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THE P-LAPLACIAN SPECTRAL RADIUS OF WEIGHTED TREES
WITH A DEGREE SEQUENCE AND A WEIGHT SET*

GUANG-JUN ZHANG!' AND XIAO-DONG ZHANGT

Abstract. In this paper, some properties of the discrete p-Laplacian spectral radius of weighted
trees have been investigated. These results are used to characterize all extremal weighted trees with
the largest p-Laplacian spectral radius among all weighted trees with a given degree sequence and a
positive weight set. Moreover, a majorization theorem with two tree degree sequences is presented.
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1. Introduction. In the last decade, the p-Laplacian, which is a natural non-
linear generalization of the standard Laplacian, plays an increasing role in geometry
and partial differential equations. Recently, the discrete p-Laplacian, which is the
analogue of the p-Laplacian on Riemannian manifolds, has been investigated by many
researchers. For example, Amghibech in [1] presented several sharp upper bounds
for the largest p-Laplacian eigenvalues of graphs. Takeuchi in [7] investigated the
spectrum of the p-Laplacian and p-harmonic morphism of graphs. Luo et al. in [6]
used the eigenvalues and eigenvectors of the p-Laplacian to obtain a natural global
embedding for multi-class clustering problems in machine learning and data mining
areas. Based on the increasing interest in both theory and application, the spectrum
of the discrete p-Laplacian should be further investigated. The main purpose of this
paper is to investigate some properties of the spectral radius and eigenvectors of the
p-Laplacian of weighted trees.

In this paper, we only consider simple weighted graphs with a positive weight
set. Let G = (V(QG),E(G),W(G)) be a weighted graph with vertex set V(G) =
{vo,v1,...,vn_1}, edge set E(G) and weight set W(G) = {wr, > 0, k =1, 2, ...,
|E(GQ)|}. Let wg(uv) denote the weight of an edge wv. If uv ¢ E(G), define wg(uv) =
0. Then wv € E(G) if and only if wg(uv) > 0. The weight of a vertex u, denoted by
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we(u), is the sum of weights of all edges incident to u in G.

Let p > 1. Then the discrete p-Laplacian 2\,(G) of a function f on V(G) is given
by

Ap(@)fw) = D (flu) = f@)P Nwg(uo),

v,uv€E(G)

where 219 = sign(z)|z|9. When p = 2, Ay(G) is the well-known (combinatorial) graph
Laplacian (see [4]), i.e., A2(G) = L(G) = D(G)— A(G), where A(G) = (wa(viv;))nxn
denotes the weighted adjacency matrix of G and D(G) = diag(wg(vo), wa(v1), ...,
we (vn—1)) denotes the weighted diagonal matrix of G (see [8]).

A real number A is called an eigenvalue of A,(G) if there exists a function f # 0
on V(G) such that for u € V(G),

Ap(G) f(u) = Af(w)lP1.

The function f is called the eigenfunction corresponding to A. The largest eigenvalue
of A,(G), denoted by A,(G), is called the p-Laplacian spectral radius. Let d(v) de-
note the degree of a vertex v, i.e., the number of edges incident to v. A nonincreasing
sequence of nonnegative integers m = (dg,d1, - ,dn—1) is called graphic degree se-
quence if there exists a simple connected graph having 7 as its vertex degree sequence.
Zhang [9] in 2008 determined all extremal trees with the largest spectral radius of the
Laplacian matrix among all trees with a given degree sequence. Further, Biyikoglu,
Hellmuth, and Leydold [2] in 2009 characterized all extremal trees with the largest
p-Laplacian spectral radius among all trees with a given degree sequence. Let T 1 be
the set of trees with a given graphic degree sequence m and a positive weight set W.
Recently, Tan [8] determined the extremal trees with the largest spectral radius of the
weight Laplacian matrix in 7, w. Moreover, the adjacency, Laplacian and signless
Laplacian eigenvalues of graphs with a given degree sequence have been studied (for
example, see [3] and [10]). Motivated by the above results, we investigate the largest
p-Laplacian spectral radius of trees in 7 . The main result of this paper can be
stated as follows:

THEOREM 1.1. For a given degree sequence w of some tree and a positive weight
set W, T7 (see in Section 3) is the unique tree with the largest p-Laplacian spectral
radius in T w, which is independent of p.

The rest of this paper is organized as follows. In Section 2, some notations and
results are presented. In Section 3, we give a proof of Theorem 1.1 and a majorization
theorem for two tree degree sequences.

2. Preliminaries. The following are several propositions and lemmas about the
Rayleigh quotient and eigenvalues of the p-Laplacian for weighted graphs. The proofs
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are similar to unweighted graphs (see [2]). So we only present the result and omit the
proofs.

Let f be a function on V(G) and
> Lfw) = f) [P wg(uv)

weE(G)
RL(f) =" :
@ I f 5

where || fll, = /> | f(v) |P. The following Proposition 2.1 generalizes the well-known

Rayleigh-Ritz theorem.

ProposITION 2.1. ([6])

M(G) = max RE(H)= max 3| () = [(0) P we(uv).

1£1ls =

Moreover, if R%(f) = M\p(G), then f is an eigenfunction corresponding to the p-
Laplacian spectral radius A\, (G).

Define the signless p-Laplacian Q,(G) of a function f on V(G) by

Q@) f(w) =D (fw)+ f)P Nwg(uv)
v,uv€E(G)

and its Rayleigh quotient by
> fw)+ f(v) [P we(uv)

wv€EE(G)
115

A real number p is called an eigenvalue of Q),(G) if there exists a function f # 0 on
V(G) such that for u € V(G),

Qp(G) f(u) = puf(u)P=1

The largest eigenvalue of Q,(G), denoted by 1, (G), is called the signless p-Laplacian
spectral radius. Then we have the following.

AG(f) =

PROPOSITION 2.2. ([2])

pp(G) = max AL(f)= max Y | f(u)+ f(v) [” we(uv).
[1f]lp=1 Hfllp_luveE(G)

Moreover, if A%,(f) = pp(G), then f is an eigenfunction corresponding to fi,(G).

COROLLARY 2.3. Let G be a connected weighted graph. Then the signless p-
Laplacian spectral radius p,(G) of Qp(G) is positive. Moreover, if f is an eigenfunc-
tion of uy(G), then either f(v) > 0 for allv € V(G) or f(v) <0 for allv € V(G).
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Let f be an eigenfunction of u,(G). We call f a Perron vector of G if f(v) > 0
for all v € V(G).

LEMMA 2.4. Let G = (Vq, Vo, E, W) be a bipartite weighted graph with bipartition
Vi and Va. Then A\p(G) = pp(G).

Clearly, trees are bipartite graphs. So, Lemma 2.4 also holds for trees.

3. Main result. Let G — uv denote the graph obtained from G by deleting an
edge wv and G + uv denote the graph obtained from G by adding an edge uv. The
following lemmas will be used in the proof of the main result, Theorem 1.1.

LEMMA 3.1. Let T € Trw with u,v € V(T) and f be a Perron vector of T

Assume uu; € E(T) and vu; ¢ E(T) such that u; is not in the path from u to v for
k k

i=1,2,....k. Let T" =T — |J uu; + U vui, wp (vu;) = wr(uu;) fori=1,2, ...,

k, and wy:(e) = wr(e) fore ZE E?(T) \ iuul, Ulg, ..., uug}. In other words, T' is the
weighted tree obtained from T by deleting the edges uuy, ..., uu and adding the edges
VUL, . .., VU with their weights wr(uuy), ..., wr(uug), respectively. If f(u) < f(v),
then py(T) < pp(T").

Proof. Without loss of generality, assume || f ||,= 1. Then

Mp(T/) - MP(T) > Ag"(f) - Ag“(f)
k

[(f(0) + (i) = (f(w) + f(ui))" wr (wus)

=1

~.

Y
o

If 41, (T") = pp(T), then f must be an eigenfunction of i, (7). Clearly, by computing
the values of the function f on V(T') and V(T”) at the vertex u, we have

QD) fw) = Y (fl@)+ f)? Hwr(uz)

z,xucE(T)
k
= S @+ f@)P wr(uz) + 3 (F(w) + f )P e ()
z,zucE(T’) =1

and

QT f(w) = > (f(@)+ fu)P wr(uz).
z,xu€E(T")
Morcover, Qu(T)(w) = (1) ()P = (T )P = Qu(I')f(w). Hence
ST (f(u) + f(u:))P~Hwp (uug) = 0, which implies f(u) + f(u;) =0 fori =1,2,..., k.

i=1
This is impossible. So the assertion holds. 0
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From Lemma 3.1 we can easily get the following corollary.

COROLLARY 3.2. Let T be a weighted tree with the largest p-Laplacian spectral
radius in Trw and u,v € V(T). Suppose that f is a Perron vector of T. Then we
have the following:

(1) if f(u) < f(v), then d(u) < d(v);
(2) if f(u) = f(v), then d(u) = d(v).

LEMMA 3.3. ([2]) Let0<e<éd<zandp>1. Then (z+¢e)’ + (z —¢€)? <
(z+0)P + (2 — §)P. Equality holds if and only if e = 0.

LEMMA 3.4. Let T € T w and wv,zy € E(T) such that v and y are not in the
path from w to x. Let f be a Perron vector of T and T' =T — uv — zy + uy + v with
wr (uy) = max{wr(uv), wr(xy)}, wr(xv) = min{wr(uww), wr(zy)}, and wr(e) =
wr(e) fore e E(T)\ {uwv,zy}. If f(u) > f(z) and f(y) > f(v), then T" € T w and
wp(T) < pp(T7). Moreover, p,(T) < pp(T") if one of the two inequalities is strict.

Proof. Without loss of generality, assume || f ||,= 1.
Claim : (f(u) + f ()" + (f(2) + ()" = (f(w) + f(0))P + (f(2) + [(y))".

Assume f(u)+ [(y) = 26, f(z)+[(0) = 26, max{ f(w)+ F(0), (@) + f )} =
z + ¢, min{f(u) + f(v), f(z) + f(y)} = z —e. Without loss of generality, assume
fu)+ f(v) > f(x)+ f(y). Then § —e = f(y) — f(v) > 0. By Lemma 3.3, the Claim
holds. Without loss of generality, assume wr(uv) > wr(zy). Then, by the Claim and
wr (uy) = wr(uwv) and wy (zv) = wr(zy), we have

pp(T") = pp(T) = A (f) = A ()
(f () + f(y) wr (uy) + (f(2) + f(v))Pwr (zv)
—(f(w) + f)'wr(uwv) = (f(z) + f(y)) wr(zy)

= [(f(w) + f())" = (f(w) + f(v))"Jwr (uv)
(@) + f(0)) = (f (@) + f () wr (zy)

> [(f(u) + £ (@) + (f(2) + f(0)" = (f(u) + f(0))?
= (f (@) + f(y) wr (uv)

>0

If pp(T") = pp(T), then € = ¢ by Lemma 3.3, and f must be an eigenfunction of
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wp(T"). So f(y) = f(v). Moreover, since wrs (uy) = wr(uv) > wr(zy) and

QMW= Y, @+ )P Ywrzy) + (f@) + f) P wr(zy)

2 2y€B(T)\{ay}

= pp(T) f ()P = (T f ()P~ = Qu(T) f ()

= > (f(2) + f) P Hwr(zy) + (f(w) + F) P Hwr (uy),
2, 2y€B(T)\{oy}

we have f(z) > f(u). Hence f(z) = f(u), and the assertion holds. O

LEMMA 3.5. Let T € T, w with uwv,zy € E(T) and f be a Perron vector of T. If
fu)+ f(v) > f(x)+ f(y) and wr(ww) < wr(zy), then there exists a tree T' € T w
such that p,(T") > pp(T).

Proof. Without loss of generality, assume || f ||,= 1. Let 7" be the tree obtained
from T with vertex set V(T'), edge set E(T), wr (uv) = wr(zy), wr (zy) = wr(uv)
and wy (e) = wr(e) for e € E(T) \ {uv, zy}. Then we have

pp(T") = pp(T) = N (f) = AL(f)
= [(f(w) + f(0)) = (f(z) + ()| (wr (zy) — wr(uv))

> 0.

If pup(T') = pp(T), then f must be an eigenfunction of p,(7”). Without loss of
generality, assume u # x and u # y. Since

QI = Y (Fw)+ fO)P wr(ut) + (f (u) + £ (0) P wr(ay)

ute€ E(T)\{uv}
= Qp(T)f(u)
= > (@ + F@)P wrut) + (f(w) + f(0) P wr(uo),

ute E(T)\{uv}
we have wr(uww) = wr(zy), which is a contradiction. So p,(T") > p,(T). O
Let vy be the root of a tree T and h(v;) be the distance between v; and vy.

DEFINITION 3.6. Let T'= (V(T), E(T), W(T)) be a weighted tree with a positive
weight set W(T') and root vg. Then a well-ordering < of the vertices is called a
weighted breadth-first-search ordering (WBFS-ordering for short) if the following holds
for all vertices u,v,x,y € V(T):

(1) v < u implies h(v) < h(u);

(2) v < u implies d(v) > d(u);
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(3) Let uv,uy € E(T) with h(v) = h(y) = h(u) + 1. If v < y, then wp(uv) >
wr (uy);

(4) Let wv,zy € E(T) with h(u) = h(v) — 1 and h(x) = h(y) — 1. If u < z, then
v <y and wr(uv) > wr(zy).

A weighted tree is called a WBFS-tree if its vertices have a WBFS-ordering. For
a given degree sequence and a positive weight set, it is easy to see that the WBFS-tree
is uniquely determined up to isomorphism by Definition 3.6 (for example, see [9]).

Let m = (do,d1,...,dn—1) be a degree sequence of tree such that dg > d; >

oo > dp—1 and W = {wq,we,...,w,_1} be a positive weight set with w; > wy >
© 2 wp—1 > 0. We now construct a weighted tree 777y, with the degree se-
quence 7 and the positive weight set W as follows. Select a vertex v as the
root and begin with vy ; of the zero-th layer. Let s; = dy and select s; ver-
tices v1,1,v1,2,...,V1,s, Of the first layer such that they are adjacent to vp; and
U)T;,W('Uo,lvl,k) = wg for £ = 1,2,...,81. Assume that all vertices of the t-st
layer have been constructed and are denoted by v 1,v2,...,v¢,,. We construct
all the vertices of the (¢t + 1)-st layer by the induction hypothesis. Let s;41 =
dsy4gs,_141+ -+ ds 415, — ¢ and select sy 1 vertices vgy1,1,Ve41,2, -+ Vegl s,y
of the(t + 1)-st layer such that v ; is adjacent to vi411,. .. sVt Today ogeyyp1—1 oo
vy, is adjacent to viy1s,,—d ., V¢s1,s,,, and if there exists v;; with

veavet1: € B(Ty ),

51+"'+5t+2’ .

W1z | (Ve10t41,6) = Wigtdy+ooday yog ooy g — (51524 +50_1)+i

for 1 <14 < s441. In this way, we obtain only one tree T ;, with the degree sequence
7 and the positive weight set W (see Fig. 3.1 for an example). In the following we
are ready to present a proof of Theorem 1.1.

Fig. 3.1. Ty, with 7 = (4,3,3,3,2,2,2,2,1,1,1,1,1,1,1) and W = {w1,...,wia}.

Proof of Theorem 1.1. Let T be a weighted tree with the largest p-Laplacian spec-
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tral radius in 7 w, where 7 = (do,dy, ..., dp—1) with dg > dy > --- > d,,_1. Let f be
a Perron vector of T. Without loss of generality, assume V(T) = {vg,v1,...,Vn—1}
such that f(v;) > f(v;) for i < j. By Corollary 3.2 we have d(vy) > d(vy) > --- >
d(vp—1). So d(vg) = do. Let vy be the root of T. Suppose Uén‘;a()%) h(v) = h(T). Let
Vi={veV(D)h(v) =i} and | V; |=s; for i = 0,1,...,h(T). In the following we
will relabel the vertices of T.

Let Vo = {vo.1}, where vg1 = vo. Obviously, s1 = dp. The vertices of V; are

relabeled vy 1,v1,2,...,v1,5, such that f(vi1) > f(vi2) > -+ > f(v1s,). Assume
that the vertices of V; have been already relabeled v; 1,v¢2,...,v;s,. The vertices of
Viy1 can be relabeled vgy11, 41,2, -+, Vs41,s,,, Such that they satisfy the following

conditions: If vy yvi41,4, Ve kvis1,; € E(T) and ¢ < 7, then f(vip1,:) > f(vpga,j); if
Ve kU414, Ve U41,; € E(T) and k < [, then ¢ < j. In this way we can obtain a well
ordering < of vertices of T" as follows:

Vi j <Ugg, fi<kor i=kandj<l.

Clearly, f(vi1) >+ > f(v1,5,), and f(veg1,:)>f(veg1,5) when @ < j and veq14, Vg1,
have the same neighbor.

In the following we will prove that T" is isomorphic to T y;, by proving that the
ordering < is a WBFS-ordering.

Claim: f(vp1) > f(vn2) > - = f(Un,) = [(0ns11) for 0< h < A(T).

We will prove that the Claim holds by induction on h. Obviously, the Claim
holds for h = 0. Assume that the Claim holds for h = » — 1. We now prove that
the assertion holds for h = r. If there exist two vertices v,; < v, ; with f(v,;) <
f(vr;), then there exist two vertices v,_1 g, vr—1; € Vo1 with & < [ such that
Up—1,kVr,i, Ur—1,10r,; € E(T). By the induction hypothesis, f(vr—1%) > f(vr—1,). Let

Ty =T — 0p_1 g Vr; — Up—1,1Vrj + Vp_1 kVrj + Up_110r;
with

wr, (Vr—1,5Vr ;) = max{wr (V1 ki), W (Vr—1,0r )}

wr, (Vr—1,10r,3) = min{wr (vy—1 kVr:), W (Ve—1,0r )}

and wr, (e) = wr(e) for e € E(T) \ {vr—1,£0ri,vr—1,10r;}. Then Ty € T, w. By
Lemma 3.4, u,(T) < pp(T1), which is a contradiction to our assumption that 7" has
the largest p-Laplacian spectral radius in 7; w. So f(vr;) > f(vr;). Now assume
f(vrs.) < f(vrg11). Note that d(vg) > 2. It is easy to see that v, s vr_1s, ,,
Ur1Ury1,1 € E(T). By the induction hypothesis, f(vr—1,5, ,) > f(vr1). Then, by
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similar proof, we can also get a new tree T such that Th € T w and pp,(T2) > pp(T),
which is also a contradiction. So the Claim holds.

By the Claim and Corollary 3.2, the condition (2) in Definition 3.6 holds.

Assume that uv,uy € E(T) with h(v) = h(y) = h(u) + 1. If v < y, then f(v) >
f(y) and wr(uv) > wr(uy) by Lemma 3.5. So the condition (3) in Definition 3.6
holds.

Let wv,zy € E(T) with u < x, h(v) = h(u)+1 and h(y) = h(x)+ 1. Then v < y.
By the Claim, f(u) > f(z) and f(v) > f(y), which implies f(u)+ f(v) > f(x)+ f(y).
Further, by Lemma 3.5, we have wy(uv) > wr(zy). Therefore, “ < 7 is a WBFS-
ordering, i.e., T is a WBFS-tree. So T w 1is the unique tree with the largest p-
Laplacian spectral radius in 7 y. Hence, the proof is completed. O

Let # = (do,d1,...,dn—1) and 7’ = (df,,d},...,d),_;) be two nonincreasing posi-

t t n—1 n—1
tive sequences. If Y~ d; < > d} fort =0,1,...,n—2and > d; = > dj, then 7’ is
i=0 i=0 i=0 i=0
said to majorize 7, and is denoted by © < 7’.

LEMMA 3.7. ([5]) Let m = (do,dh...,dn,ﬁ and 7’ :( 6, /la"'7d/

n—1

) be two
nonincreasing graphic degree sequences. If m < «', then there exist graphic degree
sequences 1, T, ..., Tk such that 1 A m < me < -+ < mp < 7', and only two
components of m; and ;11 are different by 1.

THEOREM 3.8. Let m and ©' be two degree sequences of trees. Let Tpw and
T w denote the set of trees with the same weight set W and degree sequences ™ and
', respectively. If m I 7', then pup (T w) < pp(T7 ). The equality holds if and only
ifm=mx.

Proof. By Lemma 3.7, without loss of generality, assume 7 = (dp, d1,...,dp_1)
and 7' = (dg, dy,...,d,_y)such that d; = d; — 1,d; =d; + 1 with0 <i < j<n-—1,

and dj, = dj, for k # i,j. Then Ty, has a WBFS-ordering < consistent with its
Perron vector f such that f(u) > f(v) implies u < v by the proof of Theorem 1.1.
Let vg,v1,...,0p—1 € V(T;W) with vg < v1 < -+ < v,—1. Then f(vg) > f(v1) >

- > f(vp—1) and d(vy) = dy for 0 < ¢t < n—1. Since d; = d; + 1 > 2, there
exists a vertex vs with s > j, vjus € E(T} ), vivs ¢ E(T; ) and v is not in
the path from v; to v;. Let T1 = T y, — vjvs + vvs With wr, (vivs) = wT;ﬁw(vjvs)
and wr, (¢) = wry , (€) for e € E(T1) \ {vivs}. Then Ty € Tr w. Since i < j, we
have f(v;) > f(v;). By Lemma 3.1, (T ) < pp(T1) < pp(Ty0 ). The proof is
completed. O

COROLLARY 3.9. Let 7, 1 be the set of trees of order n with k pendent vertices
and the same weight set W. Let mp = {k,2,...,2,1,...,1}, where the number of 1 is
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k.

Then Ty, vy is the unique tree with the largest p-Laplacian spectral radius in Tp, .

Proof. Let T € T, with degree sequence m = (dy,ds,...,dy—1). Obviously,

7 < ;. By Theorem 3.8, the assertion holds. O
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