrices arise in the construction of Hadamard ma-

trices and are conjectured to exist for all positive integers t; they are known to exist

whenever 4t − 1 is a prime power and for many other orders (e.g., see [4]). Suppose

that the prime p divides t. Then D4t−1 is a tournament matrix that satisfies

D4t−1D
T
4t−1 = −J

over the field Zp. Note that this matrix equation does not imply that D4t−1 is a (−J)-

type tournament matrix over Zp; after all, D4t−1 has odd order. However, we may

readily transform D4t−1 to an extreme (−J)-type matrix by a bordering technique.

Proposition 2.4. Let D4t−1 be a doubly regular tournament matrix of order

4t − 1, and let p be a prime divisor of t. Then over Zp the matrix

A =




1

D4t−1

...

1

0 · · · 0 0




is a (−J)-type tournament matrix of order 4t and sub-order 0. Also, AT is a (−J)-

type tournament matrix of order 4t and sub-order 4t.

Proof. Clearly, A is a tournament matrix of even order 4t. Block multiplication

shows that AAT = O. The last assertion follows from Proposition 2.1.

3. Even and odd tournament matrices. Let Mp(n) denote the set of tour-

nament matrices of order n with minimum rank over Zp, that is, the tournament

matrices of order n with p-rank equal to ⌊n/2⌋. For even n let M+
p (n) and M−

p (n)

denote the subsets of Mp(n) consisting of the respective (±J)-type matrices.

In this section, we establish relationships among the sets Mp(n − 1), M+
p (n),

M−

p (n), and Mp(n + 1), as indicated in Figure 3.1.

For each (0, 1)-matrix Y of size r by s, we define

Ỹ = (Jr,s − Y )
T

.

Thus, the s by r matrix Ỹ is the transpose of the (0, 1)-complement of Y .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 363-377, April 2011



ELA

370 E. Doering, T.S. Michael, and B.L. Shader

- � -

one-to-many bijection

Mp(n − 1) Mp(n) Mp(n + 1)

M+
p (n) M−

p (n)

Fig. 3.1. Relationships among sets of tournament matrices with minimum rank (n even).

Proposition 3.1. Suppose that n is even and p is a prime. Then there is a

bijection from the set Mp(n + 1) to the set M−

p (n) : simply delete row n + 1 and

column n + 1 from each matrix in Mp(n + 1).

Proof. Let An+1 be in Mp(n + 1). Simultaneously permute rows and columns to

bring all the 1’s in column n + 1 of An+1 to the leading positions. Thus,

An+1 =

[
An Y

Ỹ 0

]
,

where the leading principal tournament submatrix An has even order n, and

Y = [1, . . . , 1, 0, . . . , 0]T

is an n by 1 matrix. Suppose that there are m leading 1’s in Y . Theorem 1.1 tells

us that An+1A
T
n+1 = O. It follows from block multiplication that An satisfies the

second equation in (2.1) and thus is a (−J)-type tournament matrix of order n and

sub-order m. The process is reversible, and we may pass from the matrix in M−

p (n)

to a matrix in Mp(n + 1) by appending a suitable row and column.

Proposition 3.2. Suppose that n is even. Then there is a one-to-many function

from Mp(n − 1) to M+
p (n).

Proof. Let An−1 be in Mp(n − 1) so that

rankp(An−1) =
n

2
− 1.

Let Y be any (0, 1)-vector (i.e., n− 1 by 1 matrix) in the column space of An−1. For

instance, Y could be identical to any column of An−1 or to a vector of 0’s. Define the

tournament matrix

An =

[
An−1 Y

Ỹ 0

]
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of order n. The rank of the leading n− 1 by n submatrix of An is also (n/2)− 1, and

appending the last row of An to this submatrix can increase the rank by at most 1.

Thus,

n

2
≤ rankp(An) ≤ 1 + rankp(An−1) =

n

2
.

Therefore, An is an even order tournament matrix with minimum rank. We know that

An−1A
T
n−1 = O, and block multiplication shows that An is a (+J)-type tournament

matrix of sub-order m, where m is the number of 1’s in Y .

4. Three lemmas. In this section, we establish some preliminary results for our

proof of Theorem 1.2.

4.1. The rank of A and the rank of A+I. The first lemma is of some interest

in its own right.

Lemma 4.1. Let A be a tournament matrix of order n. Then over any field the

geometric multiplicities of 0 and −1 as eigenvalues of A differ by at most 1. That is,

rank(A) − rank(A + I) ∈ {−1, 0, 1}.

Proof. The rank of a sum of matrices does not exceed the sum of their ranks, and

thus (1.1) implies that over any field

rank(A + I) = rank(J − AT ) ≤ rank(J) + rank(−AT ) = 1 + rank(A).

Similarly,

rank(A) = rank(J + (−AT − I)) ≤ rank(J) + rank(−AT − I) = 1 + rank(A + I),

and the result follows.

4.2. The proof of condition (iii) in Theorem 1.1(b). We use Lemma 4.1 to

justify the inclusion of condition (iii) in Theorem 1.1(b). We show that conditions (iii)

and (i) are equivalent.

(iii) ⇒ (i): Suppose that

χA(x) = x(n+1)/2(x + 1)(n−1)/2 and µA(x) = x(x + 1).

The linearity of the factors in µA(x) tells us that the rank of A equals the sum of the

multiplicities of its nonzero eigenvalues. Thus, rankp(A) = (n − 1)/2, and (i) holds.

(i) ⇒ (iii): Suppose that rankp(A) = (n − 1)/2. Then the eigenvalue 0 of A

has geometric multiplicity (n + 1)/2. By Lemma 4.1 the eigenvalue −1 of A has
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geometric multiplicity at least (n − 1)/2. The sum of the geometric multiplicities of

the eigenvalues is at most n. It follows that −1 has geometric multiplicity exactly

(n − 1)/2. Therefore, χA(x) = x(n+1)/2(x + 1)(n−1)/2 and µA(x) = x(x + 1).

4.3. Row and column regularity. Our second lemma is helpful in establishing

the congruence conditions that arise when a tournament matrix satisfies a regularity

condition.

The tournament matrix A′ of order n′ is row α-regular (column α-regular) modulo

p provided the sum of the elements in each row (respectively, column) of A′ is α modulo

p. In matrix terms, row and column α-regularity of A′ modulo p are equivalent,

respectively, to the matrix equations

A′Jn′ = αJn′ and Jn′A′ = αJn′ .

over Zp.

Lemma 4.2. The tournament matrix A′ of order n′ is row α-regular modulo p

if and only if A′ is column (n′ − 1 − α)-regular modulo p. Moreover, if A′ is row

α-regular, then

n′(n′ − 1)

2
≡ n′α ≡ n′(n′ − 1 − α) (mod p).

Proof. The total number of 1’s in row i and column i of A′ is n′−1 for i = 1, . . . , n′,

and the first assertion follows. Also, the total number of 1’s in A′ is n′(n′ − 1)/2,

which must be congruent to n′α and to n′(n′− 1−α) modulo p if A′ is row α-regular

and column (n′ − 1 − α)-regular modulo p.

4.4. Main lemma. Our third lemma contains the key elements of the proof of

Theorem 1.2.

Lemma 4.3. Let A be a tournament matrix of order n with rankp[A(A+ I)] = 1.

Then after a simultaneous permutation of rows and columns A satisfies

AJ =

[
σJm,n

τJn−m,n

]
, A(A + I) =

[
O (σ − τ)Jm,n−m

O O

]
,(4.1)

where σ and τ are distinct elements in Zp, and m ∈ {1, . . . , n − 1}. Moreover,

n(n − 1)

2
≡ mσ + (n − m)τ (mod p).(4.2)
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Proof. Because rankp[A(A + I)] = 1, we may write

A2 + A = A(A + I) = V WT ,

where V = [v1, . . . , vn]T and WT = [w1, . . . , wn] are non-zero matrices. Because A

is a tournament matrix, each diagonal element of both A and A2 equals 0. Hence,

viwi = 0 for i = 1, . . . , n. Thus, we may simultaneously permute the rows and columns

of A so that vi 6= 0 for i = 1, . . . ,m and vm+1 = · · · = vn = 0 for some index m. We

must have w1 = · · · = wm = 0. It follows that

A(A + I) =

[
O Y

O O

]
(4.3)

for some m by n − m matrix Y . We also know that

A(A + I) = A(J − AT ) = AJ − AAT .

Let si denote the sum of the elements in row i of A, and let sij denote the (i, j)-

element of AAT over Zp. Each element of row i of AJ equals si, and hence the

(i, j)-entry of A(A + I) is si − sij . Because AAT is symmetric, equation (4.3) now

implies that s1 = · · · = sm = σ, say, and sm+1 = · · · = sn = τ , say. Hence, AJ

has the form specified in (4.1). Moreover, Y = (σ − τ)Jm,n−m. Note that σ 6= τ ,

and 1 ≤ m ≤ n − 1, for otherwise A(A + I) = O, contrary to the hypothesis that

rankp[A(A + I)] = 1.

Now (4.1) implies that trace(AJ) = mσ+(n−m)τ . On the other hand, trace(AJ)

is the sum of the entries in the tournament matrix A, i.e, trace(AJ) = n(n − 1)/2.

Therefore, congruence (4.2) holds.

For future reference we note that (4.1) implies that

AAT = A(J − I − A) = AJ − A(A + I) =

[
σJm τJm,n−m

τJn−m,m τJn−m

]
.(4.4)

Part of our strategy to prove Theorem 1.2(b) involves showing that σ = ±1 and τ = 0

so that AAT has the form stated in (ii).

5. The proof of Theorem 1.2.

5.1. Proof of the rank inequality in (a). Inequality (1.5) follows immediately

from the de Caen inequality (1.2) when n is even, but we include a short proof for

the sake of completeness. The nullspaces of A and A + I intersect trivially, and thus

(n − rankp(A)) + (n − rankp(A + I)) ≤ n.
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By Lemma 4.1 we have rankp(A + I) ≤ rankp(A) + 1, and it follows that

n ≤ rankp(A) + rankp(A + I) ≤ 2 · rankp(A) + 1,

which implies that rankp(A) ≥ (n−1)/2. Because n is even, we must have rankp(A) ≥

n/2, and inequality (1.5) is established.

5.2. Proof of the characterizations of equality in (b) and the congru-

ence in (c). We shall show that (ii) ⇒ (i) ⇒ (iii) ⇒ (ii). The congruence condition

in Theorem 1.2(c) is established within the implication (iii) ⇒ (ii).

5.2.1. (ii) ⇒ (i). Suppose that n is even and that AAT is of one of the forms

in (ii). Then rankp(AAT ) = 0 or 1. Sylvester’s law for the rank of a matrix product [9,

p. 162] tells us that

1 ≥ rankp(AAT ) ≥ rankp(A) + rankp(A
T ) − n = 2 · rankp(A) − n.

Hence, rankp(A) ≤ (n + 1)/2. Because n is even, (1.5) implies that rankp(A) = n/2.

5.2.2. (i) ⇒ (iii). Suppose that rankp(A) = n/2. By Lemma 4.1 two eigenvalues

of A are 0 and −1 with respective geometric multiplicities n/2 and at least (n/2)− 1.

Thus, the characteristic polynomial of A is of the form

χA(x) = xn/2(x + 1)(n/2)−1(x − λ),

where λ is the eigenvalue not yet accounted for. Because A is a tournament matrix,

we must have trace(A) = trace(A2) = 0. The trace of a matrix is the sum of its

eigenvalues, and thus

0 = trace(A) =
(n

2
− 1

)
(−1) + λ,

0 = trace(A2) =
(n

2
− 1

)
(−1)2 + λ2.

Addition of these two equations yields 0 = λ + λ2. Thus, λ = 0 or λ = −1. An

inspection of the algebraic and geometric multiplicities of 0 and −1 as eigenvalues of

A reveals that the only feasible characteristic and minimal polynomials of A are those

listed in (iii).

5.2.3. (iii) ⇒ (ii). This is the most difficult implication. Suppose that (iii)

holds. Then clearly n is even. There are two cases.

Case 1: Suppose that χA(x) = x(n/2)+1(x + 1)(n/2)−1 and µA(x) = x2(x + 1).

The equality 0 = trace(A) = ((n/2) − 1) (−1) implies that

n

2
≡ 1 (mod p).(5.1)
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We must have rankp[A(A + I)] = 1 for otherwise the geometric multiplicities of the

eigenvalues 0 and −1 differ by more than 1, contrary to Lemma 4.1. By Lemma 4.3

we may write

A =

[
Bm X

X̃ Cn−m

]
,(5.2)

where Bm and Cn−m are tournament matrices of orders m and n − m, respectively,

and the matrices AJ and A(A + I) have the forms in (4.1) with σ 6= τ .

Use the block matrix expression for A(A+I) given in Lemma 4.3 and the minimal

polynomial µA(x) = x2(x + 1) to see that

O = A [A(A + I)] =

[
Bm X

X̃ Cn−m

] [
O (σ − τ)Jm,n−m

O O

]
.

It follows that BmJm,n−m = O (that is, B is row 0-regular) and X̃Jm,n−m = O. By

Lemma 4.2

m(m − 1)

2
≡ 0 (mod p).(5.3)

Similarly,

O = [A(A + I)]A =

[
O (σ − τ)Jm,n−m

O O

] [
Bm X

X̃ Cn−m

]
.

Hence, Jm,n−mCn−m = O (that is, C is column 0-regular and row (n−m−1)-regular),

and by Lemma 4.2

(n − m)(n − m − 1)

2
≡ 0 (mod p),(5.4)

Now (5.1), (5.3), and (5.4) imply that m ≡ 1 (mod p).

Congruence (4.2) gives

1 ≡
n(n − 1)

2
≡ mσ + (n − m)τ ≡ σ + τ (mod p).(5.5)

Also, from Lemma 4.3 and our earlier work

[
σJm,n

τJn−m,n

]
= AJ =

[
Bm X

X̃ Cn−m

] [
Jm,n

Jn−m,n

]
=

[
XJn−m,n

CJn−m.

]
,

which tells us that the tournament matrix C of order n − m is row τ -regular We

already saw that C is column 0-regular, and so Lemma 4.2 gives

τ ≡ n − m − 1 ≡ 2 − 1 − 1 ≡ 0 (mod p).
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Now (5.5) shows that σ ≡ 1 (mod p). Therefore, AAT has the form stated in (ii) in

this case by (4.4). Note that our proof is valid when p = 2 by our convention for

(±J)-type tournament matrices.

Case 2: Suppose that χA(x) = xn/2(x+1)n/2. Then the equation 0 = trace(A) =

(n/2)(−1) implies that

n

2
≡ 0 (mod p).(5.6)

There are two possible minimal polynomials of A, which we treat in turn.

Subcase 2.1: Suppose that µA(x) = x(x + 1). Then O = A(A + I) = A(J −AT ),

and so AAT = AJ . Because AAT is symmetric and the columns of AJ are identical,

we must have AJ = AAT = σJ for some scalar σ. Moreover,

AT J = (J − I − A)J = nJ − J − σJ = −(σ + 1)J.

Hence,

O = σnJ = σJ2 = (σJ)J = (AAT )J = A(AT J) = −(σ + 1)AJ = −σ(σ + 1)J.

Thus, σ = 0 or σ = −1. Therefore, AAT = O or AAT = −J . These are the extreme

(−J)-type tournament matrices of sub-orders m = 0 and m = n in (ii). Note that

m ≡ 0 (mod p).

Subcase 2.2: Suppose that µA(x) = x(x + 1)2. The argument will be similar

to Case 1. Again we have rankp [A(A + I)] = 1. Lemma 4.3 implies that AJ and

A(A + I) have the forms in (4.1), and

0 ≡
n

2
(n − 1) ≡ mσ + (n − m)τ ≡ m(σ − τ) (mod p).

Thus, m ≡ 0 (mod p).

We again write A in the block form (5.2). Because µA(x) = x(x + 1)2, we have

−A(A + I) = [A(A + I)]A, and by the block matrix expression for A(A + I) given in

Lemma 4.3

−

[
O (σ − τ)Jm,n−m

O O

]
=

[
O (σ − τ)Jm,n−m

O O

] [
Bm X

X̃ Cn−m

]
.

Therefore, Jm,n−mC = −Jm,n−m and Jm,n−mX̃ = O. The latter equation implies

that XJn−m,m = O. Similarly, the equation −A(A + I) = A [A(A + I)] gives

BmJm,n−m = −Jm,n−m and X̃Jm,n−m = O.
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From Lemma 4.3 it now follows that

[
σJm,n

τJn−m,n

]
= AJ =

[
Bm X

X̃ Cn−m

] [
Jm,n

Jn−m,n

]
=

[
−Jm,n

CJn−m

]
.

Thus, σ ≡ −1 (mod p). Also, the tournament matrix C of order n − m is row τ -

regular and column (−1)-regular modulo p. By Lemma 4.2 we have τ ≡ 0 (mod p).

Therefore, AAT has the form stated in (ii).

Note that our proof is valid for p = 2 by our convention for (±J)-type tournament

matrices.

5.3. Proof of the congruence in (d). Suppose that p ≡ 3 (mod 4). Append

a suitable row and column to A, as in the proof of Proposition 3.1, to obtain a tour-

nament matrix An+1 of odd order n + 1 with rankp(An+1) = ((n + 1) − 1) /2. Apply

Theorem 1.1(d) to the matrix An+1 to conclude that ((n + 1) − 1) /2 ≡ 1 (mod 2p).
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