THE P-LAPLACIAN SPECTRAL RADIUS OF WEIGHTED TREES WITH A DEGREE SEQUENCE AND A WEIGHT SET*

GUANG-JUN ZHANG ${ }^{\dagger}$ AND XIAO-DONG ZHANG ${ }^{\dagger}$

Abstract

In this paper, some properties of the discrete p-Laplacian spectral radius of weighted trees have been investigated. These results are used to characterize all extremal weighted trees with the largest p-Laplacian spectral radius among all weighted trees with a given degree sequence and a positive weight set. Moreover, a majorization theorem with two tree degree sequences is presented.

Key words. Weighted tree, Discrete p-Laplacian, Degree sequence, Spectrum.

AMS subject classifications. $05 \mathrm{C} 50,05 \mathrm{C} 05,05 \mathrm{C} 22$.

1. Introduction. In the last decade, the p-Laplacian, which is a natural nonlinear generalization of the standard Laplacian, plays an increasing role in geometry and partial differential equations. Recently, the discrete p-Laplacian, which is the analogue of the p-Laplacian on Riemannian manifolds, has been investigated by many researchers. For example, Amghibech in [1] presented several sharp upper bounds for the largest p-Laplacian eigenvalues of graphs. Takeuchi in [7] investigated the spectrum of the p-Laplacian and p-harmonic morphism of graphs. Luo et al. in [6] used the eigenvalues and eigenvectors of the p-Laplacian to obtain a natural global embedding for multi-class clustering problems in machine learning and data mining areas. Based on the increasing interest in both theory and application, the spectrum of the discrete p-Laplacian should be further investigated. The main purpose of this paper is to investigate some properties of the spectral radius and eigenvectors of the p-Laplacian of weighted trees.

In this paper, we only consider simple weighted graphs with a positive weight set. Let $G=(V(G), E(G), W(G))$ be a weighted graph with vertex set $V(G)=$ $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$, edge set $E(G)$ and weight set $W(G)=\left\{w_{k}>0, k=1,2, \ldots\right.$, $|E(G)|\}$. Let $w_{G}(u v)$ denote the weight of an edge $u v$. If $u v \notin E(G)$, define $w_{G}(u v)=$ 0 . Then $u v \in E(G)$ if and only if $w_{G}(u v)>0$. The weight of a vertex u, denoted by

[^0]$w_{G}(u)$, is the sum of weights of all edges incident to u in G.
Let $p>1$. Then the discrete p-Laplacian $\triangle_{p}(G)$ of a function f on $V(G)$ is given by
$$
\triangle_{p}(G) f(u)=\sum_{v, u v \in E(G)}(f(u)-f(v))^{[p-1]} w_{G}(u v)
$$
where $x^{[q]}=\operatorname{sign}(x)|x|^{q}$. When $p=2, \triangle_{2}(G)$ is the well-known (combinatorial) graph Laplacian (see [4]), i.e., $\Delta_{2}(G)=L(G)=D(G)-A(G)$, where $A(G)=\left(w_{G}\left(v_{i} v_{j}\right)\right)_{n \times n}$ denotes the weighted adjacency matrix of G and $D(G)=\operatorname{diag}\left(w_{G}\left(v_{0}\right), w_{G}\left(v_{1}\right), \ldots\right.$, $\left.w_{G}\left(v_{n-1}\right)\right)$ denotes the weighted diagonal matrix of G (see [8]).

A real number λ is called an eigenvalue of $\triangle_{p}(G)$ if there exists a function $f \neq 0$ on $V(G)$ such that for $u \in V(G)$,

$$
\Delta_{p}(G) f(u)=\lambda f(u)^{[p-1]}
$$

The function f is called the eigenfunction corresponding to λ. The largest eigenvalue of $\Delta_{p}(G)$, denoted by $\lambda_{p}(G)$, is called the p-Laplacian spectral radius. Let $d(v)$ denote the degree of a vertex v, i.e., the number of edges incident to v. A nonincreasing sequence of nonnegative integers $\pi=\left(d_{0}, d_{1}, \cdots, d_{n-1}\right)$ is called graphic degree sequence if there exists a simple connected graph having π as its vertex degree sequence. Zhang [9] in 2008 determined all extremal trees with the largest spectral radius of the Laplacian matrix among all trees with a given degree sequence. Further, Bıyıkoğlu, Hellmuth, and Leydold [2] in 2009 characterized all extremal trees with the largest p-Laplacian spectral radius among all trees with a given degree sequence. Let $\mathcal{T}_{\pi, W}$ be the set of trees with a given graphic degree sequence π and a positive weight set W. Recently, Tan [8] determined the extremal trees with the largest spectral radius of the weight Laplacian matrix in $\mathcal{I}_{\pi, W}$. Moreover, the adjacency, Laplacian and signless Laplacian eigenvalues of graphs with a given degree sequence have been studied (for example, see [3] and [10]). Motivated by the above results, we investigate the largest p-Laplacian spectral radius of trees in $\mathcal{I}_{\pi, W}$. The main result of this paper can be stated as follows:

Theorem 1.1. For a given degree sequence π of some tree and a positive weight set $W, T_{\pi, W}^{*}$ (see in Section 3) is the unique tree with the largest p-Laplacian spectral radius in $\mathcal{I}_{\pi, W}$, which is independent of p.

The rest of this paper is organized as follows. In Section 2, some notations and results are presented. In Section 3, we give a proof of Theorem 1.1 and a majorization theorem for two tree degree sequences.
2. Preliminaries. The following are several propositions and lemmas about the Rayleigh quotient and eigenvalues of the p-Laplacian for weighted graphs. The proofs
are similar to unweighted graphs (see [2]). So we only present the result and omit the proofs.

Let f be a function on $V(G)$ and

$$
R_{G}^{p}(f)=\frac{\sum_{u v \in E(G)}|f(u)-f(v)|^{p} w_{G}(u v)}{\|f\|_{p}^{p}},
$$

where $\|f\|_{p}=\sqrt[p]{\sum_{v}|f(v)|^{p}}$. The following Proposition 2.1 generalizes the well-known Rayleigh-Ritz theorem.

Proposition 2.1. ([6])

$$
\lambda_{p}(G)=\max _{\|f\|_{p}=1} R_{G}^{p}(f)=\max _{\|f\|_{p=1}} \sum_{u v \in E(G)}|f(u)-f(v)|^{p} w_{G}(u v) .
$$

Moreover, if $R_{G}^{p}(f)=\lambda_{p}(G)$, then f is an eigenfunction corresponding to the p Laplacian spectral radius $\lambda_{p}(G)$.

Define the signless p-Laplacian $Q_{p}(G)$ of a function f on $V(G)$ by

$$
Q_{p}(G) f(u)=\sum_{v, u v \in E(G)}(f(u)+f(v))^{[p-1]} w_{G}(u v)
$$

and its Rayleigh quotient by

$$
\Lambda_{G}^{p}(f)=\frac{\sum_{u v \in E(G)}|f(u)+f(v)|^{p} w_{G}(u v)}{\|f\|_{p}^{p}}
$$

A real number μ is called an eigenvalue of $Q_{p}(G)$ if there exists a function $f \neq 0$ on $V(G)$ such that for $u \in V(G)$,

$$
Q_{p}(G) f(u)=\mu f(u)^{[p-1]}
$$

The largest eigenvalue of $Q_{p}(G)$, denoted by $\mu_{p}(G)$, is called the signless p-Laplacian spectral radius. Then we have the following.

Proposition 2.2. ([2])

$$
\mu_{p}(G)=\max _{\|f\|_{p}=1} \Lambda_{G}^{p}(f)=\max _{\|f\|_{p}=1} \sum_{u v \in E(G)}|f(u)+f(v)|^{p} w_{G}(u v)
$$

Moreover, if $\Lambda_{G}^{p}(f)=\mu_{p}(G)$, then f is an eigenfunction corresponding to $\mu_{p}(G)$.
Corollary 2.3. Let G be a connected weighted graph. Then the signless p Laplacian spectral radius $\mu_{p}(G)$ of $Q_{p}(G)$ is positive. Moreover, if f is an eigenfunction of $\mu_{p}(G)$, then either $f(v)>0$ for all $v \in V(G)$ or $f(v)<0$ for all $v \in V(G)$.

Let f be an eigenfunction of $\mu_{p}(G)$. We call f a Perron vector of G if $f(v)>0$ for all $v \in V(G)$.

Lemma 2.4. Let $G=\left(V_{1}, V_{2}, E, W\right)$ be a bipartite weighted graph with bipartition V_{1} and V_{2}. Then $\lambda_{p}(G)=\mu_{p}(G)$.

Clearly, trees are bipartite graphs. So, Lemma 2.4 also holds for trees.
3. Main result. Let $G-u v$ denote the graph obtained from G by deleting an edge $u v$ and $G+u v$ denote the graph obtained from G by adding an edge $u v$. The following lemmas will be used in the proof of the main result, Theorem 1.1.

Lemma 3.1. Let $T \in \mathcal{T}_{\pi, W}$ with $u, v \in V(T)$ and f be a Perron vector of T. Assume $u u_{i} \in E(T)$ and $v u_{i} \notin E(T)$ such that u_{i} is not in the path from u to v for $i=1,2, \ldots, k$. Let $T^{\prime}=T-\bigcup_{i=1}^{k} u u_{i}+\bigcup_{i=1}^{k} v u_{i}, w_{T^{\prime}}\left(v u_{i}\right)=w_{T}\left(u u_{i}\right)$ for $i=1,2, \ldots$, k, and $w_{T^{\prime}}(e)=w_{T}(e)$ for $e \in E(T) \backslash\left\{u u_{1}, u u_{2}, \ldots, u u_{k}\right\}$. In other words, T^{\prime} is the weighted tree obtained from T by deleting the edges $u u_{1}, \ldots, u u_{k}$ and adding the edges $v u_{1}, \ldots, v u_{k}$ with their weights $w_{T}\left(u u_{1}\right), \ldots, w_{T}\left(u u_{k}\right)$, respectively. If $f(u) \leq f(v)$, then $\mu_{p}(T)<\mu_{p}\left(T^{\prime}\right)$.

Proof. Without loss of generality, assume $\|f\|_{p}=1$. Then

$$
\begin{aligned}
\mu_{p}\left(T^{\prime}\right)-\mu_{p}(T) & \geq \Lambda_{T^{\prime}}^{p}(f)-\Lambda_{T}^{p}(f) \\
& =\sum_{i=1}^{k}\left[\left(f(v)+f\left(u_{i}\right)\right)^{p}-\left(f(u)+f\left(u_{i}\right)\right)^{p}\right] w_{T}\left(u u_{i}\right) \\
& \geq 0 .
\end{aligned}
$$

If $\mu_{p}\left(T^{\prime}\right)=\mu_{p}(T)$, then f must be an eigenfunction of $\mu_{p}\left(T^{\prime}\right)$. Clearly, by computing the values of the function f on $V(T)$ and $V\left(T^{\prime}\right)$ at the vertex u, we have

$$
\begin{aligned}
Q_{p}(T) f(u) & =\sum_{x, x u \in E(T)}(f(x)+f(u))^{[p-1]} w_{T}(u x) \\
& =\sum_{x, x u \in E\left(T^{\prime}\right)}(f(x)+f(u))^{[p-1]} w_{T}(u x)+\sum_{i=1}^{k}\left(f(u)+f\left(u_{i}\right)\right)^{[p-1]} w_{T}\left(u u_{i}\right)
\end{aligned}
$$

and

$$
Q_{p}\left(T^{\prime}\right) f(u)=\sum_{x, x u \in E\left(T^{\prime}\right)}(f(x)+f(u))^{[p-1]} w_{T}(u x)
$$

Moreover, $Q_{p}(T) f(u)=\mu_{p}(T) f(u)^{[p-1]}=\mu_{p}\left(T^{\prime}\right) f(u)^{[p-1]}=Q_{p}\left(T^{\prime}\right) f(u)$. Hence $\sum_{i=1}^{k}\left(f(u)+f\left(u_{i}\right)\right)^{[p-1]} w_{T}\left(u u_{i}\right)=0$, which implies $f(u)+f\left(u_{i}\right)=0$ for $i=1,2, \ldots, k$. This is impossible. So the assertion holds.

From Lemma 3.1 we can easily get the following corollary.
Corollary 3.2. Let T be a weighted tree with the largest p-Laplacian spectral radius in $\mathcal{I}_{\pi, W}$ and $u, v \in V(T)$. Suppose that f is a Perron vector of T. Then we have the following:
(1) if $f(u) \leq f(v)$, then $d(u) \leq d(v)$;
(2) if $f(u)=f(v)$, then $d(u)=d(v)$.

Lemma 3.3. ([2]) Let $0 \leq \varepsilon \leq \delta \leq z$ and $p>1$. Then $(z+\epsilon)^{p}+(z-\epsilon)^{p} \leq$ $(z+\delta)^{p}+(z-\delta)^{p}$. Equality holds if and only if $\epsilon=\delta$.

Lemma 3.4. Let $T \in \mathcal{T}_{\pi, W}$ and $u v, x y \in E(T)$ such that v and y are not in the path from u to x. Let f be a Perron vector of T and $T^{\prime}=T-u v-x y+u y+x v$ with $w_{T^{\prime}}(u y)=\max \left\{w_{T}(u v), w_{T}(x y)\right\}, w_{T^{\prime}}(x v)=\min \left\{w_{T}(u v), w_{T}(x y)\right\}$, and $w_{T^{\prime}}(e)=$ $w_{T}(e)$ for $e \in E(T) \backslash\{u v, x y\}$. If $f(u) \geq f(x)$ and $f(y) \geq f(v)$, then $T^{\prime} \in \mathcal{T}_{\pi, W}$ and $\mu_{p}(T) \leq \mu_{p}\left(T^{\prime}\right)$. Moreover, $\mu_{p}(T)<\mu_{p}\left(T^{\prime}\right)$ if one of the two inequalities is strict.

Proof. Without loss of generality, assume $\|f\|_{p}=1$.
Claim : $(f(u)+f(y))^{p}+(f(x)+f(v))^{p} \geq(f(u)+f(v))^{p}+(f(x)+f(y))^{p}$.
Assume $f(u)+f(y)=z+\delta, f(x)+f(v)=z-\delta, \max \{f(u)+f(v), f(x)+f(y)\}=$ $z+\epsilon, \min \{f(u)+f(v), f(x)+f(y)\}=z-\epsilon$. Without loss of generality, assume $f(u)+f(v) \geq f(x)+f(y)$. Then $\delta-\epsilon=f(y)-f(v) \geq 0$. By Lemma 3.3, the Claim holds. Without loss of generality, assume $w_{T}(u v) \geq w_{T}(x y)$. Then, by the Claim and $w_{T^{\prime}}(u y)=w_{T}(u v)$ and $w_{T^{\prime}}(x v)=w_{T}(x y)$, we have

$$
\begin{aligned}
\mu_{p}\left(T^{\prime}\right)-\mu_{p}(T) \geq & \Lambda_{T^{\prime}}^{p}(f)-\Lambda_{T}^{p}(f) \\
= & (f(u)+f(y))^{p} w_{T^{\prime}}(u y)+(f(x)+f(v))^{p} w_{T^{\prime}}(x v) \\
& -(f(u)+f(v))^{p} w_{T}(u v)-(f(x)+f(y))^{p} w_{T}(x y) \\
= & {\left[(f(u)+f(y))^{p}-(f(u)+f(v))^{p}\right] w_{T}(u v) } \\
& +\left[(f(x)+f(v))^{p}-(f(x)+f(y))^{p}\right] w_{T}(x y) \\
\geq & {\left[(f(u)+f(y))^{p}+(f(x)+f(v))^{p}-(f(u)+f(v))^{p}\right.} \\
& \left.-(f(x)+f(y))^{p}\right] w_{T}(u v) \\
\geq & 0
\end{aligned}
$$

If $\mu_{p}\left(T^{\prime}\right)=\mu_{p}(T)$, then $\epsilon=\delta$ by Lemma 3.3, and f must be an eigenfunction of
$\mu_{p}\left(T^{\prime}\right)$. So $f(y)=f(v)$. Moreover, since $w_{T^{\prime}}(u y)=w_{T}(u v) \geq w_{T}(x y)$ and

$$
\begin{aligned}
Q_{p}(T) f(y) & =\sum_{z, z y \in E(T) \backslash\{x y\}}(f(z)+f(y))^{[p-1]} w_{T}(z y)+(f(x)+f(y))^{[p-1]} w_{T}(x y) \\
& =\mu_{p}(T) f(y)^{[p-1]}=\mu_{p}\left(T^{\prime}\right) f(y)^{[p-1]}=Q_{p}\left(T^{\prime}\right) f(y) \\
& =\sum_{z, z y \in E(T) \backslash\{x y\}}(f(z)+f(y))^{[p-1]} w_{T}(z y)+(f(u)+f(y))^{[p-1]} w_{T^{\prime}}(u y),
\end{aligned}
$$

we have $f(x) \geq f(u)$. Hence $f(x)=f(u)$, and the assertion holds.
Lemma 3.5. Let $T \in \mathcal{T}_{\pi, W}$ with $u v, x y \in E(T)$ and f be a Perron vector of T. If $f(u)+f(v) \geq f(x)+f(y)$ and $w_{T}(u v)<w_{T}(x y)$, then there exists a tree $T^{\prime} \in \mathcal{T}_{\pi, W}$ such that $\mu_{p}\left(T^{\prime}\right)>\mu_{p}(T)$.

Proof. Without loss of generality, assume $\|f\|_{p}=1$. Let T^{\prime} be the tree obtained from T with vertex set $V(T)$, edge set $E(T), w_{T^{\prime}}(u v)=w_{T}(x y), w_{T^{\prime}}(x y)=w_{T}(u v)$ and $w_{T^{\prime}}(e)=w_{T}(e)$ for $e \in E(T) \backslash\{u v, x y\}$. Then we have

$$
\begin{aligned}
\mu_{p}\left(T^{\prime}\right)-\mu_{p}(T) & \geq \Lambda_{T^{\prime}}^{p}(f)-\Lambda_{T}^{p}(f) \\
& =\left[(f(u)+f(v))^{p}-(f(x)+f(y))^{p}\right]\left(w_{T}(x y)-w_{T}(u v)\right) \\
& \geq 0
\end{aligned}
$$

If $\mu_{p}\left(T^{\prime}\right)=\mu_{p}(T)$, then f must be an eigenfunction of $\mu_{p}\left(T^{\prime}\right)$. Without loss of generality, assume $u \neq x$ and $u \neq y$. Since

$$
\begin{aligned}
Q_{p}\left(T^{\prime}\right) f(u) & =\sum_{u t \in E(T) \backslash\{u v\}}(f(u)+f(t))^{[p-1]} w_{T}(u t)+(f(u)+f(v))^{[p-1]} w_{T}(x y) \\
& =Q_{p}(T) f(u) \\
& =\sum_{u t \in E(T) \backslash\{u v\}}(f(u)+f(t))^{[p-1]} w_{T}(u t)+(f(u)+f(v))^{[p-1]} w_{T}(u v),
\end{aligned}
$$

we have $w_{T}(u v)=w_{T}(x y)$, which is a contradiction. So $\mu_{p}\left(T^{\prime}\right)>\mu_{p}(T)$.
Let v_{0} be the root of a tree T and $h\left(v_{i}\right)$ be the distance between v_{i} and v_{0}.
Definition 3.6. Let $T=(V(T), E(T), W(T))$ be a weighted tree with a positive weight set $W(T)$ and root v_{0}. Then a well-ordering \prec of the vertices is called a weighted breadth-first-search ordering (WBFS-ordering for short) if the following holds for all vertices $u, v, x, y \in V(T)$:
(1) $v \prec u$ implies $h(v) \leq h(u)$;
(2) $v \prec u$ implies $d(v) \geq d(u)$;
(3) Let $u v, u y \in E(T)$ with $h(v)=h(y)=h(u)+1$. If $v \prec y$, then $w_{T}(u v) \geq$ $w_{T}(u y) ;$
(4) Let $u v, x y \in E(T)$ with $h(u)=h(v)-1$ and $h(x)=h(y)-1$. If $u \prec x$, then $v \prec y$ and $w_{T}(u v) \geq w_{T}(x y)$.

A weighted tree is called a WBFS-tree if its vertices have a WBFS-ordering. For a given degree sequence and a positive weight set, it is easy to see that the WBFS-tree is uniquely determined up to isomorphism by Definition 3.6 (for example, see [9]).

Let $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ be a degree sequence of tree such that $d_{0} \geq d_{1} \geq$ $\cdots \geq d_{n-1}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n-1}\right\}$ be a positive weight set with $w_{1} \geq w_{2} \geq$ $\cdots \geq w_{n-1}>0$. We now construct a weighted tree $T_{\pi, W}^{*}$ with the degree sequence π and the positive weight set W as follows. Select a vertex $v_{0,1}$ as the root and begin with $v_{0,1}$ of the zero-th layer. Let $s_{1}=d_{0}$ and select s_{1} vertices $v_{1,1}, v_{1,2}, \ldots, v_{1, s_{1}}$ of the first layer such that they are adjacent to $v_{0,1}$ and $w_{T_{\pi, W}^{*}}\left(v_{0,1} v_{1, k}\right)=w_{k}$ for $k=1,2, \ldots, s_{1}$. Assume that all vertices of the t-st layer have been constructed and are denoted by $v_{t, 1}, v_{t, 2}, \ldots, v_{t, s_{t}}$. We construct all the vertices of the $(t+1)$-st layer by the induction hypothesis. Let $s_{t+1}=$ $d_{s_{1}+\cdots+s_{t-1}+1}+\cdots+d_{s_{1}+\cdots+s_{t}}-s_{t}$ and select s_{t+1} vertices $v_{t+1,1}, v_{t+1,2}, \ldots, v_{t+1, s_{t+1}}$ of the $(t+1)$-st layer such that $v_{t, 1}$ is adjacent to $v_{t+1,1}, \ldots, v_{t+1, d_{s_{1}+\cdots+s_{t-1}+1}-1}, \ldots$,
 $v_{t, l} v_{t+1, i} \in E\left(T_{\pi, W}^{*}\right)$,

$$
w_{T_{\pi, W}^{*}}\left(v_{t, l} v_{t+1, i}\right)=w_{d_{0}+d_{1}+\cdots+d_{s_{1}+s_{2}+\cdots+s_{t-1}}-\left(s_{1}+s_{2}+\cdots+s_{t-1}\right)+i}
$$

for $1 \leq i \leq s_{t+1}$. In this way, we obtain only one tree $T_{\pi, W}^{*}$ with the degree sequence π and the positive weight set W (see Fig. 3.1 for an example). In the following we are ready to present a proof of Theorem 1.1.

Fig. 3.1. $T_{\pi, W}^{*}$ with $\pi=(4,3,3,3,2,2,2,2,1,1,1,1,1,1,1)$ and $W=\left\{w_{1}, \ldots, w_{14}\right\}$.
P roof of Theorem 1.1. Let T be a weighted tree with the largest p-Laplacian spec-
tral radius in $\mathcal{T}_{\pi, W}$, where $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ with $d_{0} \geq d_{1} \geq \cdots \geq d_{n-1}$. Let f be a Perron vector of T. Without loss of generality, assume $V(T)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ such that $f\left(v_{i}\right) \geq f\left(v_{j}\right)$ for $i<j$. By Corollary 3.2 we have $d\left(v_{0}\right) \geq d\left(v_{1}\right) \geq \cdots \geq$ $d\left(v_{n-1}\right)$. So $d\left(v_{0}\right)=d_{0}$. Let v_{0} be the root of T. Suppose $\max _{v \in V(T)} h(v)=h(T)$. Let $V_{i}=\{v \in V(T) \mid h(v)=i\}$ and $\left|V_{i}\right|=s_{i}$ for $i=0,1, \ldots, h(T)$. In the following we will relabel the vertices of T.

Let $V_{0}=\left\{v_{0,1}\right\}$, where $v_{0,1}=v_{0}$. Obviously, $s_{1}=d_{0}$. The vertices of V_{1} are relabeled $v_{1,1}, v_{1,2}, \ldots, v_{1, s_{1}}$ such that $f\left(v_{1,1}\right) \geq f\left(v_{1,2}\right) \geq \cdots \geq f\left(v_{1, s_{1}}\right)$. Assume that the vertices of V_{t} have been already relabeled $v_{t, 1}, v_{t, 2}, \ldots, v_{t, s_{t}}$. The vertices of V_{t+1} can be relabeled $v_{t+1,1}, v_{t+1,2}, \ldots, v_{t+1, s_{t+1}}$ such that they satisfy the following conditions: If $v_{t, k} v_{t+1, i}, v_{t, k} v_{t+1, j} \in E(T)$ and $i<j$, then $f\left(v_{t+1, i}\right) \geq f\left(v_{t+1, j}\right)$; if $v_{t, k} v_{t+1, i}, v_{t, l} v_{t+1, j} \in E(T)$ and $k<l$, then $i<j$. In this way we can obtain a well ordering \prec of vertices of T as follows:

$$
v_{i, j} \prec v_{k, l}, \text { if } i<k \text { or } i=k \text { and } j<l .
$$

Clearly, $f\left(v_{1,1}\right) \geq \cdots \geq f\left(v_{1, s_{1}}\right)$, and $f\left(v_{t+1, i}\right) \geq f\left(v_{t+1, j}\right)$ when $i<j$ and $v_{t+1, i}, v_{t+1, j}$ have the same neighbor.

In the following we will prove that T is isomorphic to $T_{\pi, W}^{*}$ by proving that the ordering \prec is a WBFS-ordering.

Claim: $f\left(v_{h, 1}\right) \geq f\left(v_{h, 2}\right) \geq \cdots \geq f\left(v_{h, s_{h}}\right) \geq f\left(v_{h+1,1}\right)$ for $0 \leq h \leq h(T)$.
We will prove that the Claim holds by induction on h. Obviously, the Claim holds for $h=0$. Assume that the Claim holds for $h=r-1$. We now prove that the assertion holds for $h=r$. If there exist two vertices $v_{r, i} \prec v_{r, j}$ with $f\left(v_{r, i}\right)<$ $f\left(v_{r, j}\right)$, then there exist two vertices $v_{r-1, k}, v_{r-1, l} \in V_{r-1}$ with $k<l$ such that $v_{r-1, k} v_{r, i}, v_{r-1, l} v_{r, j} \in E(T)$. By the induction hypothesis, $f\left(v_{r-1, k}\right) \geq f\left(v_{r-1, l}\right)$. Let

$$
T_{1}=T-v_{r-1, k} v_{r, i}-v_{r-1, l} v_{r, j}+v_{r-1, k} v_{r, j}+v_{r-1, l} v_{r, i}
$$

with

$$
\begin{aligned}
& w_{T_{1}}\left(v_{r-1, k} v_{r, j}\right)=\max \left\{w_{T}\left(v_{r-1, k} v_{r, i}\right), w_{T}\left(v_{r-1, l} v_{r, j}\right)\right\}, \\
& w_{T_{1}}\left(v_{r-1, l} v_{r, i}\right)=\min \left\{w_{T}\left(v_{r-1, k} v_{r, i}\right), w_{T}\left(v_{r-1, l} v_{r, j}\right)\right\},
\end{aligned}
$$

and $w_{T_{1}}(e)=w_{T}(e)$ for $e \in E(T) \backslash\left\{v_{r-1, k} v_{r, i}, v_{r-1, l} v_{r, j}\right\}$. Then $T_{1} \in \mathcal{T}_{\pi, W}$. By Lemma 3.4, $\mu_{p}(T)<\mu_{p}\left(T_{1}\right)$, which is a contradiction to our assumption that T has the largest p-Laplacian spectral radius in $\mathcal{I}_{\pi, W}$. So $f\left(v_{r, i}\right) \geq f\left(v_{r, j}\right)$. Now assume $f\left(v_{r, s_{r}}\right)<f\left(v_{r+1,1}\right)$. Note that $d\left(v_{0}\right) \geq 2$. It is easy to see that $v_{r, s_{r}} v_{r-1, s_{r-1}}$, $v_{r, 1} v_{r+1,1} \in E(T)$. By the induction hypothesis, $f\left(v_{r-1, s_{r-1}}\right) \geq f\left(v_{r, 1}\right)$. Then, by
similar proof, we can also get a new tree T_{2} such that $T_{2} \in \mathcal{T}_{\pi, W}$ and $\mu_{p}\left(T_{2}\right)>\mu_{p}(T)$, which is also a contradiction. So the Claim holds.

By the Claim and Corollary 3.2, the condition (2) in Definition 3.6 holds.
Assume that $u v, u y \in E(T)$ with $h(v)=h(y)=h(u)+1$. If $v \prec y$, then $f(v) \geq$ $f(y)$ and $w_{T}(u v) \geq w_{T}(u y)$ by Lemma 3.5. So the condition (3) in Definition 3.6 holds.

Let $u v, x y \in E(T)$ with $u \prec x, h(v)=h(u)+1$ and $h(y)=h(x)+1$. Then $v \prec y$. By the Claim, $f(u) \geq f(x)$ and $f(v) \geq f(y)$, which implies $f(u)+f(v) \geq f(x)+f(y)$. Further, by Lemma 3.5, we have $w_{T}(u v) \geq w_{T}(x y)$. Therefore, " \prec " is a WBFSordering, i.e., T is a WBFS-tree. So $T_{\pi, W}^{*}$ is the unique tree with the largest p Laplacian spectral radius in $\mathcal{T}_{\pi, W}$. Hence, the proof is completed.

Let $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ and $\pi^{\prime}=\left(d_{0}^{\prime}, d_{1}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ be two nonincreasing positive sequences. If $\sum_{i=0}^{t} d_{i} \leq \sum_{i=0}^{t} d_{i}^{\prime}$ for $t=0,1, \ldots, n-2$ and $\sum_{i=0}^{n-1} d_{i}=\sum_{i=0}^{n-1} d_{i}^{\prime}$, then π^{\prime} is said to majorize π, and is denoted by $\pi \unlhd \pi^{\prime}$.

Lemma 3.7. ([5]) Let $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ and $\pi^{\prime}=\left(d_{0}^{\prime}, d_{1}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ be two nonincreasing graphic degree sequences. If $\pi \unlhd \pi^{\prime}$, then there exist graphic degree sequences $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ such that $\pi \unlhd \pi_{1} \unlhd \pi_{2} \unlhd \cdots \unlhd \pi_{k} \unlhd \pi^{\prime}$, and only two components of π_{i} and π_{i+1} are different by 1 .

Theorem 3.8. Let π and π^{\prime} be two degree sequences of trees. Let $\mathcal{T}_{\pi, W}$ and $\mathcal{T}_{\pi^{\prime}, W}$ denote the set of trees with the same weight set W and degree sequences π and π^{\prime}, respectively. If $\pi \unlhd \pi^{\prime}$, then $\mu_{p}\left(T_{\pi, W}^{*}\right) \leq \mu_{p}\left(T_{\pi^{\prime}, W}^{*}\right)$. The equality holds if and only if $\pi=\pi^{\prime}$.

Proof. By Lemma 3.7, without loss of generality, assume $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ and $\pi^{\prime}=\left(d_{0}^{\prime}, d_{1}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ such that $d_{i}=d_{i}^{\prime}-1, d_{j}=d_{j}^{\prime}+1$ with $0 \leq i<j \leq n-1$, and $d_{k}=d_{k}^{\prime}$ for $k \neq i, j$. Then $T_{\pi, W}^{*}$ has a WBFS-ordering \prec consistent with its Perron vector f such that $f(u) \geq f(v)$ implies $u \prec v$ by the proof of Theorem 1.1. Let $v_{0}, v_{1}, \ldots, v_{n-1} \in V\left(T_{\pi, W}^{*}\right)$ with $v_{0} \prec v_{1} \prec \cdots \prec v_{n-1}$. Then $f\left(v_{0}\right) \geq f\left(v_{1}\right) \geq$ $\cdots \geq f\left(v_{n-1}\right)$ and $d\left(v_{t}\right)=d_{t}$ for $0 \leq t \leq n-1$. Since $d_{j}=d_{j}^{\prime}+1 \geq 2$, there exists a vertex v_{s} with $s>j, v_{j} v_{s} \in E\left(T_{\pi, W}^{*}\right), v_{i} v_{s} \notin E\left(T_{\pi, W}^{*}\right)$ and v_{s} is not in the path from v_{i} to v_{j}. Let $T_{1}=T_{\pi, W}^{*}-v_{j} v_{s}+v_{i} v_{s}$ with $w_{T_{1}}\left(v_{i} v_{s}\right)=w_{T_{\pi, W}^{*}}\left(v_{j} v_{s}\right)$ and $w_{T_{1}}(e)=w_{T_{\pi, W}^{*}}(e)$ for $e \in E\left(T_{1}\right) \backslash\left\{v_{i} v_{s}\right\}$. Then $T_{1} \in \mathcal{T}_{\pi^{\prime}, W}$. Since $i<j$, we have $f\left(v_{i}\right) \geq f\left(v_{j}\right)$. By Lemma 3.1, $\mu_{p}\left(T_{\pi, W}^{*}\right)<\mu_{p}\left(T_{1}\right) \leq \mu_{p}\left(T_{\pi^{\prime}, W}^{*}\right)$. The proof is completed.

Corollary 3.9. Let $\mathcal{T}_{n, k}$ be the set of trees of order n with k pendent vertices and the same weight set W. Let $\pi_{1}=\{k, 2, \ldots, 2,1, \ldots, 1\}$, where the number of 1 is
k. Then $T_{\pi_{1}, W}^{*}$ is the unique tree with the largest p-Laplacian spectral radius in $\mathcal{T}_{n, k}$.
Proof. Let $T \in \mathcal{T}_{n, k}$ with degree sequence $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$. Obviously, $\pi \unlhd \pi_{1}$. By Theorem 3.8, the assertion holds.

Acknowledgment. The authors would like to thank an anonymous referee very much for valuable suggestions, corrections and comments which results in a great improvement of the original manuscript.

REFERENCES

[1] S. Amghibech. Bounds for the largest p-Laplacian eigenvalue for graphs. Discrete Mathematics, 306:2762-2771, 2006.
[2] T. Bıyıkoğlu, M. Hellmuth, and J. Leydold. Largest eigenvalues of the discrete p-Laplacian of trees with degree sequence. Electronic Journal of Linear Algebra, 18:202-210, 2009.
[3] T. Bıyıkoğlu and J. Leydold. Graphs with given degree sequence and maximal spectral radius. Electronic Journal of Combinatorics, 15:R119, 2008.
[4] J. Dodziuk and W.S. Kendall. Combinatorial Laplacians and isoperimetric inequality. In K.D. Elworthy, editor, From Local Times to Global Geometry, Control and Physics, Pitman Reseach Notes in Mathematics, 150:68-74, 1986.
[5] P. Erdös and T. Gallai. Graphs with prescribed degrees of vertices (in Hungarian). Matematikai Lapok, 11:264-274, 1960.
[6] D. Luo, H. Huang, C. Ding, and F. Nie. On the eigenvectors of p-Laplacian. Machine Learning, 81:37-51, 2010.
[7] H. Takeuchi. The spectrum of the p-Laplacian and p-Harmonic morphisms on graphs. Illinois Journal of Mathematics, 47(3):939-955, 2003.
[8] S.-W. Tan. On the weighted trees with given degree sequence and positive weight set. Linear Algebra and its Applications, 433:380-389, 2010.
[9] X.-D. Zhang. The Laplacian spectral radii of trees with degree sequences. Discrete Mathematics, 308:3143-3150, 2008.
[10] X.-D. Zhang. The signless Laplacian spectral radius of graphs with given degree sequences. Discrete Applied Mathematics, 157:2928-2937, 2009.

[^0]: *Received by the editors on September 1, 2010. Accepted for publication on February 27, 2011. Handling Editor: Michael Neumann.
 ${ }^{\dagger}$ Department of Mathematics, Shanghai Jiao Tong University, 800 Dongchuan road, Shanghai, 200240, P.R. China (xiaodong@sjtu.edu.cn). This work is supported by the National Natural Science Foundation of China (No 10971137), the National Basic Research Program (973) of China (No 2006CB805900), and a grant of Science and Technology Commission of Shanghai Municipality (STCSM, No 09XD1402500)

