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Abstract. A generalized matrix product can be formally written as A
sp
p A

sp−1

p−1 · · ·As2
2 A

s1
1 , where

si ∈ {−1, +1} and (A1, . . . , Ap) is a tuple of (possibly rectangular) matrices of suitable dimensions.

The periodic eigenvalue problem related to such a product represents a nontrivial extension of gener-

alized eigenvalue and singular value problems. While the classification of generalized matrix products

under eigenvalue-preserving similarity transformations and the corresponding canonical forms have

been known since the 1970’s, finding generic canonical forms has remained an open problem. In this

paper, we aim at such generic forms by computing the codimension of the orbit generated by all

similarity transformations of a given generalized matrix product. This can be reduced to computing

the so called cointeractions between two different blocks in the canonical form. A number of tech-

niques are applied to keep the number of possibilities for different types of cointeractions limited.

Nevertheless, the matter remains highly technical; we therefore also provide a computer program

for finding the codimension of a canonical form, based on the formulas developed in this paper. A

few examples illustrate how our results can be used to determine the generic canonical form of least

codimension. Moreover, we describe an algorithm and provide software for extracting the generically

regular part of a generalized matrix product.

Key words. Matrix product, Periodic eigenvalue problem, Canonical form, Generic Kronecker

structure, Cyclic quiver, Orthogonal reduction.
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1. Introduction. Consider a matrix pair (A1, A2), where A1, A2 ∈ C
n2×n1 .

By the well-known Kronecker canoncial form (KCF) [7], there are square invertible

matrices P1, P2 such that the transformed pair (P−1
2 A1P1, P

−1
2 A2P1) is block diagonal

with each diagonal block taking the form

(Jm(λ), Im) or (Im, Jm(0)) or (Fm, Gm) or (FT
m, GT

m),
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where

(1.1) Jm(λ) =




λ 1

λ
. . .
. . . 1

λ




︸ ︷︷ ︸
m×m

, Fm =




1 0

. . .
. . .

1 0




︸ ︷︷ ︸
m×(m+1)

, Gm =




0 1

. . .
. . .

0 1




︸ ︷︷ ︸
m×(m+1)

for some λ ∈ C. Regular blocks take the form (Jm(λ), Im) or (Im, Jm(0)), with m ≥ 1,

corresponding to finite or infinite eigenvalues, respectively. Singular blocks take the

form (Fm, Gm) or (FT
m, GT

m), with m ≥ 0, and correspond to so called Kronecker

indices. More specifically, (Fm, Gm) corresponds to right indices and (FT
m, GT

m) to

left indices. The matrix pair (A1, A2) itself is called singular if its Kronecker form

contains at least one singular block.

Identifying the KCF of a singular matrix pair (A1, A2) is an ill-posed problem.

In view of the resulting numerical challenges, it is natural to ask for the most generic

forms in the set of all n2 × n1 matrix pairs, possibly with additional side constraints

on the matrices A1 and A2. It is well known that the generic form of a square matrix

pair, n = n1 = n2, solely consists of n regular 1 × 1 blocks (1, λk) with λk 6= λj

for k 6= j. For the subset of square singular matrix pairs, Waterhouse [28] showed

that the generic KCFs consist of two singular blocks (Fj , Gj) and (FT
n−j+1, G

T
n−j+1),

with j = 1, . . . , n. In the rectangular case, △ = n1 − n2 > 0, there are generically (n2

mod △) blocks (Fα+1, Gα+1) with α = ⌊n2/△⌋,△−(n2 mod △) blocks (Fα, Gα), and

no regular block [22, 3]. For the other rectangular case, △ = n2−n1 > 0, the result is

similar. There are generically (n1 mod △) blocks (FT
α+1, G

T
α+1) with α = ⌊n1/△⌋ and

△− (n1 mod △) blocks (FT
α , GT

α). From these early results on, tremendous progress

has been made in understanding and computing less generic KCFs, see [16] for an

overview. Recent results include generic KCFs for zero-structured matrix pairs [15]

and matrix pairs of fixed normal rank [2].

This paper considers a nontrivial extension of matrix pairs (A1, A2) (matrix pen-

cils A1 − λA2). For a fixed sign tuple s = (s1, . . . , sp), where sk ∈ {−1,+1}, and a

fixed dimension tuple n = (n1, n2, . . . , np), let A = (A1, . . . , Ap) be a matrix tuple

with

(1.2) Ak ∈

{
C

nk⊕1×nk if sk = 1,

C
nk×nk⊕1 if sk = −1.

Here and in the following, we let

k ⊕ 1 := (k mod p) + 1,

which simply means that k ⊕ 1 = k + 1 for 1 ≤ k ≤ p − 1 and p ⊕ 1 = 1. This

paper aims at identifying generic canonical forms of such a matrix tuple under the
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equivalence transformation

(1.3) Ak 7→

{
P−1

k⊕1AkPk if sk = 1,

P−1
k AkPk⊕1 if sk = −1,

with invertible matrices Pk ∈ C
nk×nk , k = 1, . . . , p.

A more intuitive understanding of the transformation (1.3) can be gained by

regarding the matrix tuple as a generalized matrix product

(1.4) Asp
p A

sp−1

p−1 · · ·A
s1
1 .

Note that this matrix product should be understood in a formal sense; we explicitly

admit rectangular factors Ak for sk = −1. If, however, all factors Ak with sk = −1

are square and invertible, the product (1.4) becomes well-defined in the usual sense

and (1.3) corresponds to a similarity transformation of (1.4) and all other products

with cyclically permuted factors:

Asp
p A

sp−1

p−1 · · ·A
s2
2 As1

1 7→ P−1
1 Asp

p A
sp−1

p−1 · · ·A
s2
2 As1

1 P1,

As1
1 Asp

p A
sp−1

p−1 · · ·A
s2
2 7→ P−1

2 As1
1 Asp

p A
sp−1

p−1 · · ·A
s2
2 P2,

...

A
sp−1

p−1 · · ·A
s2
2 As1

1 Asp
p 7→ P−1

p A
sp−1

p−1 · · ·A
s2
2 As1

1 Asp
p Pp.

A number of applications lead to generalized matrix products of the form (1.4), includ-

ing periodic control systems [27]. More specifically, applications leading to products

with rectangular factors can be found in [24, 26, 19]. The generalized singular value

problem for a matrix pair (A,B) can – at least theoretically – be seen as a generalized

matrix product eigenvalue problem As4
4 As3

3 As2
2 As1

1 with A4 = AT , A3 = BT , A2 = B,

A1 = A, and sign tuple s = (+1,−1,−1,+1) [8, 23].

As explained by Sergeichuk in [20, 21], canonical forms under the transforma-

tion (1.3) were known for a long time in representation theory. In particular, the

representations of a quiver associated with (1.4) were classified independently by

Nazarova [18] as well as by Donovan and Freislich [6] in the 1970’s. Numerical algo-

rithms for extracting the Kronecker-like structure of (1.4) can be found in [21, 25].

They share the difficulties with the GUPTRI algorithm [4, 5] in the sense that certain

rank decisions have a critical impact on their robustness. These rank decisions can be

avoided if we only aim at identifying the generic Kronecker-like structure induced by

the dimensions n1, . . . , np of the involved factors. For this purpose, we count the codi-

mension of the orbit generated by all similarity transformations of a canonical form,

see Section 3. In theory, the most generic canonical form among all possible canoni-

cal forms of a given matrix tuple is simply the one of least codimension. In practice,

however, the matter is complicated by the sheer number of different canonical tuples
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potentially contributing to the codimension count. In Section 4, we therefore describe

generic canonical forms only for the special case s = (+1, . . . ,+1). In Section 5, we

develop an algorithm, based on simple unitary transformations, for extracting the

generically regular part of a generalized matrix product. Finally, some conclusions

and open questions are summarized in Section 6.

2. Preliminaries. In the following, we consider the sign tuple (s1, . . . , sp) to

be fixed. We will make use of the following notation. Let A = (A1, . . . , Ap) be a

matrix tuple with dimensions conforming to (1.2). A tuple P = (P1, . . . , Pp) is called

a transformation tuple if each Pk is nk×nk and invertible. Then B = (B1, . . . , Bp) =

P{A} denotes the equivalence transformation (1.3) with respect to P:

Bk =

{
P−1

k⊕1AkPk if sk = 1,

P−1
k AkPk⊕1 if sk = −1.

The direct sum of two matrix tuples C,D is denoted by C ⊕ D and defined as

([
C1 0

0 D1

]
, · · · ,

[
Cp 0

0 Dp

])
.

As an immediate consequence, the relation

(P ⊕Q){C ⊕ D} = P{C} ⊕ Q{D}

holds provided that the dimensions of P and Q conform to the dimensions of C and

D, respectively.

Theorem 2.1 ([21]). Let A = (A1, . . . , Ap) be a matrix tuple of conforming

dimensions (1.2). Then there is a transformation tuple P such that P{A} can be

written as the direct sum of tuples taking one of the following forms.

(i) Jm(λ) = (Jm(λ), . . .) with λ ∈ C \ {0}, (nonzero, finite Jordan tuple)

(ii) Nm(k) = (· · · , Jm(0), . . .), (zero/infinite Jordan tuple with block at pos. k)

(iii) Rm(k1, k2) =

{
(. . . , Fm, . . . , Gm, . . .) if sk1

6= sk2
,

(. . . , Fm, . . . , GT
m, . . .) if sk1

= sk2
,

(right singular tuple with blocks at pos. k1 and k2)

(iv) Lm(k1, k2) =

{
(. . . , FT

m, . . . , GT
m, . . .) if sk1

6= sk2
,

(. . . , FT
m, . . . , Gm, . . .) if sk1

= sk2
,

(left singular tuple with blocks at pos. k1 and k2)

where . . . denotes a sequence of identity matrices of appropriate dimension. This

decomposition is uniquely determined up to permutation of the summands.

Note that the order of Fm and Gm in (iii) and (iv) of Theorem 2.1 is not important;

the roles of Fm and Gm can be interchanged by applying a permutation.
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The following linguistic conventions will be useful. The tuples Theorem 2.1.(i)

and (ii) are called Jordan tuples and the tuples appearing in Theorem 2.1.(iii) and (iv)

are called singular tuples. We say that the Jordan tuple Nm(k) from Theorem 2.1 (ii)

belongs to λ = 0 if sk = 1 and to λ =∞ if sk = −1. If there are several Jordan tuples

belonging to a particular eigenvalue λ (may it be nonzero finite, zero, or infinite),

we let qj(λ) denote the dimension of the jth tuple. That is, the tuple has the form

Jqj(λ)(λ) (if λ is nonzero and finite) or Nqj(λ)(k) for some k (otherwise). In the

following, we will always assume the ordering q1(λ) ≥ q2(λ) ≥ · · · . A matrix tuple

A is called regular if its canonical form only contains Jordan tuples, and singular

otherwise.

3. Codimension of the tuple orbit. The set of all tuples that can be obtained

from A by an equivalence transformation (1.3) forms a manifold in the space C
N ,

where N =
∑p

k=1 nknk⊕1. In the definition of N , each Ak contributes nknk⊕1 to the

dimension of the manifold. This manifold will be denoted by

orbit(A) =
{
P{A} : P is a transformation tuple

}
.

The dimension of an orbit is the dimension of its tangent space at a specified tuple in

the manifold, and the codimension is the dimension of the normal space of the orbit

at the same specified tuple. Trivially, the dimension and the codimension of the orbit

add up to N . The aim of this section is to count the codimension of this manifold

in terms of the generalized Kronecker structure of A. More specifically, Table 3.1

provides a summary of the main result we are aiming at and the rest of this section

is devoted to proving and filling in the details of Table 3.1.

3.1. Breakdown into cointeractions. We will follow the strategy of Demmel

and Edelman [3] to compute the codimension as the sum of cointeractions between

simple building blocks of the tangent space of orbit(A) at A. To compute this tangent

space, we choose the transformation matrices Pk = I + δXk for sufficiently small δ.

Note that P−1
k = (I + δXk)−1 = I − δXk + O(δ2). This shows that – to first

order – the elements of the correspondingly transformed tuple P{A} take the form

Ak +δ(AkXk−Xk⊕1Ak) if sk = 1 and Ak +δ(AkXk⊕1−XkAk) if sk = −1. Therefore,

the tangent space of orbit(A) at A consists of matrix tuples in the image of the linear

operator

(3.1) Sylv : X 7→ Y with Yk =

{
AkXk −Xk⊕1Ak if sk = 1,

AkXk⊕1 −XkAk if sk = −1.

Note that the matrices Xk are nk × nk but the matrices Yk are nk⊕1 × nk for sk = 1,

or nk × nk⊕1 for sk = −1. If d denotes the dimension of the kernel of the linear
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The codimension of the orbit of the tuple A only depends on its canonical form

described by Theorem 2.1. It can be computed as the sum

ctotal = cJordan + csingular + cJordan,singular

with the summands defined as follows.

1. cJordan is the sum of cointeractions between Jordan tuples:

cJordan =
∑

λ

q1(λ) + 3q2(λ) + 5q3(λ) + · · · ,

where the sum is taken over all eigenvalues λ of A, including zero and in-

finite eigenvalues, and qj(λ) denotes the decreasingly ordered dimensions

of each Jordan tuple belonging to λ;

2. csingular is the sum of cointeractions between singular tuples described in

Section 3.3;

3. cJordan,singular is the sum of cointeractions between Jordan tuples and sin-

gular tuples described in Section 3.4.
Table 3.1

Summary of the main result on counting codimensions.

operator Sylv, then the codimension of orbit(A) is given by

p∑

k=1

nknk⊕1 −
( p∑

k=1

n2
k − d

)
= d−

1

2

p∑

k=1

(nk⊕1 − nk)2.

The term 1
2

∑p
k=1(nk⊕1 − nk)2 counts the differences in the dimensions of Ak and

disappears if all factors are square. It remains to determine d.

It is not hard to see that the dimension of the kernel of Sylv does not change when

A undergoes an equivalence transformation by a transformation tuple P, see (1.3).

We can therefore assume without loss of generality that A is in the canonical form

described by Theorem 2.1. To break down the dimension count into the individual

tuples in this canonical form, we first investigate the direct sum of two tuples: A =

B⊕C. Let us partition Xk =

[
X

(k)
11

X
(k)
21

X
(k)
12

X
(k)
22

]
conformally such that (3.1) can be written

as

AkXk −Xk⊕1Ak =

[
BkX

(k)
11 −X

(k⊕1)
11 Bk BkX

(k)
12 −X

(k⊕1)
12 Ck

CkX
(k)
21 −X

(k⊕1)
21 Bk CkX

(k)
22 −X

(k⊕1)
22 Ck

]

for sk = 1, and analogously for sk = −1. The number d of linearly independent

solutions to AkXk − Xk⊕1Ak = 0 is the sum of the number of linearly independent
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solutions to each of the four (decoupled) subblocks. We therefore obtain

(3.2) d = d(B,B) + d(B, C) + d(C,B) + d(C, C),

where d(B, C) is the dimension of the kernel of the linear operator

(3.3) Sylv(B, C) : X 7→ Y with Yk =

{
BkXk −Xk⊕1Ck if sk = 1,

BkXk⊕1 −XkCk if sk = −1,

and the other quantities in (3.2) are analogously defined. This discussion extends

in a straightforward way to direct sums of more than two tuples. Following [3],

we introduce the concepts of interactions and cointeractions between the individual

components of a direct sum.

Definition 3.1. Let A = B1 ⊕ · · · ⊕ Bt with each tuple Bj having dimensions(
n

(j)
1 , n

(j)
2 , . . . , n

(j)
p

)
. Then the interaction d(Bi,Bj) between Bi and Bj is the dimen-

sion of the kernel of Sylv(Bi,Bj) defined in (3.3). The cointeraction between Bi and

Bj is defined as

(3.4) c(Bi,Bj) := d(Bi,Bj)−
1

2

p∑

k=1

(
n

(i)
k⊕1 − n

(i)
k

)(
n

(j)
k⊕1 − n

(j)
k

)
.

A direct extension of (3.2) shows that d is the sum of all possible interactions,

yielding the following result.

Lemma 3.2. The codimension of the orbit of A = B1 ⊕ · · · ⊕ Bt is the sum of

cointeractions c(Bi,Bj) for all combinations of i and j with i, j ∈ [1, t].

Proof. The result follows from

t∑

i,j=1

c(Bi,Bj) =

t∑

i,j=1

d(Bi,Bj)−
1

2

t∑

i,j=1

p∑

k=1

(
n

(i)
k⊕1 − n

(i)
k

)(
n

(j)
k⊕1 − n

(j)
k

)

= d−
1

2

p∑

k=1

t∑

i,j=1

(
n

(i)
k⊕1 − n

(i)
k

)(
n

(j)
k⊕1 − n

(j)
k

)

= d−
1

2

p∑

k=1

[ t∑

i=1

(
n

(i)
k⊕1 − n

(i)
k

)]2

= d−
1

2

p∑

k=1

(
nk⊕1 − nk

)2
.

In particular, when A is in canonical form, Lemma 3.2 reveals that counting

all cointeractions between canonical tuples yields the codimension of its orbit. In

the following, it will be more convenient to count the interactions and obtain the

cointeractions according to Definition 3.1.
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3.2. Interactions between Jordan tuples. First, we count interactions be-

tween Jordan tuples. For this purpose, the following proposition turns out to be

helpful.

Proposition 3.3. Consider the tuples

B = (. . . , B, . . .),
↑

k

C = (. . . , C, . . .),
↑

l

with matrices B and C at positions k and l, respectively, and otherwise containing

identities. Then

d(B, C) =

{
dim{X : BX = XC} if sk = sl,

dim{X : BXC = X} if sk 6= sl.

Proof. By shifting the indices, we may assume without loss of generality that

k = 1. Assume sk = sl = 1. Then d(B, C) is the kernel dimension of the operator (3.3).

Any element X = (X1, . . . ,Xp) in this kernel satisfies

(3.5)

BX1 = X2, X2 = X3, . . . , Xl−1 = Xl, Xl = Xl+1C, Xl+1 = Xl+2, . . . , Xp = X1.

Removing all trivial dependencies yields the equation BX1 = X1C and hence d(B, C)

is solely determined by the kernel dimension of this equation. The proof for sk = sl =

−1 is entirely analogous.

Now assume sk = 1 but sl = −1. Then (3.5) needs to be replaced by

BX1 = X2, X2 = X3, . . . , Xl−1 = Xl, XlC = Xl+1, Xl+1 = Xl+2, . . . , Xp = X1.

Removing all trivial dependencies yields the equation BX1C = X1. Again, the proof

for sk1
= −1, sk2

= 1 is analogous.

Lemma 3.1 in [9] on the unique solvability of periodic Sylvester equations implies

that the kernels of Sylv(Jℓ(λ),Jm(µ)) for λ 6= µ, Sylv(Jℓ(λ),Nm(k)) and Sylv(Nℓ(k),

Jm(λ)) are all trivial. In the consideration of interactions between Jordan tuples,

we can therefore restrict the cointeraction counts to the cases (Jℓ(λ),Jm(λ)) and

(Nℓ(k1),Nm(k2)).

Lemma 3.4. c(Jℓ(λ),Jm(λ)) = min{ℓ,m}.

Proof. By Proposition 3.3, d(Jℓ(λ),Jm(λ)) is the dimension of the linear space of

all matrices satisfying the Sylvester equation Jℓ(λ)X −XJm(λ) = 0. The statement

of the lemma now follows from standard results, see also Proposition A.1.1.

The following result shows not only that the statement of Lemma 3.4 extends

to interactions between Jordan tuples belonging to λ ∈ {0,∞}, but also that there
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are no interactions between a Jordan tuple belonging to λ = 0 and a Jordan tuple

belonging to λ =∞.

Lemma 3.5. c(Nℓ(k1),Nm(k2)) = min{ℓ,m} if sk1
= sk2

and c(Nℓ(k1),Nm(k2))

= 0 if sk1
6= sk2

.

Proof. If sk1
= sk2

, then the result follows as in the proof of Lemma 3.4. If

sk1
6= sk2

, then Proposition 3.3 implies that c(Nℓ(k1),Nm(k2)) is the dimension of

the linear space of all matrices satisfying the Stein equation NℓX1Nm−X1 = 0. The

statement of the lemma now follows from Proposition A.1.3.

Let us summarize the interactions between Jordan tuples. If λ is an eigenvalue

(may it be finite, zero, or infinite) with Jordan blocks of sizes q1(λ) ≥ q2(λ) ≥ q3(λ) ≥

· · · , then the sum of all cointeractions caused by λ is given by

(3.6) cJordan(λ) = q1(λ) + 3q2(λ) + 5q3(λ) + · · · ,

just as in the case of standard Jordan canonical and Kronecker canonical forms [3].

The sum of all cointeractions between Jordan tuples is therefore

cJordan =
∑

λ

q1(λ) + 3q2(λ) + 5q3(λ) + · · · ,

which proves the first item in Table 3.1.

3.3. Interactions between singular tuples. For tuples of the form

B = (. . . , B1, . . . , B2, . . .),
↑

k1

↑

k2

C = (. . . , C1, . . . , C2, . . .),
↑

l1

↑

l2

we will see that the periodic Sylvester equation (3.3) reduces to different types of

equations, depending on the relative placement of the nontrivial blocks and the sign

tuple. There is an overwhelming number of possibilities for the placement and signs.

In the following, we discuss several techniques to reduce this number and tame the

classification to a certain extent.

Excluding shared positions and assuming p = 4 w.l.o.g. First, we show

how to exclude the special case when the nontrivial coefficients in B and C share a

position. This is achieved by constructing tuples having the same interaction but no

shared position.

Consider first the case k1 = l1 and sk1
= 1. Then the kernel of the Sylvester

operator (3.3) satisfies the equation

B1Xk1
= Xk1⊕1C1.
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By introducing a slack matrix X̃, we obtain the two equations

B1Xk1
= X̃, X̃ = Xk1⊕1C1,

corresponding to the extended (p + 1)-tuples

B̃ = (. . . , B1, . . . , B2, . . .),
↑

k1

↑

k2+1

C̃ = (. . . , C1, . . . , C2, . . .).
↑

k1+1
↑

l2+1

As the slack matrix does not change the dimension of the kernel of the periodic

Sylvester operator, the interactions of the original and the extended tuples are the

same. However, the terms of the subtracted sum in (3.4) change, meaning that the

cointeractions may change after the slack matrix has been introduced.

Similarly, for k1 = l1 and sk1
= −1 the corresponding matrix equation

B1Xk1⊕1 = Xk1
C1

can be extended such that B1 is moved one position to the right, without changing

their interaction but possibly changing their cointeraction.

We may therefore assume without loss of generality that ki 6= lj for i, j = 1, 2.

Furthermore, by an argument used in the proof of Proposition 3.3, identities at the

same position in both tuples correspond to trivial matrix equations that can be re-

moved. We can therefore assume without loss of generality that B and C are both

tuples of p = 4 matrices.

Taming 384 cases. Now assuming p = 4 and no shared position there are

precisely six different possibilities for the placement of the blocks in B and C, as

illustrated in the first row of Table 3.2. When taking into account the 16 possible

sign combinations, see the first column of Table 3.2, we get 96 different equations

in total. Even worse, since each tuple can correspond either to a left or a right

singular tuple, there are four different combinations of coefficients in these equations.

Hence, in total there would be 384 different cases for which we have to compute the

corresponding interaction. Fortunately, many of these cases are equivalent, which

helps reduce the computation significantly.

Omitting trivially satisfied parts of the matrix equations, it turns out that there

are only eight genuinely different types of matrix equations associated with the 384 dif-

ferent cases, see Table 3.3. It is important to note that the coefficients B̃1, B̃2, C̃1, C̃2

of the matrix equations do not necessarily have the same order as the coefficients

B1, B2, C1, C2 in B, C and need to be adjusted according to the matrix equation vari-

ant, see Table 3.4. Note that the symbols Rℓ and Lm are used to denote right and

left singular tuples, see Theorem 2.1.
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sign

tuple

(B1, I,B2, I )

( I, C1, I, C2)

( I,B1, I,B2)

(C1, I, C2, I )

(B1,B2, I, I )

( I, I, C1,C2)

( I, I,B1,B2)

(C1,C2, I, I )

(B1, I, I,B2)

( I, C1,C2, I )

( I,B1,B2, I )

(C1, I, I, C2)

++++ VIII:1 VIII:3 I:4 I:4 I:3 I:2

+++- II:1 IV:1 II:2 IV:3 IV:3 II:2

++-+ IV:3 II:2 II:2 IV:3 II:1 IV:1

++-- V:1 V:1 III:2 III:4 VII:1 VI:1

+-++ II:2 IV:3 IV:3 II:2 II:1 IV:1

+-+- III:2 III:4 V:1 V:1 V:1 V:1

+--+ V:1 V:1 VI:1 VII:1 III:2 III:1

+--- IV:3 II:2 IV:1 II:1 IV:1 II:1

-+++ IV:1 II:1 IV:3 II:2 IV:3 II:2

-++- V:1 V:1 VII:1 VI:1 III:4 III:2

-+-+ III:1 III:2 V:1 V:1 V:1 V:1

-+-- II:1 IV:1 IV:1 II:1 II:2 IV:3

--++ V:1 V:1 III:1 III:2 VI:1 VII:1

--+- IV:1 II:1 II:1 IV:1 II:2 IV:3

---+ II:2 IV:3 II:1 IV:1 IV:1 II:1

---- VIII:3 VIII:1 I:1 I:1 I:2 I:3
Table 3.2

Given singular tuples B, C and a sign tuple s = (±1,±1,±1,±1) this table gives the corre-

sponding matrix equation type and variant. For example, IV:3 refers to matrix equation type IV and

variant 3.

It is best to illustrate the procedure to obtain the matrix equation and the inter-

action by a concrete example.

Example 3.6. Consider s = (+1,+1,−1,+1) and

B = Rℓ(2, 4) = (I, Fℓ, I, GT
ℓ ), C = Rm(1, 3) = (Fm, I, Gm, I).

The corresponding matrix equations satisfied by the kernel of the operator (3.3) are

X1 = X2Fm, FℓX2 = X3, X4 = X3Gm, GT
ℓ X4 = X1, which boils down to GT

ℓ FℓX2Gm

= X2Fm. Using GT
ℓ Fℓ = JT

ℓ+1(0) and applying flip matrices1 from both sides we ob-

tain the equation Jℓ+1(0)XFm = XGm, which only has the trivial solution according

to Proposition A.1.2a and hence the interaction between both tuples is 0.

We now show how the same result can be obtained from the tables. The setup

corresponds to the third column and row “++-+” in Table 3.2. At the corresponding

entry we have II:2, which means Equation II variant 2. Table 3.3 reveals that

Equation II is given by B̃1B̃2XC̃1 = XC̃2. According to Table 3.4, variant 2 means

1A flip matrix, Pflip, is a permutation matrix with ones on the anti-diagonal and zeros everywhere

else.
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Type Equation

I B̃1B̃2X = XC̃1C̃2

II B̃1B̃2XC̃1 = XC̃2

III B̃1B̃2XC̃1C̃2 = X

IV B̃1XC̃1C̃2 = B̃2X

V B̃1XC̃1 = B̃2XC̃2

VI

{
B̃1X = B̃2Y

XC̃1 = Y C̃2

VII

{
B̃1X = Y C̃1

B̃2X = Y C̃2

VIII

{
B̃1X = Y C̃1

B̃2Y = XC̃2

Table 3.3

Classification of matrix equation types.

the following relation between the coefficients: B̃1 = B2 = GT
ℓ , B̃2 = B1 = Fℓ,

C̃1 = C1 = Fm, C̃2 = C2 = Gm. Moreover, the column “RℓRm” in Table 3.4 shows

that the correspondingly modified pair of singular tuples is given by B̃ = Lℓ, C̃ = Rm.

Finally, the corresponding entry in column “LℓRm” and row “II” of Table 3.5 states

the interaction between the two tuples: 0.

Variant B̃1 B̃2 C̃1 C̃2 RℓRm RℓLm LℓRm LℓLm

1 B1 B2 C1 C2 RℓRm RℓLm LℓRm LℓLm

2 B2 B1 C1 C2 LℓRm LℓLm RℓLm RℓLm

3 B1 B2 C2 C1 RℓLm RℓRm LℓLm LℓRm

4 B2 B1 C2 C1 LℓLm LℓRm RℓLm RℓRm

Table 3.4

Coefficient relation table. Depending on the matrix equation variant, this table states how the

coefficients need to be modified before using Table 3.5. For example, variant 4 yields for B = Rℓ,

C = Rm the modified tuples B̃ = Lℓ, C̃ = Lm.

Tables 3.2–3.4 can be derived by simple but tedious algebraic manipulations. To

speed up the process and reduce the risk of errors, we derived these tables using an

automated procedure. In contrast, the relations in Table 3.5 are nontrivial and require

further explanation.

Theorem 3.7. The interactions stated in Table 3.5 are correct.

Proof. The proof proceeds by formulating the matrix equation corresponding to

an entry in Table 3.5 and applying Proposition A.1, which states the kernel dimensions

of all matrix equations needed in this process. To illustrate the process, we will
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Equation (Modified) Matrix Tuples

Type RℓRm RℓLm LℓRm LℓLm

I min(ℓ,m) min(ℓ,m + 1) min(ℓ + 1,m) 1 + min(ℓ,m)

II 0 ℓ 0 ℓ + 1

III 0 0 0 0

IV m m + 1 0 0

V max(0,m− ℓ) ℓ + m + 1 0 max(0, ℓ−m)

VI max(0,m− ℓ− 1) ℓ + m + 2 0 max(0, ℓ−m− 1)

VII max(0,m− ℓ + 1) ℓ + m 0 max(0, ℓ−m + 1)

VIII 1 + min(ℓ,m) min(ℓ,m) min(ℓ,m) 1 + min(ℓ,m)
Table 3.5

Table of interactions depending on the matrix equation type (rows) and coefficients (columns).

Note that the modified matrix tuples B̃, C̃ according to the matrix equation variant, see Table 3.4,

need to be used.

prove the entries of column “RℓRm”. The following obvious relations are needed:

FmGT
m = Jm(0)T and FT

mGm = Jm+1(0).

For B = Rℓ, C = Rm, that is the interaction of two right singular tuples, Equa-

tion I becomes JT
ℓ (0)X − XJT

m(0) = 0. Here, and in the following, the transposes

of Jordan blocks can be removed by applying flip matrices. According to Proposi-

tion A.1.1, the kernel of this matrix equation (and hence the interaction) is min(ℓ,m).

Equation II becomes JT
ℓ (0)XFm −XGm = 0 and – according to Proposition A.1.2a

– its kernel dimension is 0. Equation III becomes JT
ℓ (0)XJT

m(0) − X = 0 and –

according to Proposition A.1.3 – its kernel dimension is 0. Equation IV becomes

FℓXJT
m(0)−GℓX = 0 and – according to Proposition A.1.4a – its kernel dimension is

m. Equation V becomes FℓXFm−GℓXGm = 0 and – according to Proposition A.1.5a

– its kernel dimension is max(0,m− ℓ). Equation VI becomes

{
FℓX −GℓY = 0

XFm − Y Gm = 0
and – according to Proposition A.1.6a – its kernel dimension is max(0,m−ℓ−1). Equa-

tion VII becomes

{
FℓX − Y Fm = 0

GℓX − Y Gm = 0
and – according to Proposition A.1.7a – its

kernel dimension is max(0,m− ℓ+1). Equation VIII becomes

{
FℓX − Y Fm = 0

GT
ℓ Y −XGT

m = 0
and – according to Proposition A.1.8a – its kernel dimension is 1 + min(ℓ,m).

Example 3.8. As another example on how to use Tables 3.3–3.5, consider the

tuples

Rℓ(2, 3) = (I, Fℓ, G
T
ℓ ), Lm(1, 3) = (FT

m, I, GT
m)

with sign tuple s = (−1,+1,+1). The first step is to standardize the tuples so that

they conform to the conventions of the tables. We get rid of the shared third position
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by appending a fourth component with positive sign and moving GT
m to the fourth

position. The standardized form of the tuples is

B = Rℓ(2, 3) = (I, Fℓ, G
T
ℓ , I), C = Lm(1, 4) = (FT

m, I, I,GT
m)

with sign tuple (−1,+1,+1,+1). According to Table 3.2, the corresponding matrix

equation is type II variant 2. Table 3.4 reveals that variant 2 implies the use of LℓLm

instead of RℓLm. Finally, Table 3.5 produces the interaction ℓ + 1 for Equation II

with these modified matrix tuples.

3.4. Interactions between Jordan and singular tuples. After having dis-

cussed interactions between Jordan tuples and between singular tuples in Sections 3.2

and 3.3, respectively, it remains to discuss the mixed case: interactions between Jor-

dan and singular tuples.

Similarly to the case of interactions between singular tuples, there are several

types of reduced matrix equations that may result, depending on the relative place-

ment of the coefficients as well as the sign tuple. Similarly as in Section 3.3 we can

exclude shared positions and – since the Jordan tuple contains only one nontrivial

coefficient J – restrict ourselves to p = 3. For p = 3, there are six possible relative

placements, listed in the first row of Table 3.6, and there are eight possible sign com-

binations. The reduced matrix equations are of types I – IV in Table 3.3 with the

replacements B̃1B̃2 = J and C̃1C̃2 = J . Table 3.6 shows the reduced matrix equation

Signs
(J, I, I )

(I,C1,C2)

(I,B1,B2)

(J, I, I )

( I, J, I )

(C1,I,C2)

(B1,I,B2)

( I, J, I )

( I, I, J)

(C1,C2,I )

(B1,B2,I )

( I, I, J)

+++ I:3 I:2 I:1 I:1 I:3 I:2

++- II:1 IV:1 II:1 IV:1 III:3 III:2

+-+ II:1 IV:1 III:1 III:2 II:1 IV:1

+-- III:1 III:2 II:1 IV:1 II:1 IV:1

-++ III:1 III:2 II:1 IV:1 II:1 IV:1

-+- II:1 IV:1 III:1 III:2 II:1 IV:1

--+ II:1 IV:1 II:1 IV:1 III:1 III:1

--- I:1 I:1 I:3 I:2 I:1 I:1
Table 3.6

Given singular/Jordan tuples B, C and a sign tuple s = (±1,±1,±1), this table gives the cor-

responding reduced matrix equation and variant.

and variant for each case of a regular tuple interacting with a singular tuple and vice

versa. Note that the block J is either Jm(λ) with λ 6= 0 (corresponding to Jm(k))

or Jm(0) (corresponding to Nm(k)). Before the interactions can be obtained, the

coefficients and tuples need to be adjusted according to Table 3.7. Finally, Table 3.8
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Variant J C̃1 C̃2 JℓRm JℓLm NℓRm NℓLm

1 J C1 C2 JℓRm JℓLm NℓRm NℓLm

3 J C2 C1 JℓLm JℓRm NℓLm NℓRm

Variant B̃1 B̃2 J RℓJm LℓJm RℓNm LℓNm

1 B1 B2 J RℓJm LℓJm RℓNm LℓNm

2 B2 B1 J LℓJm RℓJm LℓNm RℓNm

Table 3.7

Coefficient relation table. Depending on the matrix equation variant, this table states how the

coefficients and tuples need to be modified before using Table 3.8.

gives the interaction between a Jordan and a modified singular tuple. The entries of

this table follow from Proposition A.1 as in the proof of Theorem 3.7.

Equation (Modified) Matrix Tuples

Type JℓRm NℓRm JℓLm NℓLm

I 0 min(ℓ,m) 0 min(ℓ,m + 1)

II 0 0 ℓ ℓ

III 0 0 0 0

Equation (Modified) Matrix Tuples

Type RℓJm RℓNm LℓJm LℓNm

I 0 min(ℓ,m) 0 min(ℓ + 1,m)

III 0 0 0 0

IV m m 0 0
Table 3.8

Table of interactions depending on matrix equation type (rows) and modified tuples (columns).

Again we use an example to illustrate how the interaction between a singular and

a Jordan tuple can be obtained from the tables above.

Example 3.9. Consider s = (−1,−1,+1) and

B = Rℓ(1, 3) = (Fℓ, I, Gℓ), C = Nm(2) = (I, Jm(0), I),

corresponding to row “--+” and column 5 in Table 3.6. The corresponding entry

states IV:1, referring to equation type IV variant 1. In variant 1, no tuples need to be

modified and hence row “IV” and column “RℓNm” of Table 3.8 provides rightaway

the interaction between both tuples: m.

As mentioned in the introduction, the generic canonical form of a rectangular
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matrix pencil (p = 2, s = (+1,−1), n2 6= n1) solely consists of singular blocks.

Tables 3.6–3.8 allow to extend this statement to general p.

Theorem 3.10. Let A = (A1, . . . , Ap) be a matrix tuple of the form (1.2). If the

dimensions n1, . . . , np do not satisfy

(3.7)
∑

sk=1

(nk⊕1 − nk) =
∑

sk=−1

(nk − nk⊕1),

then the generic canonical form of A solely consists of singular tuples.

Proof. Assume that A does not satisfy (3.7) but has a Jordan tuple Jℓ (or Nℓ)

with ℓ ≥ 1. Since (3.7) does not hold, the canonical form of A must contain at least

one singular tuple C. A necessary condition for the canonical form to be generic is

that there is no mutual interaction between Jℓ and any singular block C:

(3.8) d(Jℓ, C) + d(C,Jℓ) = 0.

This can be seen from the fact that (3.4) implies c(Jℓ, C) + c(C,Jℓ) = d(Jℓ, C) +

d(C,Jℓ). Hence, if (3.8) was violated, the cointeraction between Jℓ and C (or vice

versa) would not vanish and the canonical form cannot be generic.

If Jℓ and C do not share a position, we can apply a cyclic permutation of the

coefficients, which does not affect either interaction, such that the standardized Jordan

and singular tuples take the form (J, I, I) and (I, C1, C2), respectively. This setting

corresponds to columns 2 and 3 in Table 3.6. For the reduced sign tuples ++-, +-+,

-+-, and --+, the mutual interaction is ℓ according to rows II and IV of Table 3.8.

Hence, for (3.8) to hold the reduced sign tuple must be of the form +++, +--, ---,

or -++. In all these cases, the dimensions m1, . . . ,mp of the corresponding singular

tuple satisfy

(3.9)
∑

sk=1

(mk⊕1 −mk) =
∑

sk=−1

(mk −mk⊕1).

To see this, first note that both C1 and C2 have the same sign in all of the specified

sign tuples. Thus, one of the sums in (3.9) contains nothing but zeros, while the other

sum contains one +1, one −1 and otherwise only zeros.

If Jℓ and C share a position, we may assume without loss of generality that the

tuples take the form (J, I) and (C1, C2). Applying Tables 3.6 and 3.8 to the expanded

tuples shows that the mutual interaction is ℓ for the sign tuples +-, -+, and 0 for 0

for the sign tuples ++ and --. Note that the singular tuples satisfy (3.9) in the latter

case.

In summary, all singular tuples that are admissible in the sense of (3.8) sat-

isfy (3.9). Hence, when we remove these singular tuples from the canonical form of A
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then the dimensions of the resulting regular matrix tuple still violate (3.7). This is a

contradiction as the coefficients of a regular tuple must be square, for which (3.7) is

trivially satisfied.

Note that (3.7) is necessary but generally not sufficient in order to guarantee that

A has a non-vanishing regular part. The following definition is motivated by the fact

that (3.7) is satisfied if and only if the corresponding block cyclic embedding is a

square matrix pencil, see for example [17].

Definition 3.11. A matrix tuple of the form (1.2) is called squarish if its

dimension and sign tuples satisfy (3.7).

3.5. Software for counting the codimension. The results from this section

have been incorporated into a Python script codimension.py that can be used to

count and verify the codimension of a tuple in canonical form. The script is available at

http://www.sam.math.ethz.ch/NLAgroup/codimensions.html and http://www8.

cs.umu.se/~larsk/codimension.py. The canonical structure needs to be specified

on input by a text file. For example, for s = (+1,−1,+1,−1) and A = J2(1) ⊕

J2(1)⊕ L1(1, 3)⊕ L1(1, 4), this text file should take the following form:

s = (+1,-1,+1,-1)

J(2,1)

J(2,1)

L(1,1,3)

L(1,1,4)

The script then closely follows the procedure described above to compute the in-

teractions between all canonical tuples symbolically. The sum of these interactions

yields the dimension of the kernel of the linear matrix operator (3.1) and hence the

codimension of orbit(A). Additionally, the script produces a Matlab function that

constructs the matrix belonging to the Kroneckerized linear matrix operator (3.1).

The kernel dimension of this matrix equals the kernel dimension of the linear oper-

ator; this automatically generated Matlab function can therefore be used to verify

the codimension of A numerically.

4. The special case s = (+1, . . . ,+1). In principle, the results of Section 3

allow us to check whether a given canonical form is generic, simply by verifying that

its codimension is zero. In practice, however, the technical complexity of the current

formulation of these results gives little hope for a compact and elegant description of

all generic canonical forms in the general case. The aim of this section is to point out

special cases for which generic canonical forms can be obtained quite conveniently

from our results. In particular, we will focus on the case s = (+1, . . . ,+1).
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4.1. Contragredient equivalence: p = 2, s = (+1,+1). Canonical forms for

a product of two matrices, i.e., p = 2 and s = (+1,+1), have received some attention

in the literature, see [12, 14]. In this special case, the equivalence relation (1.3) is

sometimes called contragredient equivalence of (A1, A2). The canonical form under

contragredient equivalence is an immediate corollary of Theorem 2.1.

Corollary 4.1. Consider a matrix pair (A1, A2) with A1 ∈ C
n2×n1 and A2 ∈

C
n1×n2 . Then there are invertible matrices P1 ∈ C

n1×n1 , P2 ∈ C
n2×n2 such that

(P−1
2 A1P1, P

−1
1 A2P2) can be written as the direct sum of pairs taking one of the

following forms:

(i) Jm(λ) = (Jm(λ), I) with λ ∈ C \ {0}, (nonzero Jordan pair)

(ii) Nm = (Jm(0), I), (zero Jordan pair)

(iii) Rm = (Fm, GT
m), (right singular pair)

(iv) Lm = (FT
m, Gm). (left singular pair)

This decomposition is uniquely determined up to permutation of the summands.

In the following, we count codimensions of the orbit of the matrix pair (A1, A2)

under contragredient equivalence using the general results from Section 3. For this

purpose, we represent the number and sizes of the canonical pairs as follows.

• For each zero or nonzero eigenvalue λ, let q1(λ) ≥ q2(λ) ≥ q3(λ) ≥ · · · denote

the decreasingly ordered sizes of its Jordan pairs.

• Let ǫ1 ≥ ǫ2 ≥ ǫ3 ≥ · · · denote the decreasingly ordered sizes of the right

singular pairs.

• Let η1 ≥ η2 ≥ η3 ≥ · · · denote the decreasingly ordered sizes of the left

singular pairs.

Then the codimension count is

ctotal = cJordan + csingular + cJordan,singular,

with the cJordan, csingular and cJordan,singular depending on qi, γi, ǫi, ηi as explained below.

Interactions between Jordan pairs. The results in Section 3.2, see in par-

ticular (3.6), imply that the total (co)interaction between Jordan pairs belonging to

zero and nonzero eigenvalues is given by

(4.1) cJordan =
∑

λ

(q1(λ) + 3q2(λ) + 5q3(λ) + · · · ) .

Interactions between singular pairs. Suppose that B, C are singular pairs,

i.e., B ∈ {Rǫi
,Lηi
} and C ∈ {Rǫj

,Lηj
}. According to the procedure in Section 3.3,
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we first expand these pairs into tuples of length p = 4:

B = (B1, I, B2, I), C = (I, C1, I, C2), s = (+1,+1,+1,+1).

Inspecting Table 3.2 we obtain matrix equation VIII variant 1 from the second col-

umn in row “++++”. Since no modification of the tuples is needed for variant 1, the

interaction between B and C can be directly read off from row “VIII” of Table 3.5:

d(Rǫi
,Rǫj

) = 1 + min(ǫi, ǫj), d(Rǫi
,Lηj

) = min(ǫi, ηj),

d(Lηi
,Rǫj

) = min(ηi, ǫj), d(Lηi
,Lηj

) = 1 + min(ηi, ηj).

The cointeractions are obtained by accounting for the differences among dimensions

according to (3.4):

c(Rǫi
,Rǫj

) = min(ǫi, ǫj), c(Rǫi
,Lηj

) = 1 + min(ǫi, ηj),

c(Lηi
,Rǫj

) = 1 + min(ηi, ǫj), c(Lηi
,Lηj

) = min(ηi, ηj).

Hence, the sum of all cointeractions between right singular pairs is

cright = ǫ1 + 3ǫ2 + 5ǫ3 + · · · ,

the sum of all cointeractions between left singular pairs is

(4.2) cleft = η1 + 3η2 + 5η3 + · · · ,

and the sum of all cointeraction between left and right singular pairs as well as right

and left singular pairs is

(4.3) cleft,right = 2
∑

i,j

(1 + min{ǫi, ηj}).

In summary, the total cointeraction between singular pairs is csingular = cright + cleft +

cleft,right.

Interactions between Jordan and singular pairs. It remains to discuss the

case of interactions between Jordan and singular pairs. Suppose that B ∈ {Jq,Nq}

is a Jordan pair and C ∈ {Rǫj
,Lηj
} is a singular pair. Expansion into the case p = 3

yields the tuples

B = (J, I, I), C = (I, C1, C2), s = (+1,+1,+1).

This corresponds to equation type I variant 3, see column 2 in row “+++” of Table 3.6.

The case of a singular pair B and a Jordan pair C is expanded into

B = (B1, I, B2), C = (I, J, I), s = (+1,+1,+1),
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which corresponds to equation type I variant 1, see column 5 in row “+++” of Table 3.6.

In the case of a nonzero eigenvalue, for a Jordan pair Jq, Table 3.8 reveals zero

(co)interaction. In the case of a zero eigenvalue, for a Jordan pair Nq, the combined

(co)interactions are given by

c(Nq,Rǫj
) + c(Rǫj

,Nq) = min(q, ǫj + 1) + min(ǫj , q),

c(Nq,Lηj
) + c(Lηj

,Nq) = min(q, ηj) + min(ηj + 1, q).

Hence, the total (co)interaction between Jordan pairs and singular pairs (and vice

versa) is

(4.4) cJordan,singular =
∑

i,j

min{2qi(0), 2ǫj + 1}+
∑

i,j

min{2qi(0), 2ηj + 1}.

The generic canonical form of (A1, A2) under contragredient equiva-

lence. In the following, we derive the generic canonical form for a matrix pair (A1, A2)

with s = (+1,+1) using the results presented above.

Consider the case n2 < n1. This directly implies that the canonical form contains

at least n1−n2 left singular pairs Lηi
accounting for the difference in the dimensions.

An inspection of (4.2) reveals η1 = · · · = ηn1−n2
= 0 in the generic case. By (4.3),

the generic canonical form may not contain any right singular blocks and hence,

using (4.1) and (4.4), the rest must be composed of Jordan pairs J1(λi) belonging to

n2 mutually different nonzero eigenvalues λi. This yields ctotal = n2; note, however,

that the codimension n2 is compensated by the fact that the n2 eigenvalues λi are

fixed for orbits. In summary, the generic canonical form is given by

J1(λ1)⊕ · · · ⊕ J1(λn2
)⊕ L0 ⊕ · · · ⊕ L0︸ ︷︷ ︸

n1−n2 times

.

Similarly in the case n1 < n2, the generic canonical form is given by

R0 ⊕ · · · ⊕ R0︸ ︷︷ ︸
n2−n1 times

⊕J1(λ1)⊕ · · · ⊕ J1(λn1
).

4.2. The generic canonical form for general p. In the following, we derive

the generic canonical form for a matrix tuple (A1, . . . , Ap) with s = (+1, . . . ,+1).

With a few exceptions the arguments are quite similar to Section 4.1; we will therefore

keep the discussion somewhat brief.

First, it is clear that the generic canonical form may only contain 1 × 1 Jordan

tuples and singular tuples of the form R0 or L0. Moreover, the following lemma

imposes some constraints on the positions of the singular blocks.

Lemma 4.2. Let s = (+1, . . . ,+1). Then
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1. c
(
R0(k1, k2),L0(l1, l2)

)
+ c

(
L0(l1, l2),R0(k1, k2)

)
= 0

⇔ k1 < k2 ≤ l1 < l2 or l1 < l2 ≤ k1 < k2 or k1 < l1 < l2 < k2;

2. c
(
R0(k1, k2),R0(l1, l2)

)
+ c

(
R0(l1, l2),R0(k1, k2)

)
= 0

⇔ k1 ≤ l1 < l2 ≤ k2 or l1 ≤ k1 < k2 ≤ l2;

3. c
(
L0(k1, k2),L0(l1, l2)

)
+ c

(
L0(l1, l2),L0(k1, k2)

)
= 0

⇔ k1 ≤ l1 < l2 ≤ k2 or l1 ≤ k1 < k2 ≤ l2 or k1 < k2 < l1 < l2 or

l1 < l2 < k1 < k2.

Proof. By the reduction technique discussed in Section 3.3, we may assume with-

out loss of generality that p = 4. Now, to verify the statement of the lemma, only

a finite number of possible block positions need to be verified. This verification has

been performed using the software described in Section 3.5. The obtained results,

which can be downloaded from the web page of the software, confirm the statement

of the lemma.

From Lemma 4.2.1 it immediately follows that there are nmin = min(n1, . . . , np)

Jordan tuples J1(λi) belonging to mutually different eigenvalues λi. By removing

these Jordan tuples we may assume nmin = 0 for the rest of this section.

To illustrate the general procedure for obtaining the generic canonical structure,

we consider the example

(4.5) n = (4, 3, 0, 2, 3, 1).

A cyclic permutation of the coefficients (which does not change the codimension)

allows us to assume n1 = 0:

(4.6) n← (0, 2, 3, 1, 4, 3).

Having n1 = 0 excludes right singular blocks, as the first dimension of R0(k1, k2)

is always 1. Hence, the generic canonical form solely consists of left singular blocks

L0(k1, k2), whose dimensions are

(4.7) (m1, . . . ,mp) =
(
0, . . . , 0︸ ︷︷ ︸

k1

, 1, . . . , 1︸ ︷︷ ︸
k2−k1

, 0, . . . , 0︸ ︷︷ ︸
p−k2

)
.

To determine the canonical structure we successively decompose the dimension vector

n into vectors of the form (4.7). Lemma 4.2 imposes some constraints on these 0/1

vectors. Any two 0/1 vectors must either be nested or at least one position apart

from each other. In particular, this implies that the decomposition of n contains a

string of consecutive 1s for any sequence of positive integers contained in n. Applied

to our example (4.6) this means that the decomposition will contain (0, 1, 1, 1, 1, 1),

which corresponds to L0(1, 6). We update n ← (0, 1, 2, 0, 3, 2) and apply the same

procedure to the longest sequence(s) of positive integers contained in n. Continuing

this process yields the following scheme:
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Step n1 n2 n3 n4 n5 n6 k1 k2 canonical tuple

1 0 2 3 1 4 3 1 6  L0(1, 6)

2 0 1 2 0 3 2 1 3  L0(1, 3)

3 0 0 1 0 3 2 4 6  L0(4, 6)

4 0 0 1 0 2 1 4 6  L0(4, 6)

5 0 0 1 0 1 0 2 3  L0(2, 3)

6 0 0 0 0 1 0 4 5  L0(4, 5)

0 0 0 0 0 0

The general procedure for n = (n1, . . . , np) with n1 = 0 is as follows.

While n 6= 0

1. Find a longest sequence nk1+1, nk1+2, . . . , nk2
of positive integers.

2. Add the left singular tuples L0(k1, k2) to the generic canonical form.

3. Update nk1+1 ← nk1+1 − 1, nk1+2 ← nk1+2 − 1, . . . , nk2
← nk2

− 1.

End While

It is easy to check that any two tuples L0(k1, k2), L0(k
′
1, k

′
2) generated by this proce-

dure satisfy the conditions of Lemma 4.2.3. Therefore the obtained canonical structure

is generic. Once the procedure has been completed, we need to apply the inverse of

the cyclic permutation, which was used to guarantee n1 = 0, to the canonical tu-

ples. This process is straightforward and shall only be illustrated with our example.

The generic canonical structures of the tuples belonging to the permuted and original

dimensions (4.6) and (4.5), respectively, take the following form:

(0, 2, 3, 1, 4, 3)

(FT
0 , I1, I1, I1, I1, G0)

⊕(FT
0 , I1, G0, I0, I0, I0)

⊕(I0, I0, I0, F
T
0 , I1, G0)

⊕(I0, I0, I0, F
T
0 , I1, G0)

⊕(I0, F
T
0 , G0, I0, I0, I0)

⊕(I0, I0, I0, F
T
0 , G0, I0)

 

(4, 3, 0, 2, 3, 1)

(I1, G0, F
T
0 , I1, I1, I1)

⊕(I0, I0, F
T
0 , I1, G0, I0)

⊕(I1, G0, I0, I0, I0, F
T
0 )

⊕(I1, G0, I0, I0, I0, F
T
0 )

⊕(I0, I0, I0, F
T
0 , G0, I0)

⊕(G0, I0, I0, I0, I0, F
T
0 )

=̂

R0(2, 3)

⊕L0(3, 5)

⊕R0(2, 6)

⊕R0(2, 6)

⊕L0(4, 5)

⊕R0(1, 6)

As already mentioned above, a cyclic permutation will not change the codimension.

Indeed, any two singular tuples fromR0(2, 3)⊕L0(3, 5)⊕R0(2, 6)⊕R0(2, 6)⊕L0(4, 5)⊕

R0(1, 6) satisfy the conditions of Lemma 4.2 and the canonical form is therefore still

of codimension 0.

5. Orthogonal reduction to square factors. Numerical algorithms, such as

the periodic QZ algorithm [1, 11], for solving the periodic eigenvalue problem asso-
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ciated with a matrix tuple are not able to handle nonsquare coefficients directly. To

circumvent this restriction, we develop a numerically stable procedure for extract-

ing the square, generically regular part from a tuple. After having performed this

reduction, existing algorithms can be applied to the extracted square part.

For s = (+1, . . . ,+1), Section 4.2 shows that the generically regular square part

has order nmin = min{n1, . . . , np}. In general, this is not the case. In particular, if

the matrix tuple is not squarish in the sense of (3.7), then Theorem 3.10 shows that

the generically regular square part has order 0 independent of nmin. To avoid this

degenerate situation, we will assume that the matrix tuple is squarish:

(5.1)
∑

sk=+1

(nk⊕1 − nk) =
∑

sk=−1

(nk − nk⊕1).

Unfortunately, as we will see in Example 5.3 below, even this assumption does not

imply that the generically regular square part has order nmin.

The reduction procedure to be described in the following has two stages, aimed

at reducing factors with sk = 1 and sk = −1, respectively, to square form.

Stage 1. To illustrate the idea of Stage 1 of the proposed extraction procedure,

we will first discuss a rather detailed example.

Example 5.1. Consider a matrix tuple for p = 6 with dimension tuple n =

(3, 5, 4, 5, 5, 2) and sign tuple s = (+1,−1,+1,−1,+1,−1). Then the generalized

product A−1
6 A5A

−1
4 A3A

−1
2 A1 takes the shape pictured below.

0)

−1 −1 −1n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

The first step of the reduction procedure consists of compressing the n2 = 5 rows

of A1 using a QR factorization, which results in an upper trapezoidal matrix with a

generically nonsingular r2 × r1 block in the upper left corner (r1 = r2 = 3).

−1 −1 −1n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

To obtain an equivalence transformation of the entire tuple, we have to pre-multiply

A2 by the orthogonal matrix from the QR factorization. Immediately after this up-

date, the two (n2 − r2) bottom rows of A2 are compressed by an RQ factorization
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and A3 is updated correspondingly.

1)

−1 −1 −1n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

The thick lines illustrate the 2×2 block upper triangular structure of each block of A.

The tuple corresponding to the upper left block has the dimensions r = (3, 3, 2, 5, 5, 2)

while the lower right block has the dimension n− r = (0, 2, 2, 0, 0, 0). Note that some

of the subblocks are degenerate in the sense of having one dimension equal to zero.

Only the upper left tuple may contain any regular part and is therefore processed

further. We continue compressing the two leading columns of A3 to a 2 × 2 matrix

using a QR factorization. After the corresponding update of A4, we compress the

three bottom rows of A3 using an RQ factorization.

2)

−1 −1 −1n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

Note that the remaining unreduced block tuple has dimensions (3, 3, 2, 2, 2, 2) and all

its coefficients with sk = 1 are square.

It is instructive to describe the procedure in Example 5.1 purely in terms of

integer operations on the dimension vector n = (n1, . . . , np). For this purpose, we

define

(5.2) ∆k =

{
nk⊕1 − nk, if sk = 1,

nk − nk⊕1, if sk = −1,
∆+ =

∑

sk=+1

∆k, ∆− =
∑

sk=−1

∆k.

Lemma 5.2. ∆+ = −∆−.

Proof. We have

∆ =

p∑

k=1

(nk⊕1 − nk) =

p∑

k=1

nk⊕1 −

p∑

k=1

nk = 0,

which, combined with ∆+ + ∆− = ∆, implies the result.

For a squarish tuple, (5.1) is equivalent to ∆+ = ∆−, which combined with

Lemma 5.2 implies

(5.3) ∆+ = ∆− = 0.
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0)

k 1 2 3 4 5 6

sk + − + − + −

rk 3 5 4 5 5 2

rk⊕1 5 4 5 5 2 3

∆
(0)
k 2 1 1 0 −3 −1

nk − rk 0 0 0 0 0 0

1)

k 1 2 3 4 5 6

sk + − + − + −

rk 3 3 2 5 5 2

rk⊕1 3 2 5 5 2 3

∆
(1)
k 0 1 3 0 −3 −1

nk − rk 0 2 2 0 0 0

2)

k 1 2 3 4 5 6

sk + − + − + −

rk 3 3 2 3 2 2

rk⊕1 3 2 2 3 2 3

∆
(2)
k 0 1 0 0 0 −1

nk − rk 0 2 2 3 3 0

Fig. 5.1. Table of dimension vectors and indices belonging to Example 5.1: 0) initial table, 1)

after first reduction step, 2) after second reduction step.

Example 5.1 ctd. To interpret the reductions performed in Example 5.1 as

operations on the dimensions, let r = (r1, . . . , rp) denote the dimensions of the unre-

duced tuple which remains to be processed.

0) Initially, rk = nk and ∆
(0)
k = ∆k with ∆k defined in (5.2). This initial

configuration is shown in Figure 5.1 (0).

1) In the first step of the reduction procedure, A1 is reduced to a square matrix:

r2 ← r2 −∆
(0)
1 = r1 and ∆

(1)
1 = 0. A ∆

(0)
1 ×∆

(0)
1 diagonal block is split off

from A2: r3 ← r3 −∆
(0)
1 . This does not affect ∆

(0)
2 but ∆

(0)
3 increases to

(5.4) ∆
(1)
3 = r4 − r3 = n4 − (n3 −∆1) = ∆1 + ∆3.

The configuration after the first reduction step is shown in Figure 5.1 (1),

with the modified quantities in bold face.

2) The next step consists of reducing A3 to a square matrix (r4 ← r4−∆
(1)
3 = r3

and ∆
(2)
3 = 0) and splitting off a correspondingly sized diagonal block from

A4 (r5 ← r5 −∆
(1)
3 ). Note that ∆

(1)
5 increases to

∆
(2)
5 = r6 − r5 = n6 − (n5 −∆

(1)
3 ) = ∆1 + ∆3 + ∆5,

using (5.4). The configuration after the second reduction step is shown in

Figure 5.1 (2).

At this point the reduction of Stage 1 is complete as ∆
(2)
k = 0 for all k with sk = +1.
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Let us generalize the procedure described in Example 5.1. Suppose t−1 reduction

steps have been successfully completed and our aim is to reduce the next factor Akt

with skt
= +1 to a square matrix. Letting kt+1 denote the smallest index with

kt+1 > kt and skt+1
= +1, the corresponding dimension table takes the following

form:

k · · · kt kt + 1 . . . kt+1 − 1 kt+1 · · ·

sk · · · + − . . . − + · · ·

rk · · · rkt
rkt+1 · · · rkt+1−1 rkt+1

· · ·

rk⊕1 · · · rkt+1 rkt+2 · · · rkt+1
rkt+1⊕1 · · ·

∆
(t−1)
k · · · ∆

(t−1)
kt

∆
(t−1)
kt+1 · · · ∆

(t−1)
kt+1−1 ∆

(t−1)
kt+1

· · ·

Provided that ∆
(t−1)
kt

≥ 0 the reduction step t consists of a QR factorization of Akt

and RQ factorizations of Akt+1, . . . , Akt+1−1, affecting the dimensions as follows:

(5.5)

rkt+1 ← rkt+1 −∆
(t−1)
kt

= rkt
,

rkt+2 ← rkt+2 −∆
(t−1)
kt

,
...

rkt+1
← rkt+1

−∆
(t−1)
kt

,

∆
(t)
k =





0, if k = kt,

∆
(t−1)
kt+1

+ ∆
(t−1)
kt

, if k = kt+1,

∆
(t−1)
kt+1 , otherwise.

Two things can go wrong at this point.

Breakdown 1 It is not admissible to perform the subtraction with ∆
(t−1)
kt

on the

left side of (5.5) if rmin < ∆
(t−1)
kt

for rmin = min{rkt+2, . . . , rkt+1
}. However,

in this case there is no regular block left. More specifically, if rmin ≤ ∆
(t−1)
kt

we can use RQ factorizations to split off rmin × rmin diagonal blocks from

Akt+1, . . . , Akt+1−1 such that the remaining tuple has at least one dimension

zero and is therefore singular.

Breakdown 2 When ∆
(t)
kt+1

< 0 after the update (5.5), the subsequent reduction

step cannot be performed. This situation can be avoided as follows. Define

σk :=
∑
{∆ℓ : ℓ ≤ k, sℓ = +1}.

Then (5.5) implies σkt
= ∆

(t)
kt

by induction. Let k′ be such that σk′ = min σk.

If σk′ < 0 we perform the following cyclic permutation

π : (1, . . . , k′ − 1, k′, k′ + 1, . . . , p) 7→ (k′ + 1, . . . , p, 1, . . . , k′ − 1, k′)

to the factors:

Ãj = Aπ(j), s̃j = sπ(j).

For the permuted product, σp becomes minimal among all σk. Note that (5.3)

implies σp = 0 and therefore all σk become nonnegative:

(5.6) ∆
(t)
kt

= σkt
≥ 0.
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In the following, we will assume that the cyclic permutation described above has

already been performed and (5.6) is satisfied. Let k1, . . . , kpl denote all k with sk =

+1. Provided that Breakdown 1 does not occur, pl − 1 reduction steps (5.5) yield

∆
(pl−1)
k1

= · · · = ∆
(pl−1)
kpl−1

= 0. In addition, (5.3) implies σp = ∆
(pl−1)
kpl

= 0. In other

words, all factors Ak with sk = +1 have been reduced to square form.

Algorithm 1 realizes the procedure described above.

Algorithm 1 Orthogonal reduction to square factors (Stage 1)

Require: Matrix/dimension/sign tuples (A1, . . . , Ap), (n1, . . . , np), (s1, . . . , sp) satisfy-

ing (5.1), (5.6).

1: r ← n, ∆← 0.

2: for k ← 1, . . . , p− 1 do

3: if sk = 1 then

4: Partition Ak =
[

A
(k)
1 A

(k)
2

]
with A

(k)
1 of size rk⊕1 × rk.

5: Compute QR factorization A
(k)
1 = QkR.

6: Update Ak ← QH
k Ak =

[
A

(k)
11 A

(k)
12

0 A
(k)
22

]
with A

(k)
11 of size rk × rk.

7: ∆← rk⊕1 − rk, rk⊕1 ← rk.

8: else if sk = −1 then

9: if ∆ > rk⊕1 then

10: No regular part, exit the algorithm (Breakdown 1).

11: end if

12: Partition Ak =

[
A

(k)
1

A
(k)
2

]
with A

(k)
1 of size rk × rk⊕1.

13: Compute RQ factorization A
(k)
2 = RQH

k .

14: Update Ak ← AkQk =

[
A

(k)
11 A

(k)
12

0 A
(k)
22

]
with A

(k)
11 of size rk × (rk⊕1 −∆).

15: rk⊕1 ← rk⊕1 −∆.

16: end if

17: Update Ak⊕1 ←

{
Ak⊕1Qk, if sk⊕1 = 1,

QH
k Ak⊕1, if sk⊕1 = −1.

18: end for

Stage 2. Let (A1, . . . , Ap) be the tuple obtained from a successful completion of

Stage 1, i.e.,

Ak =

[
A

(k)
11 A

(k)
12

0 A
(k)
22

]
, A

(k)
11 ∈ C

rk⊕1×rk

with rk⊕1 = rk for sk = +1. To reduce the factors with sk = −1 to square form a

process very similar to Algorithm 1 can be used. Instead of giving a formal description

we feel that it is sufficient to illustrate the algorithm for two examples.
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Example 5.1 ctd. Stage 1 has resulted in r = (3, 3, 2, 2, 2, 2):

−1 −1 −1n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

Stage 2 proceeds by applying an RQ factorization to A6, annihilating its first column.

After updating A1, we (re)compute its QR decomposition and obtain the following

picture.

−1 −1 −1n6 × n1 n6 × n5 n4 × n5 n4 × n3 n2 × n3 n2 × n1

Hence, a singular tuple of dimensions (1, 1, 0, 0, 0, 0) splits off at the top left corner

and the remaining middle tuple is square and of order 2.

Example 5.3. Finally, Figure 5.2 illustrates Stages 1 and 2 for a matrix tuple

with n = (3, 5, 4, 3, 5, 4) and s = (+1,−1,−1,−1,+1,+1). While nmin = 3, the

obtained reduced square part has only order 1.

6. Conclusions and open questions. In the first part of the paper, we have

provided formulas and software for computing the codimension of a generalized matrix

product in canonical form. These formulas have been used to describe and prove the

generic canonical form in the special case of a standard matrix product. In the most

general case, however, the complexity of the formulas does not admit a compact

and elegant description of the generic canonical form. It is presently not clear to us

whether there is an algebraic framework admitting such a description.

In the second part of the paper, we have – motivated by the results from the first

part – derived an orthogonal reduction algorithm for extracting square submatrices

from a generalized matrix product with rectangular factors. A product with square

coefficients is generically regular and admits the application of existing numerical

algorithms and software. The described algorithm is part of a larger effort to develop

a software package for computing eigenvalues and deflating subspaces of generalized

matrix products [9, 10].

Appendix A. Kernel dimensions of singular matrix equations.

Proposition A.1. Let the matrices Jm(λ), Fm, Gm be defined as in (1.1). Then

the following statements hold.
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Stage 1
−1 −1

−1 −1 −1

−1 −1 −1

−1

Stage 2
−1 −1

−1 −1 −1

−1

Fig. 5.2. Stages 1 and 2 applied to the generalized matrix product A6A5A−1
4 A−1

3 A−1
2 A1 in

Example 5.3. Solid arrows indicate rows/columns affected by a reduction and hollow arrows indicate

rows/columns affected by an update.

1. dim{X : Jℓ(λ)X −XJm(λ) = 0} = min{ℓ,m};

2. (a) dim{X : Jℓ(λ)XFm −XGm = 0} = 0,

(b) dim{X : Jℓ(λ)XFT
m −XGT

m = 0} = ℓ;

3. dim{X : Jℓ(0)XJm(λ)−X = 0} = 0 for every λ ∈ C;

4. (a) dim{X : FℓXJm(λ)−GℓX = 0} = m,

(b) dim{X : FT
ℓ XJm(λ)−GT

ℓ X = 0} = 0;

5. (a) dim{X : FℓXGm −GℓXFm = 0} = max{0,m− ℓ},

(b) dim{X : FℓXGT
m −GℓXFT

m = 0} = ℓ + m + 1,

(c) dim{X : FT
ℓ XGm −GT

ℓ XFm = 0} = 0,

(d) dim{X : FT
ℓ XGT

m −GT
ℓ XFT

m = 0} = max{0, ℓ−m};

6. (a) dim{(X,Y ) : FℓX −GℓY = 0,XFm− Y Gm = 0} = max{0,m− ℓ− 1},

(b) dim{(X,Y ) : FℓX −GℓY = 0,XFT
m − Y GT

m = 0} = ℓ + m + 2,
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(c) dim{(X,Y ) : FT
ℓ X −GT

ℓ Y = 0,XFm − Y Gm = 0} = 0,

(d) dim{(X,Y ) : FT
ℓ X−GT

ℓ Y = 0,XFT
m−Y GT

m = 0} = max{0, ℓ−m−1};

7. (a) dim{(X,Y ) : FℓX − Y Fm = 0, GℓX − Y Gm = 0} = max{0,m− ℓ + 1},

(b) dim{(X,Y ) : FℓX − Y FT
m = 0, GℓX − Y GT

m = 0} = ℓ + m,

(c) dim{(X,Y ) : FT
ℓ X − Y Fm = 0, GT

ℓ X − Y Gm = 0} = 0,

(d) dim{(X,Y ) : FT
ℓ X−Y FT

m = 0, GT
ℓ X−Y GT

m = 0} = max{0, ℓ−m+1};

8. (a) dim{(X,Y ) : FℓX − Y Fm = 0, GT
ℓ Y −XGT

m = 0} = 1 + min{ℓ,m},

(b) dim{(X,Y ) : FℓX − Y FT
m = 0, GT

ℓ Y −XGm = 0} = min{ℓ,m},

(c) dim{(X,Y ) : FT
ℓ X − Y Fm = 0, GℓY −XGT

m = 0} = min{ℓ,m},

(d) dim{(X,Y ) : FT
ℓ X − Y FT

m = 0, GℓY −XGm = 0} = 1 + min{ℓ,m}.

Proof.

1. This result is well known and can be found, e.g., in the book by Gant-

macher [7].

2. (a) From

Jℓ(λ)XFm −XGm = Jℓ(λ)[X, 0]− [0,X] = 0

it follows that the last column of X is zero, from which it follows that

the previous last column of X is zero, and so on. Hence, only X = 0 is

an admissible solution.

(b) From

Jℓ(λ)XFT
m −XGT

m = Jℓ(λ)[Xe1, . . . ,Xem]− [Xe2, . . . ,Xem+1] = 0

it follows that the first column of X can be freely chosen. After this

choice, all the other columns of X are determined: Xe2 = Jm(λ)Xe1,

Xe3 = Jm(λ)Xe2 and so on. Hence, the dimension of the kernel is ℓ,

the number of rows in X.

3. Since the eigenvalues of Jℓ(0) are not the reciprocals of the eigenvalues of

Jm(λ), the Stein equation Jℓ(0)XJm(λ)−X has the unique solution X = 0,

see, e.g., [13].

4. By transposition, equation FℓXJm(λ)−GℓX = 0 is turned into JT
m(λ)XT FT

ℓ

−XT GT
ℓ = 0. By the same arguments as for 2b, the dimension of the kernel

is m. Analogously, it follows as in 2a that FT
ℓ XJm(λ) − GT

ℓ X = 0 has the

unique solution X = 0.

5. (a) The equation FℓXGm − GℓXFm = 0 in terms of the entries xij , i =

1, . . . , ℓ + 1, j = 1, . . . ,m, is equivalent to

xi+1,1 = 0, i = 1, . . . , ℓ(A.1)

xi,j − xi+1,j+1 = 0, i = 1, . . . , ℓ, j = 1, . . . ,m− 1(A.2)

xi,m = 0, i = 1, . . . , ℓ(A.3)
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The equations (A.2) say that X is a Toeplitz matrix, i.e., its entries

are constant along the diagonals. Then (A.1) and (A.3) imply that the

outermost ℓ diagonals in the top right and in the bottom left parts are

zero. However, X has only ℓ+m diagonals in total and therefore m ≤ ℓ

implies X = 0. If m > ℓ there remain m−ℓ diagonals in the middle to be

freely chosen and hence the dimension of all X satisfying the equation

is m− ℓ.

(b) The equation FℓXGT
m − GℓXFT

m = 0 in terms of the entries xij , i =

1, . . . , ℓ + 1, j = 1, . . . ,m + 1, gives

xi,j+1 − xi+1,j = 0, i = 1, . . . , ℓ, j = 1, . . . ,m,

which is equivalent to saying that X is a Hankel matrix, i.e., X is con-

stant along the antidiagonals. The dimension of all (ℓ + 1) × (m + 1)

Hankel matrices is ℓ + m + 1.

(c) From

0 = FT
ℓ XGm −GT

ℓ XFm =

[
0 X

011 0

]
−

[
0 011

X 0

]
,

it follows that the first row/column and the last row/column of X are

zero, which implies that also the second row/column and the previous

last row/column are zero, and so on, eventually yielding X = 0.

(d) This result follows from 5a after transposing the equation.

6. (a) Partition X = [x1, X̃] and Y = [Ỹ , ym]. Then XFm − Y Gm = 0

decomposes into x1 = ym = 0 and X̃ = Ỹ . In other words, X =

X̃Gm−1 and Y = X̃Fm−1. Inserting this into FℓX − GℓY = 0 gives

FℓX̃Gm−1 −GℓX̃Fm−1 = 0 and hence the result follows from 5a.

(b) Partition X = [X̃, xm+1] and Y = [y1, Ỹ ]. Then XFT
m − Y GT

m = X̃ −

Ỹ = 0. In other words, X = X̂GT
m+1 and Y = X̂FT

m+1 with X̂ =

[y1, X̃, xm+1]. Inserting this into FℓX − GℓY = 0 gives FℓX̂GT
m+1 −

GℓX̂FT
m+1 = 0 and hence the result follows from 5b.

(c) This result follows, similarly as 6a, from 5a.

(d) This result follows from 6a after transposing the equation.

7. These results can be found in [3, Sec. 5].

8. (a) Partition X =

[
X̃ c

r xℓ+1,m+1

]
, then the equation FℓX−Y Fm decom-

poses into Y = X̃ and c = 0. Hence, the second equation GT
ℓ Y −XGT

m

turns into GT
ℓ X̃ − XGT

m. Adding a zero column to GT
ℓ gives [Gℓ, 0] =

JT
ℓ+1(0) and we obtain the equivalent equation JT

ℓ+1(0)
[

X̃
r

]
−XGT

m = 0.

Adding the trivially satisfied equation JT
ℓ+1(0)

[
c

xℓ+1,m+1

]
− X · 0 = 0

to this equation yields JT
ℓ+1(0)X − XJT

m+1(0) = 0. Applying 1 to the
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transpose of the latter equation shows that the dimension of all such X

is min{ℓ + 1,m + 1} = 1 + min{ℓ,m}.

(b) The equation GT
ℓ Y − XGm is equivalent to Y = [0, X̃], X =

[
0
X̃

]
for

some ℓ × m matrix X̃. The first equation FℓX − Y FT
m = 0 thus re-

duces to Jℓ(0)T X̃ − X̃Jm(0) = 0. This is equivalent to Jℓ(0)(PflipX̃) −

(PflipX̃)Jm(0) = 0, where Pflip denotes the flip matrix. Hence, the result

follows from 1.

(c) This result follows from 8b after transposing both equations.

(d) This result follows from 8a after transposing both equations.
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