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A DERIVATIVE ARRAY APPROACH FOR LINEAR SECOND
ORDER DIFFERENTIAL-ALGEBRAIC SYSTEMS*

LENA SCHOLZ'

Abstract. We discuss the solution of linear second order differential-algebraic equations (DAEs)
with variable coefficients. Since index reduction and order reduction for higher order, higher index
differential-algebraic systems do not commute, appropriate index reduction methods for higher order
DAEs are required. We present an index reduction method based on derivative arrays that allows to
determine an equivalent second order system of lower index in a numerical computable way. For such
an equivalent second order system, an appropriate order reduction method allows the formulation of
a suitable first order DAE system of low index that has the same solution components as the original
second order system.
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1. Introduction. We study linear second order differential-algebraic equations
of the form

(1.1) M(t)i + C(t)i + K(t)z = f(t), tel,

where M,C, K € C(I,C™*") and f € C(I,C™) are sufficiently smooth functions on
a compact interval I C R with initial conditions

(12) x(to) =9 € (Cn, i(to) =1ap € C™ for to € I.

Here, C*(I,C™*") denotes the set of k-times continuously differentiable functions
from the interval I to the vector space C™*" of complex m X n matrices. When
n = 1, we use C™ instead of C™*!. Systems of this form naturally arise in many
technical applications as, e.g., in the simulation of electrical circuits [8, 9] or mechan-
ical multibody systems [6, 13].

For the numerical (as well as analytical) solution, second order systems of the
form (1.1) are usually transformed into first order systems by introducing new vari-
ables for the derivatives, as is the common practice in the classical theory of ordinary
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differential equations. For DAEs, however, the classical order reduction approach has
to be performed with great care, since it may lead to a number of mathematical diffi-
culties as has been discussed in several publications; see [1, 5, 12, 14, 15]. Moreover,
the numerical solution of DAEs usually requires the reformulation of higher index
DAEs as an equivalent system of lower index to be able to use standard integration
methods suited for DAEs; see [2, 10, 11]. Therefore, the numerical solution of linear
second order differential-algebraic systems of the form (1.1) typically requires the re-
duction to a first order system on the one hand and an index reduction for higher
index systems on the other hand. But, for high order high index differential-algebraic
systems, the order reduction and index reduction do not commute as can be seen in
the following example.

ExaMPLE 1.1. We consider the linear second order system

t 0 0 Z1 1 0 0 T 1 0 0 X1 fi
(1.3) 0 1 1 2 [+ 0 0 O T2 |+ O 1 0 X2 = f2 )
0 ¢t t X3 0 0 O T3 0 1+t 1 T3 f3

for t € [tg,t1] with tg > 0. System (1.3) has the unique solution components

{xz]_{ f2—f3+tf2+2f2 .
T3 fa—(+t)fot fs—tfa—2f2 |’

and x is the unique solution of the second order ordinary differential equation t&; +
&1 + 21 = fi for some given initial values x1(tg) = x1,0 and @1(tg) = &1,0. Hence,
the minimum requirement for the existence of a continuous solution is that f; is
continuous, and f> and f3 are twice continuously differentiable (corresponding to a
strangeness index of u = 2). The classical order reduction for the second order system
(1.3) yields a first order system of the form

t 0 0/l0 0 0 01 1 0 0]1 o0 o0 v fi
01 1|0 0 0 Vo 0o 0 o0f0o 1 o0 va f
0t ¢t|0 0 0 03 0 0 010 1+t 1 vs || fs
00 0[1 0 0 :b1+—10()000 x| | O
0 0 0|0 1 0 &2 0 -1 0olo 0 o0 z2 0
0 0 0|0 0 1 @3 0 0 -1l0 0 o0 z3 0

In comparison to the solution of (1.3), this system has the additional solution com-
ponents

)

{ va } _ fo= 159 +1£ + 3f
v3 fs—(t+1)f2—f2+f:§3)—tf2(3)—3fé

i.e., the third derivative of the inhomogeneity is required (the system is of strangeness
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index fi = 3; see [11]). On the other hand, system (1.3) is equivalent to the system

t 0 O T 1 0 O T 1 0 0 T
0 0 O o |+ 0 0 O o [+ ] 0 1 O To
0 0 O I3 0 0 O T3 L0 0 1 T3
[ N
= fa=fs+ (tf2)" ;
L fa—tfa— fo+ f3—(tf2)"

a decoupled system of two algebraic equations and one differential equation. Now,
introducing only v; = %1 as new variable, we get the first order system

t 1 0 0 ’[)1 0 1 0 0 U1 f1

00 00 @, 0 010 x| fa— f3+ (tf2)"

0O 0 0 O T2 0 0 0 1 T2 f3 - tfz - f2 —+ ff; — (th)” ’
0 1 0 O T3 -1 0 0 O T3 0

which is also a decoupled system of algebraic and differential equations and no further
smoothness requirements are imposed.

Further examples are presented in [12]. They show that the classical approach
of introducing the derivatives of the unknown vector-valued function z(t) as new
variables may lead to higher smoothness requirements for the inhomogeneity f(t)
to ensure the existence of a solution that can even cause the loss of solvability of
the system. By introducing only some new variables, however, this difficulty can be
circumvented. An index reduction method and condensed forms for linear high order
differential-algebraic systems are introduced in [12], which allow an identification of
those higher order derivatives of variables that can be replaced to obtain a first order
system without changing the smoothness requirements. But, the computation of
this condensed form is not feasible for numerical solution methods as it involves the
derivatives of computed transformation matrices. However, since the standard way
to obtain a strangeness-free first order formulation—first introducing new variables for
the derivatives to transform the system into a first order system and then applying the
usual index reduction procedures to the first order system—can fail due to a possible
increase in the index, at first an index reduction of the higher order system should
be used, which is followed by an appropriate order reduction to obtain a suitable
strangeness-free first order formulation. Recently, it has been shown in [14, 17] that
also the direct discretization of the second order system may yield better numerical
results and is able to prevent certain numerical difficulties as the failure of numerical
methods; see also [1, 2, 16].

In this paper, we will present a new index reduction method for linear second
order differential-algebraic systems of the form (1.1), based on the derivatives of the
coefficient matrices M (t), C(t) and K (¢), that allows the computation of an equivalent
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system of low index and in a second step also the formulation of a corresponding
trimmed first order formulation. At first, in Section 2, we present the basic results of
the analysis of linear second order differential-algebraic equations as derived in [12],
including a new condensed form that allows one to read off the characteristic invariants
of the differential-algebraic system. In Section 3, we introduce the derivative array
approach which enables us to transform the linear second order system (1.1) into
an equivalent strangeness-free second order system with the same solution set in a
numerically computable way. Further, in Section 4, we present a trimmed first order
formulation for linear strangeness-free second order systems. Throughout this paper,
for ease of presentation, we restrict to linear second order systems since they are most
frequently used in practical applications. However, all presented ideas can also be
extended to arbitrary linear k-th order systems and to nonlinear systems; see [18].

2. Condensed forms for linear second order DAEs. In the following, we
present the main results of the analysis of linear second order differential-algebraic
systems of the form (1.1) as derived in [12]. The condensed forms given in [12] are used
to derive the relationships between the global invariants of the triple of matrix-valued
functions (M, C, K) and the local invariants of the derivative array as presented in
Section 3. To derive condensed forms for triples (M, C, K) of matrix-valued functions
we need an appropriate equivalence relation.

DEFINITION 2.1. Two triples (M7,C4, K1) and (M, Cs, K3) of matrix-valued
functions M;, C;, K; € C(L,C™*™), i = 1,2 are called globally equivalent if there exist
pointwise nonsingular matrix-valued functions P € C(I,C™*™) and Q € C?(I, C"*")
such that

(2.1) M, = PM,Q, Cy=2PM,Q+ PC.1Q, K,=PMQ+ PC.Q+ PK,Q.
For equivalent matrix triples we write (My,Cy, K1) ~ (Ma, Cs, Ks).

Considering the action of the equivalence relation (2 1) locally at a fixed point
t € I, we take into account that for given matrices P Q, Ry and Ry of appropriate
size, using Hermite interpolation, we can always find matrix-valued functions P and
Q, such that at a given value t = £ we have P(f) = P, Q) = Q, Q(f) = Ry and
Q(f) = R,. Therefore, we can define local equivalence of matrix triples in the following
way.

DEFINITION 2.2. Two matrix triples (M7, Cy, K1) and (M, Co, Ko) with M;,
Ci, K; € Cm*m ¢ =1,2, are called locally equivalent if there exist nonsingular matrices
P e C™™ and Q € C™"*", and matrices Ry, Ry € C™"*" such that

(2.2) My = PMQ, C»=2PMR,+ PC,Q, K,=PMRs+ PCiR, + PK,Q.

Again, we write (M1, Cq, K1) ~ (Ms, Cs, K») if the context is clear.



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 22, pp. 310-347, March 2011

314 L. Scholz

It has be shown in [15] that the relations (2.1) and (2.2) are equivalence relations
on the set of triples of matrix-valued functions, and on the set of triples of matrices,
respectively. For a linear second order differential-algebraic system of the form (1.1),
a condensed form under local equivalence transformation (2.2) of the corresponding
matrix triple (M (), C(t), K(f)) at a fixed point # € I has been derived in [12, 15].
This local condensed form allows to characterize second order differential-algebraic
systems locally by their purely first and second order differential parts of size d(*) and
d?), by their algebraic part of size a, by undetermined and redundant parts of size u
and v, and by the strangeness parts of size s(MCK)  (MC) = o(MEK) and s(CK) due to
the different possible couplings between the matrices M, C, and K. The quantities
sMCK)  g(MC) - o(ME) - (CK) q(2) q(1) g » and u are called the local characteristic
values of the linear second order DAE (1.1). These local characteristic values are
invariant under the equivalence relation (2.2) and can be expressed in terms of ranks
of matrices and dimensions of column spaces.

LEMMA 2.3. [12, 15] Let M,C,K € C™*™ and let

Vi be a basis of kernel(M™),

Vo be a basis of kernel(M),

Vs be a basis of kernel(M*™) N kernel(CH),
Vi be a basis of kernel(M) N kernel(V{ C).

Then, the quantities

r = rank(M) (rank of M)

a = rank(V§? KVy) (algebraic part)

sMCK) — dim(range(M ™) Nrange(CH7 V1) Nrange(K™V3))  (strangeness of M,C, K )
s(CK) = rank(VHA KVa) — a (strangeness of C, K )
dM = rank(VH# V) — s(C5) (1st-order diff. part)
sMO) = rank(Vif ) — s(MCOK) _ 5(CK) _ q(1) (strangeness of M,C)
sME) — rank(Vi7K) —a — s(MCK) _ g(CK) (strangeness of M, K )
d® = — sMOK) _ ((MC) _ ((MEK) (2nd-order diff. part)
v=m —r—2sCK) _ g _ 9 MCK) _ (M) _ o (ME)  (yanishing equations)
u=n—r—sK g _q (undetermined part)

are invariant under the local equivalence relation (2.2).

For triples (M (t),C(t), K (t)) of matrix-valued functions, we can compute the
local condensed form at any fixed value ¢ € I and determine the local characteristic
quantities so that we obtain functions

T, a, d(2),d(l),S(MCK),S(CK),S(MC),S(MK),u,U : T — Np.
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Assuming that these functions are constant over the interval I, i.e.,

r(t)y=r, a(t) =a, d(l)(t) =dm, S(MCK)(t) = s(MCK)
(2.3)
s(CE)(t) = s(CK)  s(MO) (1) = 5(MC) - ((ME) (1) = (MK) — for all t €1,

(vielding that also d®(t), u(t) and v(t) are constant in I due to Lemma 2.3) a global
condensed form for triples of matrix-valued functions under global equivalence trans-
formations (2.1) has been derived in [12, 15] (see Lemma A.1 in Appendix). Using
this global condensed form a stepwise index reduction procedure incorporating differ-
entiations of equations and eliminations of certain coupling parts in the differential-
algebraic system finally yields a so-called strangeness-free second order system of
DAEs where the strangeness parts have vanished. We call the required number of
steps p in the index reduction procedure the strangeness index or s-indexr of the
second order system of DAEs (1.1). For a more detailed description of the index
reduction procedure, see also [12, 19].

THEOREM 2.4. Consider the linear second order system (1.1), suppose that the
regularity conditions (2.3) hold, and let u be the strangeness index of (1.1). If f €
CH(I,C™), then system (1.1) is equivalent (in the sense that there is a one-to-one
correspondence between the solution sets) to a strangeness-free system of second order
differential-algebraic equations of the form

i1+ Cri(t)iy + Cra(t)is + Kui ()31 + Ki2(H) @2 + Kia(t)7a = fi(t), ( d,(f) )
(2.4) Ty + Rm(t)fl + R'm(t)fz + Koy ()74 = f~2(t)a ( dEl,l) )
5~U3:f~3(t)a (au)
0= ~4(t), (vu)

where the inhomogeneity f = [le, ceey ff]H is determined by f©O, ..., f" . In par-
ticular, df), dg}) and a,, are respectively the number of second order differential, the
number of first order differential, and the number of algebraic components of the un-
mH

known & = [#H, ... ZH]H  while uy, 15 the dimension of the undetermined vector T4,

and v, is the number of conditions in the last equation.
Proof. See [12] or [19]. O

Using the strangeness-free form (2.4) we can analyze existence and uniqueness
of solutions and consistency of initial conditions for linear second order differential-
algebraic systems (1.1), see [12, 15]. Further, the strangeness-free form (2.4) allows
the identification of those second order derivatives of variables that can be replaced
to obtain a first order system that is strangeness-free without increasing the index
(see also Section 4).
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REMARK 2.5. In [18, 19], we use a slightly different stepwise index reduction
procedure compared to [12, 15]. In [12, 15] one or two differentiations of equations
are required for one index reduction step, depending on the occurrence of strangeness
blocks, since all strangeness parts are completely eliminated in every reduction step.
In this way, the index definition does not correspond to the differentiability require-
ments for the right hand side. In our approach described in [18, 19], the right-hand
side is only differentiated once in each elimination step before the system is again
transformed to global condensed form such that the strangeness index corresponds
to the differentiability requirements for the right hand side, which is the case for all
general index concepts.

The sequence of characteristic values, obtained during the stepwise index re-
duction procedure, can also be characterized recursively in terms of ranks of block
matrices of the matrix triple.

LEMMA 2.6. Let the functions M,C, K € C(I,C™*"™) be sufficiently smooth and
let the strangeness index p be well-defined. Further, let the process leading to Theo-

rem 2.4 yield a sequence (M <>, C<"> K<*>), i Ny, with (M<°> C<0> K<0>) =

(M,C,K) and characteristic values (ri,d§1)7ai,s§NICK),ngc),SEMK),sz(-CK),ui,vi)
according to Lemma 2.5. The triple (M <>, C<"> K<) of matriz-valued functions

is globally equivalent to the triple

[ I ey 0 0 0 00 0 0]
0 Iame 0O 0 0 00 0 0
0 0 L., 0 0 0000
0 0 0O L. 0 00 00
0 0 0 0 I 0000
0 0 O 0 0 0000
0 0 O 0 0 0000
0 0 O 0 0 000 0]
0 0 O 0 0 0000
0 0 O 0 0 0000
0 0 O 0 0 0000
0 0 O 0 0 0000
0 0 O 0 0 0000
0 0 O 0 0 0000
Lo 0 0O 0 0 00 0 0]



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 22, pp. 310-347, March 2011

ELA

A Derivative Array Approach for Linear Second Order Differential-Algebraic Systems

r 0 0 Cl<31> C’<i> C<l> 0
0 0 02<31> C<z> 02<5z> 0
0 0 C<z> C<z> C<z> 0
0 0 C<z> C<z> C<z> 0
0 O C<Z> C<Z> r<5Z> 0
0 0 0 0 0 I cr)
0 0 0 0 0 0
IS<MCK) 0 0 0 0 0
0 I (o) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
L 0 0 0 0 0 0
0 K52 0 0 K5~ 0
0 K552 0 0 K5i” 0
0 K> 0 0 K3 0
0 K3~ 0 0 Kg» 0
0 K352 0 0 K3 0
0 K&> 0 0 Kg&» 0
0 K52 0 0 K> 0
0 K&~ 0 0 K> 0
0 Kg”> 0 0 K5» 0
0 0 0 0 0 0
0 0 0 0 0 IS(_CK)
0 0 I, , O 0 0
0 0 I, 0 0
IS(IVICK) 0 0 0 0
L 0 0 0
where SEMK) is separated into ngK)
columns have size u;. We define
C<l> . C<l> K8<ji>a j — 57 9’
C<z> — <z> K<z> ] — 5 9
Y
K<-Z> = K<,l>

K<z> <z>

o O O o O

I,

oS

O O O o o O

K>
K5~
K5~
K>
K5~
Kg>
K>
K5>
K. 9<7 1>

o O O o O

_ K8<jz> _|_K8<Z>K9<Jz> + K<1>K<1>

CR>

C>

C<z>

C<z>

C<l>
0

O O O O oo O O O

O OO OO oo oo

&

O oo o oOc:

9

K9<jz> +K9 1>K9<J1> + K9<Z>K<Z>,

Cl [ C<1>H C<1>H C<z>H ]

<i>H <i>H <i>H
Coi= | C5PH CO5PH O

H

]H

)

9

C<l> 7

Cz<gz>

C<z>

C<z>

O<z>
0

OO OO OO0 O o o

=
o
Y,

K5>
K>
K>
K5~
Kg>
K>
K5i>
K. 9<9 1>

o O O o o

(MC’K)
S<Mc)

Si—1

d(2)
(CK)

d(l)
SgMCK)
SEMC)
a;

(CK)

Si

Si—1
Sq

MCK
e

(%3

j:2757779’
J=2,5,7,9,

317

= 8; + 8;—1 (with s_1 = 0) and the last block
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as well as

ko = dél) + S(()CK), kiy1 = rank 6’2,
ey = dél) + SE)MC) + séCK) + séMCK), e;+1 = rank ([ C, Cy D

Then let U and V' be nonsingular matriz-valued functions of size

Si—1, S EMCK) + EMC) +5s;-1) and (d§2) + uy, d§2) + w;), respectively, such that

( (MCK)+ (MC)+

H ~ 2 _ Iei+1 0
Ut G CQ]V—[ : 0].

Further, let U and V' be partitioned into

UZ[Ul U2 Ug}, V:[Vl V2 ‘/23]

such that
UlH Iei+1—k71+l 0 0
Uil [ ¢ G ][V Vo V3= 0 I, 0|,
vl 0 0 0

and with a splitting of V3 into V3 = [ Va1 V3o ] with V31 of size (d( ) + u“d(2)
eir1 + kir1) and Vay of size (dl(?) + wg, u; — kiv1) we can define

|: Kl KQ Kg K4 K5 K6 :| =

K5~ | K57 K5” [ K5 1T vive) 0 o 0
UH 0 K2<5z> K2<71> K2<21> K2<91> 0 7 o O O
3 KS> | K> s> | gsi> d;
0 I 35 37 32 39 0 0 I o 0 ’

K™ [Ke® Koo | Koo {
KS™ | K§>  KS™ | Kg” 0 0 0 [Va Vaa]

where the identity matriz on the left-hand side is of size SECK) + sEMCK). Further,
we define

bo = ap, bi+1 = rank ([Kg]),

(CK) _

Do = ap + S; piy1 = rank ([K5 Kgl),

to=ag + sgCK) — MK, tiy1 = rank ([Ky K5 Kg)),

do = ap + s, diy1 = rank ([K3 K4 K5 Kg)),

ho = ag + s + s{ME), hit1 = rank ([Ky K3 Ky K5 Kg)),

co = ag + s{M) s(CK) + M e = rank ( [K1 K» K3 K4 K5 Kg)),

Wo = Yo, Wit+1 = Vi1 —

qo = €o, Gi+1 = €i+1 + G — S(CK) SEMCK)~



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 22, pp. 310-347, March 2011

A Derivative Array Approach for Linear Second Order Differential-Algebraic Systems 319

Then we have

(MCK) _ _(MC)

Tit1 =T — S; S; — Si—1,
Ciy1 = bip1 + SEﬁCK) + Sgif) + SEﬁK) — Si,
ei+1 = Kit1 + Sgﬁc) + Sz('ﬁCK)’
Qi1 = a; + SECK) + SEMCK) + 8i—1 + bip1
=co+...+Ciy1— sgff) - SZ(»JA:[lK) - sgflCK),
nglCK) = Cit1 — Nit1,
nglc) =€i+1 — kiy1 — Ciy1 + hiya,
Sit1 = hip1 —diqa,
SEﬁK) = Si+1 1 Si,
ngf() =dit1 — bit1,
A =1 — s = s — s = P — e+ kigr = si,

dl(_lgl = dgl) + sl(-MC) + ki1 — siff()

MCK MC CK
:qO+...+ql‘+1_CO—..._CZ‘_S,E_,’_l )—sl(-_~_1 )—31(-+1),

28§MCK) n SECK)

MC
Wil = + Sg ) + Si—1 — €i+1 — Cit1,

ui+1—U0—b1—...—b1‘+1,

Vig1 =V +wy + ...+ Wiq1

= QSZ(]V[CK) + SECK) + SEMC) + Si—1 — €i+1 — Ci+1 + V;.

Proof. We omit the proof for ease of presentation. The proof is given in
[18, 19]. O

3. Derivative array approach. The algebraic approach described in the pre-
vious section allows for the theoretical analysis of linear second order DAEs (1.1), but
it cannot be used for the development of numerical methods as neither the inductive
process of the reduction to the strangeness-free formulation (2.4) nor the global con-
densed form is obtained in a way that is feasible for numerical methods. Therefore, we
look for other ways to compute the characteristic invariants of a given DAE as well as
a canonical form similar to (2.4) in a numerically stable procedure. The basic idea due
to Campbell [4] is to differentiate the differential-algebraic equation (1.1) a number of
times and put the original DAE and its derivatives into a large system. Then purely
local invariants can be constructed via local equivalence transformations, which allow
to determine the global invariants including the strangeness index, wherever they are
defined. Furthermore, it is also possible to derive a strangeness-free formulation using
only local informations.
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In the following, we consider matrix-valued functions M, C, K € C(I,C™™) that
are sufficiently smooth and we assume that the strangeness index p is well-defined,
i.e., the ranks are constant in the considered interval and none of the invariant values
changes its value during the process. This can always be achieved by going to smaller
intervals, since there always exist open intervals I; C I, j € N with (J ieN I =1,
I;NI; = 0 for i # j such that the constant rank assumption holds for all ¢t € Ij,
7 € N, and the following construction can be applied separately for each interval
I;; for example, see [11]. Differentiating the differential-algebraic equation (1.1) and
putting the original DAE and its derivatives up to a sufficiently high order into a
large system, we obtain the derivative array associated with the linear second order
DAE (1.1) of the form

(31) Ml(t)él + ﬁl(t)zl +M(t)zl = gl(t)7 l € Ny,
where M;, L;, N}, z and g; are defined by

o M=) ol=i—1) K072 5=0,...,1
[Ml]’b,j (]> + <]+1> + J+2 y 6] s Uy
(

[ CO 4iKGYD fori=0,...,1,j=0,
= otherwise,

0
K fori:()...ljzo
2 = , H ’
(3:2) [N'l]m { 0 otherwise,

(2], == 29D i=0,...,1,
[gl}z :f(z)v ZZOaal
Here, we use the convention that (;) =0fort<0,j<0o0rj>:.
For every I € Ny and every ¢t € I, we can now determine the local characteristic
values of the triple (M,(¢), £;(¢),N;(t)) by transforming it into the local condensed
form given in [19]. These local quantities at a fixed point ¢ € I are invariant under

global equivalence transformations of the original triple (M (t), C(t), K(t)) of matrix-
valued functions. To prove this, we use the following Lemmas.

LEMMA 3.1. [11, Lemma 3.28] Let D = ABC be the product of three sufficiently
smooth matriz valued functions of appropriate dimensions. Then

DU S <Z> <Z . J)A<j>3(k>c<uk>.
j
0

j=0 k=

LEMMA 3.2. For all integers i,j,k,l withi>0,41>35>0,1—75 >k >0, we
have

WHE)=00)0)
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(A E)-000) (f%’“>+2<j+1)> ()
)

)
()
)
)

Proof. The proof follows by straightforward calculations. O

Now, we can show that the local quantities of the triple (M, (t), £;(£), N;(f)) are
invariant under global equivalence transformations of the original triple (M (¢), C(t),
K(t)). -

THEOREM 3.3. Consider two triples (M,C,K) and (M,C,K) of sufficiently
smooth matriz-valued functions that are globally equivalent via the transformation

M =PMQ, C=PCQ+2PMQ, K=PKQ+ PCQ+PMQ

according to Definition 2.1, with sufficiently smooth matriz-valued functions P and
Q. Forl e Ny, let (M, L, N}) and (My, Ly, N}) be the corresponding inflated triples
constructed as in (3.2) and introduce the block matriz functions

: i+2 ) (i+1 L P
[Hl]ij:(Z)P(i_j) [\I,l]ij:{ 5 QUFY  fori=0,...,1,j=0,
} ] ? 3

0 otherwise,

0 otherwise.

+2 (i4+2) i =0,...,1,7=0,
©1i; = (l )Q(z P, (S = { Q fori | j

Then

} o Ou(t) 2¥,(t) (1)
(3.3) [Mu(t), Lu(8), Ni()] = IL@)[M(2), Lo(8), Mi@)] | 0 ©u(t)  Tu(t)
0 0 e

for every t € I, and the corresponding matriz triples are locally equivalent.

Proof. First, we note that all matrix-valued functions My, £;, MV}, My, E~l7j\~fl, 11y,
U, ©; and ¥; are block lower triangular with the same block structure. Furthermore,
N, -/\7[,5[7 /jl, U; and ¥; have nonzero blocks only in the first block column. Using
Lemma 3.1, we obtain

zi: sz:l <> ( )P(kl (”Q)Q(i—kl—/’m)7

k1=0 k2=0
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i i—ky . .
Z Z <Z> ( — 1> [P(kl)c(k2)Q(7;7k717k2) + QP(kl)M(k2)Q(i+lfklfk2)} |
k1=0k2=0 ki
7 i—kq . .
K( )= Z Z ( 1) ( ) {P(kl)K(kQ)Q(i—kl—k?) + P(k1)c(k2)Q(i+1_kl_k2)
k1=0k2=0

+p(k1)M(k2)Q(i+2*k1*k2)

Inserting the definitions, shifting and inverting the summations and applying Lemma
3.2 lead to

1 15
MLMOs; =Y > [ty [Miliy 15 [O1]1s.5

li=jl2=j

= i: Z ' (i=l1) ll) M—i2) +< h )C(lllzl) +< h )K(11122)
l1=jla= ]() |:(l2 l2+1 l2+2
i—j k147 .
Z lz < >P(2 k1—3) (k1+-7> M Frti= 12)+ (k1+-7> Cokiti=l2=1)
Popr ki+3j l2 la+1
+ kv +3 K (k1ti—l2=2) la+2 Q(lz—j)
j+2

loa +2
_ (Z) i ifikl i- ) (i—j—’ﬁ) Pl pp(k2) i=5—k1 k)
j ka1 ko
) < . ZJZ Zl k1 (z —§ - 1) (z —j—1- k1> ple1) [C(kg)Q(i—j—l—kl—k’z)
It = 55 kr k2

+2M(’C2)Q(i*j*k1*k2)]

i N\ T E M i\ [i—j—2—k
-Jj- = J = 2= K1\ [ pke) o (ha) o (i—g—2—F1—k2)
> S P K
i < +2) k1=0 ko=0 < kl ) ( k’Q ) |: Q

p(kl)c(kQ)Q(Z j—1—ki—k2) +P(k1)M(k2)Q(l j—ki— kz)]
L i o i o -
= <> MO 4 <j+ 1) cli=I= 4 <j+2> KU77% = My 5.

In the same way, we get

l2+2) Haa-9)

i U
L Li1O1]i0 + [2ILMTy]50 = Z (IL)s,1, [£1]1,,0[O1]0,0 + 2 Z Z ], [Malig 10 [P1]in,0
11=0 11=015=0

11=0 11=015=0

— Z <l1> pli=t) [C(ll) + L K0 1)} Q+2i Z () pli=i) [(Z) M—t2)
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Iy (l1—l2—1) l (l1—12—2)
C 1 2 K 1 2
+ (lz + 1) + lo +2

i i—ky . .
= Z Z <kz> (Z ; kl) [p(kl)c(lm)Q(i—kl—kz) + 2p(k1)M(k2)Q(i+l—k1—k2)}
1 2

k1=0ko=0

L S ifikl i—1\ (i—1-k Pk k) gli=1—k1—k2)
1 kl k2

k1=0 ko=0

l2 ; 2Q<12+1>

£ P k) gli=ki—ka) | P(kl)M<k2>Q<i+1—k1—k2>]

— Cf(i) + i]}'(ifl) — [El}“)’
and

ILN:O1)i0 + ILLY 50 + ILMZ]50 =

i i i Iy
= Z [ILi]s,1, IM)iy,0[©1)0,0 + Z (I4)i0, [£1]1,0[Pi]o,0 + Z Z ()i, Mty 15 [Zi]in 0
11=0 11=0 11=012=0
— i i p(i—ll)K(ll)Q+ i i pli=tn) [C(ll) _,’_llK(ll—l)} Q(l)
I i
11=0 11=0
i 151 .
0 pl—t) | (i) g0t b (t1—l2-1) h (1-12-2) | o(i2+2)
pli=h M c K
+Z Z (ll) [(b) +<l2+1 N lo+2 @
11=013=0
i i—ki /. .
=> > <Ij> <1;kl> [P(kl)(K(kz)Q(i*klsz) + Ok Qlit1—k1=k2) +M(’“2)Q(i+2*k1*k2))]
1 2
k1 =0 ky=0

=K% = [Ni]ip. O

As a consequence of Theorem 3.3, the local characteristic values (7, a?l(l), a,
EI(MCK), §Z(MK), EI(CK), §Z(MC), @y, 9;) of the inflated triple (M (%), £;(t), Ni(f)) at a
fixed point ¢ are well-defined for equivalent triples of matrix-valued functions and for
each [ € Ny. These quantities are numerically computable via a number of numer-
ical rank decisions. Next, we show how these local quantities of the inflated triple
(My(t), £i(£), Ni(t)) are related to the global characteristic values of the original triple
(M, C, K) at the point t. For convenience of presentation, we restrict ourselves to the
case that p < 2 in the following.

THEOREM 3.4. Consider a triple (M,C, K) of sufficiently smooth matriz-valued

functions M,C, K € C(I,C™") with well-defined strangeness index p < 2 and se-
quence of global characteristic values (r;, d§1)7 a;, SEMCK), SECK)7 sEMc), SEMK), Ui, Vi),
i € Ng. Furthermore, let (My(t),Li(t),Ni()) be the corresponding inflated matriz

triple at a fived t € T with local characteristic values (7, ch“, a, §I(MCK),§Z(CK),§§MC),
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EI(MK),le,le). Then, for 1 =0,1,2, we have

rank [My, L;, V] = (I + 1)m Zv“
rank [My, L] = (I + 1)m Z va

rank [M;] =7, =4+ 1)m Z ZCZ va

using the definitions as in Lemma 2.6, and

dl(l) =k —p + by,

ELl = bl =C — SZ(A{CK) — SI(CK) — SI(MK) + S1—1,
! !
§l(MCK) = Zci b1 —p — Z(dv —ti),
i=0 i=1
N(CK) = bz 1—b +Pl7

(3.4) MO — Zqz Zcﬁ-Zd—t o — ki,

l

gl(MK) — Z(d, - ti)v

=1
l
/Dl = E Vi,
=0
l l

i = (14 Duo+ (1 + Dag + ko — > ki — Y bs.

i=0 i=0
Proof. We omit the proof for ease of presentation. The proof is given in
[18, 19]. O

From the relations in (3.4) we can determine recursive formulas for the global
characteristic values of the original matrix triple (M, C, K).

COROLLARY 3.5. Let the strangeness index j of the matriz triple (M,C, K)

be well-defined with p < 2 and let (Fl,czl( ),~l, 5(MCK) EZ(CK) N(MC) ~(MK) LU, ),
1=0,...,u be the sequence of the local chamctemstzc values of (MI,CZ,M) for some
t € I. Then, for the sequence (rl,d(l), a;, S EMCK), SECK),SEMC)7SEMK),ui,vi) of the

global characteristic values of (M, C, K), it holds that

~(MCK)+§(()CK) (MK)

co=ag+$§ + Sq R
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~ ~ ~(MCK ~(MCK ~(CK ~(CK ~(MK ~(MK
Civ1 = (Qit1 — Qi) + (SEH - 55 )) + (SEH )~ 35 )) + (SEH )~ 55 ))>
qo=d~((31)+§(()MCK)+§((JCK)+§((JMC),

F(1 F(1 ~(MCK ~(MCK ~(CK ~(CK ~(MC ~(MC
Gip1 = (diY — diM) + (T — FMERY 6T - 5Oy 4 (5D — 5,

Vg ="M — Co — qo — To,

Vi1 =M — Cip1 — Git1 — (Fig1 — 74),

MCK CK _
5! V46l s = ¢ —
(MCK)

K3

s §ECK).

+ SEMC) +8i—1 =¢qi — ngl) -

Proof. The relations follow directly from Theorem 3.4 and from the definitions in

Lemma 2.6, since

Aj+1 — @i = bip1 — by,

GMCK) _ JUMCK) 4 4(CK) _ 4(CK)
SO _5ME) — g
Ay — diY = kigy = ki + pi = piga + bigr — by,
FME) _ g(mE)

= Cit1 — dig1 +tit1 — bip1 + by,

it1 — i1,

= qi+1 — Ciy1 t dip1 — tig1 + Piy1 — pi + ki — kig1,

m — Cit1 — Qit1 — (Fig1 — T3) = M — Cip1 — i1 — M+ Gip1 + Cip1 + Vig1 = Vi1,
(MCK) (CK) (MK) _

Ci—Q; =C —C+ 8, +s; + s; Si—1 = SEMCK) + SECK) + S,
qi — JE” - §ECK) =q—ki—bi_1 = SEMCK) + SZ(»MC) +5i-1. O

Thus, the recursive formulas given in Corollary 3.5 enable the determination of
the strangeness index p in a numerically computable way by determining the local
characteristic values of the inflated triple (M, £;, ;) for each time ¢ € 1. The
differential-algebraic system in the i-th reduction step is strangeness-free if the sums
SEMCK) +SEMC) +s;_1 and sz(-MCK) +550K) + s; vanish, since then SEMCK) = SECK) =
SEMK) = sz(-MC) = 0, as all summands are nonnegative integer values. Finally, for the
characteristic values of the strangeness-free system, we get

m
a, = Zci =rank [M,,, L,,N,,| —rank [M,,, L],
i=0
Iz p—1
IS S St
i=0 i=0
(3.5) =rank (M, L,] — 7, + rank [M,_1, L, 1] — rank [M,_1, L,—1,N,—1],

Uy = Uy — V1,

d? =m — ay, — df}) — V.
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Further, we can extract a strangeness-free triple (M O K ) from the inflated system

with characteristic values 7 = dff), dV = df}), a=ay,, =u,, =wv,and §MCK) —

3(CK) = g(MK) — 5(MC) — ( ysing only local information from (M,,(t), £,,(t), Ny, (1)).

THEOREM 3.6. Consider a linear second order differential-algebraic system (1.1)
with well-defined strangeness index p < 2. Then the inflated triple (M,, L, ,N,)
associated with (M, C, K) has the following properties:

1. For all t €1, it holds that
p—1
rank M, (t) = (u+1)m —a, — 0, — dE}) - Z ci,
i=0
such that there exists a smooth matriz function Z with orthonormal columns
and size ((u+ 1)m, a, + 7, + dfll) + Zé;_ol ¢i) satisfying
ZHM,, =o0.
2. For allt € I, we have

vank [M,,(8), £,(0)] = (1 + m — a,, — 5,0
rank [Mu(t)a ‘C#(t)7Nﬂ(t)] =(p+1)m~— Vs
such that without loss of generality, Z can be partitioned into Z = [Zy, Z3, Z4)
with Zs of size ((u + 1)m, df}) + Zf;ol ¢i), Z3 of size (u+1)m,a,) and Zy
of size (1 + 1)m,0,,) such that
Z¥L,=0, Z7L,=0, ZIN,=0.

3. For allt € I, we have

rank (Z§ N, [ I, 0 ... O]H):a#,
p—1
rank (Z¥L, [ I, 0 ... 0]")=dD+ e,
i=0

such that there exists a smooth matriz function T3 with orthonormal columns
and size (n,n — a,), withn —a, = dff) + df}) + u,, satisfying

ZINL[ L, 0 -+ 0
4. For allt €1, we have

rank(ZQH/.:,L[In 0 ... 0
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such that there exists a smooth matriz function Z, of size ( ZZ o Cird )
with orthonormal columns such that

vank (ZEZ8L, [ L, 0 - 0]y =db.

Furthermore, there exists a smooth matriz function Ty of size (n — a,,n

ay — dE})) with orthonormal columns, such that
H o H H
z0z3 e, [ I, 0 - 0] 1315 =0.

5. For all t € 1, it holds that rank (MT5Ts) = deQ). This implies the existence
of a smooth matriz function Zy with orthonormal columns and size (m, dff))
such that ZH M has constant rank d,(f).

Proof. The proof is given in Appendix. O

From the results of Theorem 3.6 we can construct a triple of matrix-valued func-
tions

M| [ G| [ K
(3.6) (M,C,K) = 8 : %2 , 2 ,
0 0 0
with entries
Ny =zHM, & =zic, Ky =z8K, Cy=zHzFr,[1, 0 - 0]",
Ko=2FZ8N, [, 0 - 0], Ky=2IN,[1, 0 - 0]",

which has the same size as the original triple (M, C, K). We can show that this triple
is strangeness-free with the same characteristic values as the strangeness-free system
(2.4).

THEOREM 3.7. Let the strangeness index p of (M,C, K) be well-defined with
< 2 and global characteristic values (r;, dgl), a;, SEMCK), sl(-MC), SEMK)7 SECK), is Vi),
fori=0,..., . Then, the triple (M,C, K), constructed as in (3. 6) has a well-defined
strangeness index fi = 0 and the global characteristic values of (M (t),C(t), K(t)) are
given by

(7,d"), 4, 3MCE) M) KD (CK) 4y = (d(P),d(V, a,,0,0,0,0,v,)

) I )
uniformly for all t € 1.

Proof. In the following, we omit the argument ¢ for simplicity. By construction
the columns of T3 defined in Theorem 3.6 form a basis of kernel K3 and the columns of
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Ts form a basis of kernel (C’ng). We consider the matrix T' = T3T5. Because M 1 has
full row rank, without loss of generality, we can split 1" into T = [ T T ] in such
a way that MlTl’ is nonsingular. By choosing T4 such that K. 374 is also nonsingular
and T3 such that C5T% is nonsingular and K3Tj = 0, we get a nonsingular matrix
T = [ T Ty T4 1Ty } By multiplication with this matrix from the right we get
the following local equivalence

M, Ch K,
are = o LS R
0 0 K
0 0 0
[ MT] MLT, NLT,  NLT or Gy Oy ChTy
0 0 0 0 CoT) CoTy CoTy  CoT)
0 0 0 0 i () 0 0 0o |’
0 0 0 0 0 0 0 0
KT, K\T} K\T KT,
KoT] KoTy KoTh KT
KsT! KsT} KsT} KsT)|
0 0 0 0
MT{ MT, MT} NiTj CiT] CiTy CiT 1Ty
0 0 0 0 0 CTy 0 0
0 0 0 0o || o 0 0 0 |’
0 0 0 0 0 0 0 0
KT KTy K\Tj KT,
KoT! K2T) KoT) KT
0 0 KTy 0
0 0 0 0
MT; 0 0 0 * X Kk * ok kK
0 000 0 CyTy 0 0 X x x %
0 000|'J]0O 0 00| |00 KT} 0
0 000 0 0 00 00 0 0
_Id(z) 0 0 O * * *x % * % *
"
0 0 0 0 0 Idff) 0 0 * ok *
0 00O0O(|'J0O O O0O0]| |00 I 0
. 0 000 0 0 00 0 0 0

From the last triple we obtain # = d,(f)7 dV = d,(}), a = ay, §MCEK) — 5(MC) —
§(MEK) — 5(CK) — 0 and » = v, from Lemma 2.3. O

Thus, we have derived an index reduction method that allows us to extract



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 22, pp. 310-347, March 2011

A Derivative Array Approach for Linear Second Order Differential-Algebraic Systems 329

a strangeness-free triple from the original triple of matrix-valued functions and its
derivatives. The matrix-valued functions Zy, Z1, Z> and Z3 as given in Theorem 3.6
can be determined via numerical rank decisions, e.g., using a singular value decom-
position or a rank revealing QR decomposition; see [7]. Setting the inhomogeneities
fl =zHf, fg = Zf{ng#, fg = Zéqgu and f4 = 0 accordingly (assuming that the
system is solvable) we obtain a differential-algebraic system

(3.7) M(t)i + C(t)i + K (t)x = f(t),

from the inflated differential-algebraic equation (3.1). Setting f4 = 0 in (3.7) can be
seen as a regularization, since an unsolvable problem is replaced by a solvable one.
System (3.7) is strangeness-free and has the same size and also the same solution set
as the original system (1.1), since only transformations from the left are involved. In
the following we give an example to illustrate the index reduction procedure.

ExAMPLE 3.8. We consider again the linear second order system (1.3) of strange-
ness index p = 2 with characteristic values sz) =1, df}) =0,a, =2, v, =0 and
u,, = 0. The matrix triple corresponding to the extended system (3.1) is given by

t 0 0/0 0 0|0 O O
0 1 110 0 00 O O
0 t t{0 0 0|0 O O
2 0 oO(t 0 0j]0 O O
Me®)=]0 0 o0l0o 1 1|0 0 0],
0 1 110 ¢t t|0 0 O
1 0 013 0 0|t 0 O
0 1 0/0 0 0|0 1 1
L0 1+¢t 1]0 2 2|0 t ¢t |
[ 1 0 0 i [ 1 0 0 i
0 0 0 0 1 0
0 0 0 0 1+t 1
1 0 0 0 0 0
Lo(t)y=1 0 1 0 , M(t)=1] 0 0 0
0 1+¢t 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
Lo 2 0 ] Lo 0 o0 ]
We have
rank [My(t), Lo(t),No(t)] =9 = (n+ 1)m — T,
vank [My (), £o(t)] = 7 = (i + 1) — ay —
rank [My(t)] =6 = (u+ 1)m — df}) —Co— €1 — ay — Ty,
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independent of ¢t € I and we can choose
" 0 -1 00 -2 0 0 —t 1
Z5 = ,
0O -t 1.0 0 00 0 O
Zy=[0 -1 00 -t 1 0 0 0],
Tw=[10 0]", T=1

Then we have

rank (Z§' N2 [ I, 0 O]H):rank<{0 1 O]>:2:aw

0 1 1
rank (ZF Lo [ I, 0 0]") =rank ([0 1 1])=1=dP +co+ei,
rank (Z8 L [ I, 0 017 Ty) = rank ([ 0 ]) =0 =d,

rank(MT3T2) — rank ([ t 0 0]")=1=a?.

Finally, choosing ZH = [ 0 ] we get a strangeness-free system of the form
t 0 O 1 0 0 1 0 O f1

38)| 0 0 0]é+]|0 0 0fe+|0 -1 0|a=| —fo—2h—th+7s |,
0 0 O 0 0 O 0 1 1 —tfa+ f3

with the same solution as the original system (1.3).

REMARK 3.9. The proof of Theorem 3.4 (and consequently, those of Corollary
3.5, Theorem 3.6 and Theorem 3.7) is given only for DAEs of strangeness index p < 2
for ease of presentation. However, the results are also valid for systems of arbitrary
high index. To prove the results for linear second order systems (1.1) of arbitrary
strangeness index p > 2, the construction of a global canonical form analogous to the
form given in [11, Theorem 3.21] is more convenient, but until now it is not clear how
a suitable condensed form can be constructed.

REMARK 3.10. The derivative array approach presented in this section can also
be extended to arbitrary linear high order differential-algebraic systems. The inflated
system corresponding to (3.1) can be obtained in the same way by differentiating
the original k-th order system and ordering the derivatives of the coefficient matrices
in such a way that only the leading coefficient matrix has a lower triangular block
structure and all other coefficient matrices of the inflated system have entries only
in the first block columns. Then the results of Theorem 3.3 also hold for k-th order
systems, and a hypothesis similar to Theorem 3.6 can be formulated so that it allows
an index reduction for linear k-th order systems by choosing suitable projections
in the same way as for linear second order systems. For the theoretical analysis
of linear k-th order differential-algebraic systems, see also [12, 15]. Furthermore, a
corresponding hypothesis for nonlinear second order differential-algebraic systems has
been formulated in [18].
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4. Order reduction for linear second order DAEs. The numerical solution
of higher order differential-algebraic systems either requires the direct numerical solu-
tion of the higher order system by appropriate numerical methods (see, for example,
[14, 17]) or a suitable transformation into a first order system that does not increase
the index. Since most of the numerical methods suited for the solution of DAEs are
constructed for first order systems and these methods are well-studied—in general a
transformation into a first order system is desired. Furthermore, for a robust solution,
the numerical methods require differential-algebraic systems of low index such that
besides the order reduction also an index reduction is required. In Example 1.1 we
have seen that for higher order DAEs the classical order reduction by introducing
new variables v = & for the derivatives can lead to an increase in the index of the
DAE corresponding to higher smoothness requirements for the inhomogeneity f(t)
that even can cause the loss of solvability of the system; see also [12]. For k-th order
linear DAEs it has been shown in [12] that if x is the strangeness index of the triple of
matrix-valued functions associated with the k-th order DAE system, then the max-
imal possible increase in the strangeness index fi of the first order system, obtained
by the classical order reduction procedure, is i < p+ k — 1. In [12] it has been
proposed to use the strangeness-free condensed form (2.4) given in Theorem 2.4 for
the identification of those second order derivatives of variables that can be replaced to
obtain a first order system that is strangeness-free without increasing the index. By
introducing the new variable & = #; for the strangeness-free system (2.4) we obtain
a first order system in the variables (%1, %2, Z3,Z%4,0) that is also strangeness-free.
The drawback of this approach is that there is no computationally feasible method
to compute the condensed form (2.4), except if the structure can be used, since the
derivatives of computed transformation matrices are used during the transformations.
Further, the strangeness-free system (2.4) does not have the same solution z as the
original second order system (1.1), but a transformed solution Z = Q~'x. Neverthe-
less, the results suggest that applying index reduction first and then order reduction
is a proper treatment of second order systems.

In the following, we will use the index reduction based on derivative arrays derived
in Section 3 to obtain a strangeness-free second order system (3.7), which can then be
used to construct a trimmed first order formulation in a numerical feasible way. We
assume that we have locally computed a strangeness-free second order system (3.7)
with matrix triple of the form

M, o) K
N 0 Co K,
M,C,K) = h
( 707 ) 0 b O 9 K3
0 0 0

To find a suitable first order formulation, we first have to identify the second
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order differential variables. As the matrices M 1, Cs and K. 3 have full row rank due to
construction (see Theorem 3.6) there exists a pointwise unitary matrix-valued function
Q € C(I,C™*™) that is sufficiently smooth such that

M, M, 0 0 0
(4.1) Co |@=| Cun Cn 0 0,
K3 K31 Kz Kizz3 0

where the matrix-valued functions M;; of size dﬁf) X df), Cag of size dftl) X d&l)
and Ksg of size a, X a, are pointwise nonsingular. With the corresponding basis
transformation

r=Q# i=Qi+Q# i=Qi+20%+ 0z,

we get the equivalent system

My 0 0 O il [ Ci1 Cia Ciz Cus 7?'1
0 0 0 0 To n Cy1 Cog 0 0 To
0 0 0 O T3 0 0 0 0 T3
0 0 0 O T4 L O 0 0 0 Ty
—— ——
MQ % CQ+2MQ &
[ K11 K12 Kz Ky I fj1
Ko Ko Kiz Ky To f2
4.2 + . = 71,
(42) K3 K3 Kiz 0 I3 fAs
0o 0 0 0 &4 7
KQ+CQ G : 7

where the second order differential variables Z; are explicitly specified. By introducing
the new variable ¢ = #; we can transform the system (4.2) into first order form

M1 Cii Ci2 Ciz Cus o
0 Cun Ciu 0 0 1
0 0 0 0 0 o
0 0 0 0 0 i3
0 I 0 0 0 T4
0 Kuin K2 Kiz Kus D fi
0 Ko Ko Kiz Ko 1 f2
(4.3) +| 0 Kz Kz Kz 0 o | = fs
0 0 0 0 0 &3 fa

-1 0 0 0 0 24 0



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 22, pp. 310-347, March 2011

A Derivative Array Approach for Linear Second Order Differential-Algebraic Systems 333

Here, we have

o=[1 0 0 0]éd=[1 0 0 0](QH:c+QHa;~)=Q{{x+Q{’fv=%(Q{’w%
d2
@:dtg( {{.Z'),

with Q1 = Q [ I 0 00 ]H. Therefore, system (4.3) is equivalent to

0 J % Q")

Lo KQ+CQ+ MQ 4@Qfx) | | f
-1 0 Q¥x 1o |’

{ MQ: CQ+2MQ } & (Qfx) ]

(4.4)
with J = [ I 0 0 O ] Now, by introducing another variable
. d :
v=Qfi= %(Q{Il") - Qi'z,
the first equation of (4.4) becomes
MQui + (C + M(@iQf +2QQ)i + (K + M(@1Qf + 200" +QQ™)z = /,

where we have used that QQ +QQH =0, as Q is unitary. Thus, we get a first order
system in the original variable z and in v of the form

f

O )

a0 0|

M(Q:191 +200Q") = C + M(Q:Qf —2QQ"),
M(Q1QY +20Q0" + Q™) = K + M(Q:0F — Q@™),

with
C
K

C+
K+

using that QQY +2QQ" + QQ™ = 0. In addition, it holds that

-I 0 0 0
. . . . 0 —-2I O 0 :
H _ H _ n7H 7HH _ H _ H
QT —20Q" = QI"IQ" 200" =@ | o T ., |e”
0 0 0 =21

Q107 — QA" =QJ"IQ" - Q" =Q

oo oo
\
~
o
o
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and
I 0 0 O My 0 0 O
= 4 o~ |02 0 0 |am A | 0 00 0| -y A g
¢=c @ 0 0 2I O @ ¢ 0 0 0 0 @ ¢ Qe
0 O 0 2I 0 0 0 O
0 0 0 O
NP 0 I 0 0| g _ »
K=K-M =
Q 0 0 I O @
0 0 0 [

Altogether, we have constructed a first order formulation in the original variable x
and v, only using the coefficient matrices of the strangeness-free formulation (3.7) and
the unitary transformation matrix . Due to construction this system is strangeness-
free.

THEOREM 4.1. Consider a strangeness-free linear second order differential-
algebraic system (3.7) with matriz-valued functions M,C.K e C(I,C™™) and right-
hand side f € C(I,C™). Further, let Q € CH(I,C™") be a unitary matriz-valued
function that decomposes M,C, K as in (4.1). Then the trimmed first order formula-
tion

M@, C+ MQQH v 0 K1[w f
4.5 =
(45) 0 QH i | T =1 0 x 0|’
is also strangeness-free, with Q1 = Q[I 0 0 0], and the characteristic values are
given by d, = 2d,(3) + dL1)7a#, vy and uy,.

Proof. The proof follows directly from the construction of the trimmed first order
formulation (4.5). Setting & = @7z and ¢ = £(Qfz) = v + QI x, we obtain

My Cuni Ci2 Ciz Cus oy
0 Ca Cao 0 0 571
O 0 0 0 0 b
O 0 0 0 0 bs
0 Ie 0 0 0 &4

0 K1 K2 Kiz K D fi

0 Ko Ko Kiz Ko 1 fz

+ 0 Kz Kz Kizz 0 To | = fg ,
0 O 0 0 0 B 7
_Idf) 0 0 0 0 Ta 0

which is clearly strangeness-free, since M7y, Cos and K33 are nonsingular. O

Theorem 4.1 allows the construction of a first order formulation directly from the
coefficients of the strangeness-free second order system (3.7). The trimmed first order
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formulation (4.5) is of minimal possible size and has the same solution component
x as the original system (1.1), and no further smoothness requirements for the in-
homogeneity are required. Since the first order formulation (4.5) is strangeness-free,
numerical methods suited for differential-algebraic systems can be directly applied to
the first order system (4.5).

EXAMPLE 4.2. For the second order system (1.3) given in Example 1.1 we have
computed an equivalent strangeness-free formulation (3.8) using the derivative array
approach. Following Theorem 4.1 a trimmed first order formulation (with @ = I for
system (1.3) is given by

0 0 ¥ ol1 o o v fi

0 0 il 00 -1 0 o | —fo—2fs—tfa+ f5

0 0 @ 010 1 1 T2 —tf2 + f3 ’
0 0 i3 —1]0 0 3 0

which has the same solution components z1, z2, and x3 as the original system (1.3).

REMARK 4.3. For strangeness-free linear k-th order system, the trimmed order
reduction formalism can also be applied successively to the k-th order system to reduce
the order by one in each reduction step. In this process the derivative of order (k —1)
of the transformation matrix @, chosen similar as in (4.1), will occur. In the constant
coefficient case structure preserving staircase forms for matrix triples are given in [3],
that allow trimmed linearizations for arbitrary high order systems in the context of
matrix polynomials. For the variable coefficient case, however, it is not clear if such
structure preserving staircase forms exist and how trimmed first order formulations
can be derived in this case.

5. Conclusions. In this paper, we have discussed the solution of linear second
order differential-algebraic equations with variable coefficients. Since index reduction
and order reduction for higher order higher index DAEs do not commute, appro-
priate index reduction methods for higher order DAEs are required. We have pre-
sented a numerically computable way to determine a strangeness-free normal form
using the derivative array approach for linear second order DAEs. For differential-
algebraic systems with well-defined strangeness index p the complete structural in-
formation on the global characteristic values of the triple (M(t), C(t), K(t)) can be
obtained from the local information of an inflated triples and it is possible to de-
rive a strangeness-free differential-algebraic system using only local information. For
this strangeness-free second order system, a trimmed first order formulation is de-
rived, which is strangeness-free and has the same solution components as the original
second order system. In conclusion, for an appropriate treatment of higher order
differential-algebraic system, the index reduction should be carried out at first either
by transforming into the condensed form (2.4) or by using the derivative arrays (3.1),



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society E L A
Volume 22, pp. 310-347, March 2011
336 L. Scholz
followed possibly by a suitable order reduction to obtain a strangeness-free first order
system.
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Appendix A.

For triples (M, C, K) of matrix-valued functions M, C, K € C(I,C™*™), a global
condensed form under global equivalence transformations (2.1) has been derived in
12, 15].

LEMMA A.1. [12, 15] Let the matriz-valued functions M,C, K € C(I,C™*™) be
sufficiently smooth, and suppose that the regularity conditions (2.3) hold for the local
characteristic values of (M,C,K). Then (M,C,K) is globally equivalent to a triple
of matriz-valued functions (M, C, f() of the condensed form

I (vmor 0 0 0 0 0 0 O
0 I vc) 0 0 0 0 0 O
0 0 I vk 0 0 0 0 O
0 0 0 Iy 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 o0 0 0],
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
i 0 0 0 0 0 0 0 0]
o o C C 0 0 C C]
0 0 c C 0 0 c C
0 0 c C 0 0 c C
0 0 c C 0 0 c C
0 0 0 0 I, ck 0 0 0
0 0 0 0 0 I,y 0 O
(A1) I ver) 0 0 0 0 0 o 0 |,
0 I mcy 0 O 0 0 0 O
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 |
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) K 0 K 0 K 0 K] s(MCOK)
0 K 0 K 0 K 0 K sME)
0 K 0 K 0 K 0 K s(ME)
0 K 0 K 0 K 0 K d®
0 K 0 K 0 K 0 K $(¢K)
0 K 0 K 0 K 0 K d®
0 K 0 K 0 K 0 K SMCK)
0 K 0 K 0 K 0 K sME)
0 0 0 0 0 0 I, O a
0 0 0 0 Iwexy 0 0 0 s(€K)
0 0 I, urx)y O 0 0 0 0 (M)
Iucxy O 0 0 0 0 0 O (MCE)
|0 0 0 0 0 0 0 0 | v

Here, all blocks are again functions on I and the last block columns have size u.
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Appendix B.

Proof of Theorem 3.6. By assumption, the strangeness index is well-defined and
the ranks of M,,, £,, and N, are constant on I with

rank [M,,, £,,,N,,] = (1 + 1)m — v,
rank (M, L,] = (p+1)m —a, — 7,

p—1
rank M, = (u+ 1)m —a, — v, — d&l) - ZC’“
i=0

due to Theorem 3.4 and Corollary 3.5 (see also the relations (3.5)). Thus, there exists
a continuous matrix-valued function Z of size ((u+1)m, au+1~)“+d£}) +Zf:_01 ¢i) whose
columns form a basis of corange M,,, i.e., Z# M,, = 0. Without loss of generality the
matrix Z can be partitioned into Z = [Za, Z3, Z4], with Zy of size ((u + l)m,dhl) +
S e), Zs of size (1 + 1)m,a,) and Zy of size (1 + 1)m, ©,) such that

zic,=0, zZfcL,=0, ZIN, =0,

i.e., the columns of the matrices Z, and Zs form bases of corange ([M,, L,,,N,]),
and of corange ([M,, L,]), respectively. First, we note that multiplication of (3.1) for
| =uby ZH gives

Zf./\/#z# = ngu.

The only nontrivial entries in AV, are in the first block column belonging to the original
unknown z. Hence, we get purely algebraic equations for . Lemma 2.3 and (3.4)
give

rank (ZEN, [ I, 0 oo 0]7)=a, +5MOF 4 500 4 5O — g,

thus, with Z3 we obtain the complete set of algebraic equations. Next, we must get
dl(}) first order differential equations and dl(? ) second order differential equations to
complete these algebraic equations to a strangeness-free differential-algebraic system.

In a similar way, multiplication of (3.1) with the matrix Z yields
Z3 Lut + 25 Nz = 23 g

Again, the only non-zero entries of £,, are in the first block column belonging to the
first order derivative &. Lemma 2.3 and (3.4) give

p—1
rank (237L,) = dip) + 570 + 5O 4 EMOR =% T =dD + Y e
i=0 =0

So far we have shown the first three parts of Theorem 3.6. To show part 4 and 5
of the Theorem we treat systems of strangeness index p = 0,1 and 2 separately. Let
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(M, C, K) be a normal form of the triple (M, C, K) according to the global condensed
form (A.1) with corresponding inflated triples (M, £,,,N,,). Due to Theorem 3.3,
there exist matrices II, ©, ¥, and ¥ such that

M, =1M,0, L,=T1L,0+20M,¥, N,=TN,0 +IL,V¥ +1IM,>,

according to (3.3). For u = 0 the triple (Mg, Lo, No) is of the form

Id(2) 0 0 O C 0 c C K K 0 K
) 0 Iy 0 0
(B.1) 0 0 0 0 , o ’ K K 0 K
0 0 0 O 0 0 0 O 0 0 Ia“ 0
0 0 0 O 0 0 0 O 0 0 0 0

Let IT and © be partitioned as II := [[I TI& TI TIH]H and © := [©1,0,,03,0,]
according to (B.1). Then setting

Zo=1f, Zy=1¥, ZzZ,=1f,
yields

ZEMy =0, ZPLo=0, ZENy=0,
ZEMo=0, Z8Lo=0, Z¥M,=0,

as well as
rank (Z3'Np) =rank [ 0 0 I,, 0 ]=a,,
rank (Z Ly) = rank [ 0 Idf,,” 0 0 ] = df}).
By setting T5 = [©1, O, O4], we get

rank (Z £y Ts) = rank { 0 I,m O } =dl,

I O
dﬂ
and, with Z; = g and T = 0 0 , we have ZfIZf.COTng =0, and
o

0 I,

Idff) 0

rank (MT5T5) = rank 8 = df).
0 0

Finally, setting ZH = [ Idﬁf) 0 00 ] yields

rank (ZT M) = rank [ Iy 00 0 )= d@.
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In the case i = 1 we have to consider the inflated triple

M
+

+

Qe
=
o o

- . - 0
(Mlvﬁla/\/l): < M C’ M

I

R P
o O
1
N———

The identity blocks in the matrix M allow to eliminate all other entries in the corre-
sponding block rows of M; by local equivalence transformations. Further eliminations
using the identity blocks of the global condensed form and block decompositions yield

the following matrix triple, where we only state the first block columns of £; and N,
since all other entries are zero:

. _
.0
0o .
I
I .
I
(B.2) ,
0O 0 O 0O 0 0|1
0O 0 O 0O 0 O I
0O 0 O 0O 0 O I
o o0 0 . 0O 0 O I
. Ir . . .
. I
I .
I
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r 0 0 0 O o o I o017 K K K K K K11 k
0 0 I o0 0 0 0 O K K K K K K &1
0 0 0 © 0 0 0 0 K K K K K K 35
0o 0o C 0o o0 C K K K K K K 36
o 0o C 0 0 C K K K K K K &1
o 0 C . 0 0 C K K K K K K da
0o . K K K K K K 34
. I K K K K K K d
0o . K K K K K K 5
I K K K K K K 32
I ao
1 54
I 33
I 5
. ’ . . . . . . Vo
K 0 C ¢C K 0 C C K K K K K K 51
K o0 C ¢ K o0 C ¢ K K K K K K 3o
K o0 C ¢ K o0 C ¢ K K K K K K 33
K 0o C ¢C K o0 C ¢ K K K K K K da
K K K K K K K K K K K K 34
K K K K K K K K K K K K dy
K K K K K K K K K K K K 51
K K K K . K K K K K K K K o
. I ao
I 54
) I 33
I 51
L ERN 1l vo
with dimensions 5; = séMCK), 59 = séMc), 53 = SE)MK), 54 = s(()CK), 55 = s(MOR) 4
E)MC) — €1, '§6 = S(()MK) — e + kl, él = €1 — kl, dl = dél), and dQ = d(()Q . Thus,

the triple (Ml, [:17/\71) can be assumed to be in the form (B.2) and II and © can be
partitioned as

H:: [H{I7,H£§]H, @I: [@1,"'7@18]7

corresponding to the row and column structure of the block matrices in (B.2). Then
we have

ol o niE nd L M = o,

M[Bg, 09,010,015, ...,015] =0,

[H?,H%H 1_111»~- H157H2HS]H£1:07

ot omd i nE nd . )P £1]010,015, .. .,018] =0,

and set

Z P | IS | 54 1 £ 1 (54

[
[ 3,29 7 271_[9 27H15’H28}’
[
[

HB 1’H7 17H9 17H11a'--aH11L{1];
H107H247' . -’Hg];
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where I ; and II > and ©_; and ©_ 5 denote the parts of the rows of I and columns
of ©. that corresponds to the range and nullspace of block rows and block columns,
respectively, after one more block decomposition of the matrices in (B.2). We have

rank (ZENY) = co + 1 = a,,
rank (ZH L)) = ey + dél) + s(()MC) +c¢p = dE}) + ¢o.

Setting T5 = [@2.2,04.2,052,07.2,09 2,010,2], we get
vank (ZF Ly [ I, 0] T5) = diY + M9 ey = dD,
and further choosing Z; such that Z»Z; = [T TIE 11 11, we have
rank (Z7 28 L)) = df}).
If we choose T3 such that T57» = [O5 2, O10,2], then we have
ZHzH [ 1, 0]" Ty =0
and
rank(MT5Ty) = d) = d?.

m

Finally, there exists a smooth matrix function Zy of size (m, dftz)) with orthonormal
columns such that

rank (Z§' M) = dP).

For s-index u = 2, we have to consider the inflated triple

(Ma, L, No)
M 0 0 C 00 K 0 0
_ M+ C Mo o |, C+K oo, | K 0 o0
M+20+K 2M+C M G42K 0 0 K 0 0

Again, the identities in the diagonal blocks of M, allow all the elimination of all
other entries in the corresponding block rows of My without altering Lo or Nj.
Further eliminations using identity blocks in the global condensed form and block
decompositions using local equivalence transformations yield a matrix triple of the
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form
ro .
0 .
0
0
0
0 .
I .
I .
I
0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I
0 0 0 0 . 0 0 0 0 I
0 .
) I
o .
I
0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I
0 0 0 0 0 00 0 0 0 0 0 0 0 I
00 0 0 O 0 0 0 0 O 0 0 0 0 I
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 . 0 0 0
) I
) I
. I
I
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2000

SECRORG)

2000

[N elele)

©cooDOVO

© §oVOLO

©co0ooDVO

[>Relelalele)

(=}

o

VAV V KK XX
ISRICRCROI i
VAV V KK XX

o ©oO oo

R

VAV V KK XX

VAV V KK XX

ISRICRCROI i

o O oo

BRI

O O O O

ST G NG i G i

o O O O

+ TG G G i G i Y

(B.3)
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r K K K K K K K K] k1
K K K K K K K K &
K K K K K K K K 57
K K K K K K K K ko
K K K K K K K K &
K K K K K K K K 58
K K K K K K K K é1
K K K K K K K K éo
K K K K K K K K J2
K K K K K K K K §4
K K K K K K K K 021
K K K K K K K K 51
K K K K K . K K K 3o
I ao
. I 34
I 33
I 31
. . . . . . - - Vo
K K K K K K K K 31
K K K K K K K K 32
K K K K K K K K 33
K K K K K K K K ds
K K K K K K K K| &
K K K K K K K K dy
K K K K K K K K 51
K K K K K K K K 32
ao
34
33
51
. . . . . . . Vo
K . K K K K K K K 31
K . K K K K K K K 32
K . K K K K K K K 33
K . K K K K K K K da
K . K K K K K K K 34
K . K K K K K K K dy
K . K K K K K K K 51
K . K K K K K K K 32
ao
Sa
S3
51
L | Vo
with dimensions é; = e5 — ks, S7 = s(()MCK) + séMc) —e; —eg, Sg = s(()MK) —e1+ ki —

es + ko. Thus, the triple (/\;l27 EQ,NQ) can be assumed to be in the form (B.3) and II
and © can be partitioned into

M= [, 18] 0:=(0y,...,0u]

according to the block structure of (B.3). Then we have

H H H H H H H H H H1H _
[Hl 7"'7H6 aH107"'7H187H20’H23’H257H277"'7H317H44] M2 - Ov

M3[011, 012, 019,099, O35, ..., O2g] = 0.
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Further decompositions of rows and columns of £~27 where II 5, © o denote the parts
of the rows and columns of IT and ©, respectively, that correspond to null-rows or
null-columns after the decomposition, yield

[H3 >H6 7H107H12aH147 ~~7H{{37H%,27H%2aHgs,QaH?ﬁaHﬁ]H£2 =0,
ZH £5]019,2,019, O20, Oas, ..., O2g] = 0,

with
/RSN 1 0 ECON - ) EP SRS § £ 40 0670 0 £ I £ 1 £ A 0 <00 1 i)
and by setting

Z4 - [HS 27H6 27H10 2’H12 27H181H20 37H23 3’H25 37H3{€7Hﬁ]7
Z3 = [H3,17H6,1v HlO,la H12 17H14v c H177H20 27H23 QaHg’)Q]a
Z2 = [H{{,Hg,ﬂf, H Hll’Hl?ﬂHQO 17H23 1’H25 1 H27’ te 7H?I>16]’

we have

rank (Z3No) = co + ¢1 + c2 = ay,
rank (Z3£2) = e1 + ez +d(V + 5§+ co + by = dD + co + 1.
Furthermore, setting 75 = [©22,04.2, 05 2, 06,2, O3 2, O10,2, O11,2, O12,2] yields
ZiN [ I, 0 0] T3=0

and we get

rank(Z{Il:g[In 0 O] )—dl)
By choosing Z; such that ZoZ; = [ TIX 1T TIE 112 TT2L], we have

rank (Z{' 23 £3) = d,
and if we choose T3 such that T5T» = [O5 2, O1¢,2], then we have
ZHzH, [ 1, 0 0] Ty =0,
as well as
rank(MT5Ts) = df).

Again, there exists a smooth matrix function Z; of size (m,df)) with orthonormal
columns such that

rank (Z§' M) =dP. O



