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MULTIPLICATIVE DIAGONALS OF MATRIX SEMIGROUPS∗
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Abstract. We consider semigroups of matrices where either the diagonal map or the diagonal

product map is multiplicative, and deduce structural properties of such semigroups.
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1. Introduction. For A = [aij ] in Mn(C), the set of n × n complex matrices,

define ∆(A) = [αij ], the diagonal of A, to be the n × n matrix such that

αij =

{

aij , if i = j

0, otherwise.

For a matrix semigroup S (a collection of matrices in Mn(C) which is closed under

matrix multiplication), the diagonals of elements of S seem to have an inordinate effect

on the spatial properties of the semigroup, such as reducibility or decomposability.

A matrix semigroup S in Mn(C) is reducible if there exists a non-trivial proper

subspace of C
n which is invariant for each S in S. Otherwise S is said to be irreducible.

A matrix semigroup is called triangularizable if there exists a chain of subspaces which

are invariant for S and maximal as a chain in the lattice of all subspaces of C
n. This

is equivalent to being similar (via any invertible matrix) to a set of upper triangular

matrices.

A matrix semigroup S in Mn(C) is decomposable if there exists a non-trivial

proper subspace of C
n which is invariant for S and which is spanned by a subset

of the standard basis vectors (the vectors with exactly one non-zero entry, and that

non-zero entry is one). We call such subspaces standard subspaces. Otherwise S is

said to be indecomposable. A matrix semigroup is called completely decomposable

(the phrase has a standard triangularization is also used) if there exists a chain of
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standard subspaces which are invariant for S and maximal as a chain in the lattice

of all subspaces of C
n. This is equivalent to being similar, via a permutation matrix,

to a set of upper triangular matrices.

There are a number of results concerning the effect that the diagonals of semigroup

have on a semigroup. In [1], it is shown that a group of matrices which has non-

negative diagonals is either reducible or similar to a group of positive matrices (i.e.,

matrices with all entries greater than or equal to zero).

The structural effect of the diagonal is most pronounced in the case where the

semigroup is positive, that is each entry of each matrix in S is a non-negative real

number. For example, in [3], it is shown that a positive semigroup whose diagonal

entries are binary (equal to 0 or 1), is either decomposable, or similar, via a positive

diagonal similarity, to a semigroup of binary matrices.

If we let δ(A) denote the diagonal product, i.e., δ(A) =
∏n

i=1
aii, then it is shown

in [6] and [4] that under some mild additional assumptions, if δ is a submultiplicative

function on a positive semigroup S then S is completely decomposable.

In this paper, we consider the effect of the diagonal on the structure of a semigroup

without assuming positivity. While the conclusions we draw cannot be as strong as

those for the positive case, a surprising amount of structural information can be

obtained.

The two problems we are most interested in are:

1. If ∆ is a multiplicative map on a semigroup S in Mn(C), what can we deter-

mine about the structure of S?

2. If δ is a multiplicative map on a semigroup S in Mn(C), what can we deter-

mine about the structure of S?

Since the multiplicativity of ∆ obviously implies the multiplicativity of δ, it is a

stronger condition so we begin there.

2. Multiplicative diagonals. A semigroup having multiplicative diagonals

gives an immediate triangularization result.

Theorem 2.1. If the diagonal map ∆ is multiplicative on a matrix semigroup S,

then S is triangularizable.

Proof. For A,B and C in S,

tr(ABC) = tr(∆(ABC))

= tr(∆(A)∆(B)∆(C))

= tr(∆(A)∆(C)∆(B))

= tr(∆(ACB)) = tr(ACB),
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so trace is permutable on S and so by Theorem 2.2.1 of [6] (page 33), S is triangu-

larizable.

We can obtain additional information about the invariant subspaces of a semi-

group S via a theorem of Sarason [7]. First note that a subspace M is semi-invariant

for a collection C of operators in Mn(C) if there exist two subspaces M1 ⊆ M2, both

invariant for C, such that M1 ⊕ M = M2.

Theorem 2.2 (Sarason). For A a subalgebra of Mn(C) and M a subspace of

C
n with PM denoting the orthogonal projection onto M , the compression map φ :

Mn(C) → Mn(C) defined by φ(A) = PMAPM is an algebra homomorphism if and

only if M is semi-invariant for A.

The multiplicativity of ∆ on a semigroup S implies that the compression to the

span of each standard vector is an algebra homomorphism on the linear span of S.

Thus, we have the following.

Theorem 2.3. If the diagonal map ∆ is multiplicative on a matrix semigroup

S in Mn(C), then for each i = 1, 2, . . . , n, Mi = {λei : λ ∈ C} is a semi-invariant

subspace for S.

It would seem that by combining Theorems 2.1 and 2.3, we should be able to

obtain that multiplicative diagonal map ∆ implies complete decomposability, but

this is not the case as the following example shows.

Example 2.4. Let

F1 =









0 1 1 1

0 1 1 1

0 0 0 0

0 0 0 0









, F2 =









0 0 −1 −1

0 0 −1 −1

0 0 1 1

0 0 0 0









,

F3 =









1 −1 0 0

0 0 0 0

−1 1 0 0

1 −1 0 0









, F4 =









0 0 0 0

0 0 0 0

1 −1 0 −1

−1 1 0 1









.

Then

F1 + F2 + F3 + F4 = I

and

FiFj = 0
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for i 6= j. In particular, every Fi is a rank one idempotent, and F = {F1, F2, F3, F4}

is a semigroup. Writing |Fi| for the matrix obtained by taking the absolute values of

the entries of Fi, we see that

|F1| + |F2| + |F3| + |F4| =









1 2 2 2

0 1 2 2

2 2 1 2

2 2 0 1









,

from which it follows that the four matrices are not only not simultaneously com-

pletely decomposable, but also they do not even share a non-trivial standard invariant

subspace. Yet it is easy to see that the diagonal map ∆ is multiplicative on F .

The above example eliminates any possibility of major decomposability theorems

arising from a multiplicative ∆ map. The example can be modified in many ways to

provide counterexamples. For example,

G =

{

4
∑

i=1

αiFi : αi ∈ T

}

gives an example of a compact group on which ∆ is multiplicative, but the group is

indecomposable.

Four dimensions are necessary to obtain a counterexample to complete decom-

posability.

Theorem 2.5. If the diagonal map ∆ is multiplicative on a semigroup S in

M3(C), then S is completely decomposable.

The proof is surprisingly lengthy. In the appendix, we will do similar low di-

mension calculations, so we will leave this proof to the reader. It turns out that

many proofs regarding multiplicative diagonals (or diagonal products) in semigroups

in M2(C) or M3(C) are unexpectedly nontrivial and intricate.

Theorem 2.6. If the diagonal map ∆ is multiplicative on a semigroup S in

Mn(C) and A ∈ S, then the diagonal entries of A are exactly the eigenvalues of A

repeated according to their algebraic multiplicities.

Proof. We have that tr(An) = tr(∆(An)) = tr(∆(A)n), so this follows from

Theorem 2.1.16 of [6].

Note that since both ∆ and the trace are linear maps, Theorem 2.6 is also true

for A in the linear span of S.

Theorem 2.7. If the diagonal map ∆ is multiplicative on a semigroup S in

Mn(C) generated by a rank-one matrix, then the semigroup is completely decompos-

able.
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Proof. If the generator is A, then there exists vectors x =







x1

...

xn






and y =







y1

...

yn







in C
n such that A = xy∗ and then the trace of A equals y∗x. The condition that

∆(A2) = ∆(A)2 implies that for all i = 1, 2, . . . , n, tr(A)xiyi = (xiyi)
2
. So either

xiyi = 0 or xiyi = tr(A). However, the trace of A is the sum over all xiyi so we must

have that there is at most one i for which xiyi 6= 0.

In the case where there does exist i for which xiyi 6= 0, let Sx = {j : xj 6= 0, j 6= i}

and let m be the cardinality of this set. Apply any permutation of {1, 2, . . . , n} that

maps Sx to {1, 2, . . . ,m} and maps i to m + 1. Then it is easy to see that the

corresponding permutation matrix P is such that, with respect to the decomposition

C
n = C

m ⊕ C ⊕ C
n−m−1,

P−1SP ⊆











0 ub uv∗

0 ab av∗

0 0 0











,

so S is completely decomposable.

In the case, where xiyi = 0 for all i, it is even simpler. Let Sx = {j : xj 6= 0} and

again do as above.

This theorem does not extend to semigroups generated by matrices of higher

rank, even if complete decomposability is weakened to mere decomposability in the

conclusion.

Example 2.8. Again modifying Example 2.4, let

A = F1 + 2F3 =









2 −1 1 1

0 1 1 1

−2 2 0 0

2 −2 0 0









.

Then A is indecomposable matrix of rank two, but the diagonal map ∆ is multiplica-

tive on the semigroup generated by A, since

∆(An) = ∆(F1 + 2nF3) =









2n 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0









.

Similarly, one can check that B = F1 + 2F2 + 3F3 + 4F4 is an invertible matrix with

the same property.
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Theorem 2.9. If the diagonal map ∆ is multiplicative on a semigroup S of

matrices of rank one, then S is completely decomposable.

Proof. For a matrix S = [sij ], define |S| = [|sij |]. Note that if S is a rank-one

matrix S = xy∗, then |S| = |x||y|∗ is also a rank-one matrix. Thus,

S ′ =
{

r|S| : r ∈ R
+, S ∈ S

}

is a semigroup of positive matrices, and it is easily verified that ∆ is still multiplicative

on S ′. Thus, by Lemma 5.1.3 of [6], S ′ is completely decomposable, from which it

immediately follows that S is completely decomposable as well.

In Theorem 2.9, the implicit hypothesis that S does not contain non-trivial zero

divisors is essential. Otherwise we do not even obtain decomposability, as the following

example shows.

Example 2.10. Let

X = { (a,−a, 0, 0, b,−b, 0, 0) | a, b ∈ C } ,

Y = { (0, 0, c, c, 0, 0, d, d) | c, d ∈ C } ,

U = { (0, 0, e,−e, 0, 0, f,−f) | e, f ∈ C } ,

W = { (g, g, 0, 0, h, h, 0, 0) | g, h ∈ C } ,

and let

S = { x∗y | x ∈ X , y ∈ Y } ,

T = { u∗w | u ∈ U , w ∈ W } .

Then F = S ∪ T is an indecomposable semigroup of nilpotent matrices all of which

have zero diagonal and rank at most one. In fact, AB = 0 for any A,B ∈ F .

If zero divisors are present, then we can obtain complete decomposability in one

special case.

Theorem 2.11. If the diagonal map ∆ is multiplicative on a semigroup generated

by a nilpotent matrix N ∈ Mn(C) of rank n − 1, then the semigroup is completely

decomposable.

Proof. We use induction on n, the dimension of the underlying space. The base

case is n = 1 and in this case N = 0 and so is completely decomposable. Suppose

that the statement is true for n, and consider N ∈ Mn+1(C) of rank n. Such an N

must be a single Jordan block, and so Nn 6= 0. So there exists some standard vector

e (with only one non-zero entry and that entry is 1) with Nne 6= 0. By applying a

permutation similarity to our semigroup, there is no loss of generality in assuming

that e = e1, the standard vector whose first entry is 1.
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Then
{

e1, Ne1, N
2e1, . . . , N

ne1

}

is a basis for C
n+1. The multiplicativity of ∆

implies that ∆(Nk) = 0 for all k = 1, 2, . . . , n, so Nke1 is perpendicular to e1 for all

k = 1, 2, . . . , n. This implies that span
{

Ne1, N
2e1, . . . , N

ne1

}

= {e1}
⊥. Thus, the

matrix N is of the form

N =

[

0 0

∗ N1

]

,

where N1 is nilpotent of rank n − 1. By induction, N is completely decomposable.

We complete our investigation of multiplicative ∆ map by considering the case

of a self-adjoint semigroup

Theorem 2.12. If S is a self-adjoint semigroup and ∆ is multiplicative on S,

then S is diagonal.

Proof. This can be proved in a number of ways. The simplest is to consider that

for each A in S, ∆(A∗A) = ∆(A)∆(A∗). From here the result follows immediately.

3. Multiplicative diagonal products. We now relax our condition on the

diagonals. In this section we only require that δ : Mn(C) → C, mapping a matrix to

the product of its diagonal entries, is multiplicative on our semigroup.

Theorem 3.1. If U ⊆ Mn(C) is a semigroup of unitaries and δ : U → C
n is

multiplicative, then U consists of diagonal matrices.

Proof. First note that if U = [uij ] is a unitary matrix in U , then there exists

an increasing sequence of natural numbers {qj}
∞
j=1 with limj qj = ∞ and limj Uqj =

I. To see this, we may assume without loss of generality that U is diagonal with

eigenvalues e2πiα1 , e2πiα2 , . . . , e2πiαn and use the multivariate version of Direchlet’s

Theorem on Diophantine approximation (see [2]). This theorem allows us to find,

given a natural number Q, a natural number q ≤ Q with

max{〈α1q〉 , 〈α2q〉 , . . . , 〈αnq〉} ≤
1

Q1/n
,

where 〈x〉 is the distance from x to the nearest integer. From this it is straightforward

to construct the sequence {qj}
∞
j=1 as above.

By the continuity of δ, we must have that limj δ(Uqj ) = 1. The multiplicativity

of δ gives that δ(U)qj = (
∏

uii)
qj converges to 1. Thus |

∏

uii| = 1, and as these are

entries of a unitary matrix and hence bounded by 1, we must have that |uii| = 1 for

i = 1, 2, . . . , n and thereby U is a diagonal matrix.

Corollary 3.2. If S is a bounded group of invertible matrices in Mn(C) and δ

is multiplicative on S, then |δ(S)| = 1 for all S ∈ S.
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Proof. The group S is similar to a unitary group (see Theorem 3.1.5 of [6]).

Hence, similarly to the proof of Theorem 3, if S = [sij ] is an element of S, then

|δ(S)| = |
∏

sii| = 1.

Theorem 3.3. If S is a self-adjoint semigroup of Mn(C), and δ is multiplicative

and nonzero on S ( δ(S) 6= 0 for all S ∈ S), then S is a semigroup of diagonal

matrices.

Proof. If A = [aij ] is a matrix in S with column vectors c1, c2, . . . , cn, then

n
∏

i=1

‖ci‖
2 = δ(A∗A) = δ(A∗)δ(A) =

n
∏

i=1

|aii|
2.

Now ‖ci‖
2 = |aii|

2 +
∑

j 6=i |aji|
2, and δ(S) 6= 0 for all S ∈ S, so the only possibility is

that for i 6= j, aji = 0.

We note that the condition that δ(S) 6= 0 for all S ∈ S in the above theorem,

could be replaced by the condition that S consists of invertible matrices, or that

matrices in S have no zero columns. Even without self-adjointness, these conditions

are connected.

Theorem 3.4. Let S be a semigroup of invertible matrices. If δ is multiplicative

on S, then δ(S) 6= 0 for all S ∈ S.

Proof. The set S0 = {S ∈ S : δ(S) = 0} is a semigroup ideal of S. Consider

Z (S0), the Zariski closure of S0 (see [5] for information on the Zariski closure). It is

known that Z (S0) must contain a group which contains S0 and that polynomial con-

ditions (like δ(S) = 0) extend to the Zariski closure. This implies that δ is constantly

zero on a group, which is a contradiction since δ(I) = 1.

Note that the invertibility assumption is required, as shown by the following

example. Let ω be a primitive third root of unity, then

Sω =

{

±ωi

[

1 1

w w

]

: i = 1, 2, 3

}

has δ (Sω) ⊆
{

1, ω, ω2
}

but clearly Sω is not a semigroup of invertible matrices.

We conclude by considering the rank-one case, but also assuming matrices in our

semigroup have real entries.

Theorem 3.5. For n ∈ N odd, if S ∈ Mn(C) is a semigroup of rank-one matrices

such that each A in S has real entries and δ is non-zero and multiplicative on S, then

S is triangularizable.

Proof. There are some reductions we can make immediately. By Theorem 3.3.9

of [6], it suffices to show that spectrum is submultiplicative on S to obtain triangu-
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larizability. The condition of submultiplicative spectrum involves only two matrices

in S, so if we can show doubly generated subsemigroups of S are triangularizable,

then the general result follows. Also, given a semigroup S with δ multiplicative and

non-zero, the set

{

1

(δ(S))
1

n

S : S ∈ S

}

is a semigroup which clearly is triangularizable if and only if S is trangularizable. So,

without loss of generality, we may assume δ is constantly one on S.

Finally, note that if E = xy∗ is rank-one, then E2 = (xy∗)2 = (y∗x)xy∗ = (y∗x)E.

So if E is in a semigroup which has δ constantly one, then (y∗x)n = 1 and so if n is

odd then E is idempotent. (If n is even, then we can just say that either E or −E is

idempotent).

Since n is odd, S is triangularizable if and only if a related, doubly generated,

semigroup of idempotents is triangularizable. But all such semigroups are triangular-

izable (see Theorem 2.3.5 of [6]).

In the case where n is even, the conditions of the above theorem do impose some

structural constraints on the semigroup, but not enough to force triangularizability,

as the following example shows.

Example 3.6. If we are looking for a counterexample to triangularizability for a

semigroup S in M4(R) satisfying the conditions of Theorem 3.5, using the reductions

above, we can assume that δ is constantly one on our semigroup, which is of the form

S = ±{E,F,EF, FE} ,

where E, F are idempotent, and EFE = −E and FEF = −F (so −EF and −FE

are idempotent).

So, for E = xy∗ and F = uv∗,

1. that E is idempotent implies 〈x, y〉 = 1,

2. that F is idempotent implies 〈u, v〉 = 1,

3. δ(E) = 1 implies (
∏

xi) (
∏

yi) = 1,

4. δ(F ) = 1 implies (
∏

ui) (
∏

vi) = 1,

5. δ(EF ) = 1 implies that (
∏

xi) (
∏

vi) = 1 and 〈u, y〉 = ±1,

6. δ(FE) = 1 implies that (
∏

yi) (
∏

ui) = 1 and 〈x, v〉 = ±1, and

7. EFE = −E implies that 〈x, v〉 〈u, y〉 = 1.

By applying a diagonal similarity (which leaves the diagonal unchanged), we can
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assume that x =









1

1

1

1









. Then our conditions reduce to

1.
∏

yi =
∏

ui =
∏

vi = 1,

2.
∑

yi =
∑

uiyi =
∑

uivi = 1 and
∑

vi = −1.

There are many possible solutions for this system. One is obtained by letting

τ = 1+
√

5

2
and σ = −1+

√
5

2
, which gives

x =









1

1

1

1









, u =









1

1

−1

−1









, y =









τ

− 1

τ

−1

1









, v =









−1

1

σ

− 1

σ









.

It is straightforward to show that the only invariant subspaces for S are those

subspaces which either are contained in ker(S) = {y, v}⊥ or contain Range(S) =

span{x, u}. So the two dimensional subspace in any triangularizing chain would

need to be {y, v}⊥ or span{x, u}, and these subspaces would need to intersect non-

trivially to be able to extend to a triangularizing chain. It is easily verified that

{y, v}⊥ ∩ span{x, u} = {0}, so S is not triangularizable.

4. Appendix: The 2 × 2 case. As we have mentioned before, deriving con-

ditions from multiplicative δ map is complicated even in the 2 by 2 case. Since the

semigroups S in M2(C) for which δ restricted to S is multiplicative can be completely

classified, and since this classification may prove useful in a further study of higher

dimensions, we include an appendix on this low dimensional case.

First we note that any matrix in a semigroup in M2(C) on which δ is multiplicative

must be one of three special types.

Theorem 4.1. If the diagonal product δ is multiplicative on a semigroup S in

M2(C) and A is in S, then one of the following is true:

1. (Type 1) Up to a diagonal similarity A is a non-zero multiple of

[

1 −2

1 −1

]

(here δ(An) = (−1)n det(An));

2. (Type 2) Up to a diagonal similarity, A is a non-zero multiple of

[

1 1

w w

]

,

where w 6= 1 is a cubic root of unity;

3. (Type 3) A is triangular.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 252-266, March 2011



ELA

262 L. Livshits, G. MacDonald, and H. Radjavi

Proof. For A =
[

a b
c d

]

, the equation

δ(A2) = (δ(A))
2

gives that

bc(d2 + a2 + bc) = 0.

If bc = 0, then A is triangular, and since the same must be true for all powers of A,

δ coincides with the determinant on S.

Assume bc 6= 0 henceforth. Since δ is invariant under diagonal similarity, it is

sufficient to assume c = 1. Hence,

−(d2 + a2) = b, (4.1)

and therefore,

A2 =

[

a2 + b (a + d)b

(a + d) d2 + b

]

=

[

−d2 (a + d)b

(a + d) −a2

]

. (4.2)

If A has zero trace, then

A =

[

a −2a2

1 −a

]

and A2 = −a2I

so that δ(An) = (−1)na2n = (−1)n det(An). If a = 0 then A is triangular. If a 6= 0,

then
[

1 0

0 a

]

A

[

1 0

0 1

a

]

= −a

[

1 −2

1 −1

]

.

Assume trace(A) 6= 0 henceforth. The equation

δ(A4) =
(

δ(A2)
)2

yields via (4.2)

a4 + d4 + (a + d)2b = 0,

which in conjunction with equation (4.1) leads to

a4 + d4 = (a + d)2(a2 + d2),

and reduces to

2ad(a2 + ad + d2) = 0. (4.3)
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If ad = 0 (i.e., δ(A) = 0) then A3 = −(a3 + d3)I, so that

δ(A3) = (δ(A))
3

gives

a3 + d3 = 0,

and consequently a = d = 0, since ad = 0 is assumed. This contradicts the assumption

that trace(A) 6= 0.

The only choice left is ad 6= 0. In this case equations (4.1) and (4.3) yield

ad = −(a2 + d2) = b (4.4)

(so that det(A) = 0) and

A =

[

a ad

1 d

]

.

A simple calculation shows that

A2 = (a + d)A

so that An = (a + d)n−1A and δ(An) = ad
(

(a + d)2
)n−1

= (ad)n. Furthermore,

[

1 0

0 d

]

A

[

1 0

0 1

d

]

= a

[

1 1
d
a

d
a

]

,

and equation (4.4) states that 1 + d
a +

(

d
a

)2
= 0 so that d

a is a cubic root of unity

distinct from 1.

One consequence of Theorem 4.1 is that: if the diagonal product δ is multiplicative

on the semigroup S in M2(C), then each matrix A in S is either triangular or det(A) =

0 or trace(A) = 0.

It can be shown that if δ is multiplicative on S in M2(C), and A and B are in

S, then A and B have to either be of the same type (as per Theorem 4.1) or one of

A or B must be scalar. In particular, you cannot have matrices of type 2 and type

3 in the same semigroup S. Furthermore, if A and B are of the same type, then the

multiplicativity of δ forces additional stringent conditions. These are summarized in

the following three theorems.

Theorem 4.2. The diagonal product δ is multiplicative on a semigroup S ⊂

M2(C) containing a matrix A of type 1 if and only if every element of S is either a

multiple of A or a scalar matrix.

Theorem 4.3. The diagonal product δ is multiplicative on a semigroup S ⊂

M2(C) containing a matrix A of type 2 if and only if one of the following is true:
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1. There exists a cubic root of unity w 6= 1 such that after a simultaneous di-

agonal similarity, every element of S is either a multiple of

[

1 1

w w

]

or a

multiple of

[

1 1

w2 w2

]

or a scalar matrix;

2. There exists a cubic root of unity w 6= 1 such that after a simultaneous di-

agonal similarity, every element of S is either a multiple of

[

1 1

w w

]

or a

multiple of

[

w2 1

1 w

]

or a scalar matrix.

Theorem 4.4. The diagonal product δ is multiplicative on a semigroup S ⊂

M2(C) containing a non-scalar matrix A of type 3 if and only if one of the following

is true:

1. S is completely decomposable (i.e., either S or its transpose ST is contained

in the upper triangular matrices);

2. either S or ST has the property that each element in the semigroup is either

scalar or has at most one non-zero row.

The proofs of all these theorems proceed along the same lines. Besides the matrix

A in the semigroup of the given type, you assume you also have a matrix B in the

semigroup of one of the three types. Examine each of the three cases using the

multiplicativity of δ to arrive at the conclusion. We include the proof of Theorem 4.2

and leave the other two to the reader.

Proof of Theorem 4.2. Without loss of generality, we assume that A =

[

1 −2

1 −1

]

is in our semigroup.

If B =

[

x y

z v

]

is also in the semigroup, then the condition

δ(AB) = δ(A)δ(B) = δ(BA)

states that

(x − 2z)(y − v) = −xv = −(x + y)(2z + v),

or equivalently

xy − 2zy + 2zv = 0 = yv + 2xz + 2yz. (4.5)

If B was also of type 1, then B = α

[

1 −2p
1

p −1

]

for some α, p 6= 0. The leftmost
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equality in (4.5), necessary for multiplicativity of δ, states in the present case that

−2p + 4 −
2

p
= 0,

which has a unique solution p = 1.

If B was of type 2, then B = α

[

1 p
w
p w

]

(where α 6= 0 6= p). For δ to be

multiplicative on the semigroup generated by A and B, equalities (4.5) must hold. In

other words, p and w satisfy

p − 2w + 2
w2

p
= 0 = pw + 2

w

p
+ 2w,

or equivalently

p2 − 2wp + 2w2 = 0 = p2 + 2p + 2.

Hence w(1± i) = p = −1± i, and it is easy to check that cubic roots of unity can not

satisfy this equation.

Finally, if B was of type 3 then, since

[

1 −2

1 −1

]

is similar to its transpose via

a diagonal similarity, and δ is invariant under transposition, we may assume B =
[

x y

0 v

]

. Equalities in (4.5) force

xy = 0 = yv. (4.6)

If y 6= 0, then B is nilpotent, and if y = 0, then B is diagonal. In the first case

B =

[

0 y

0 0

]

so that

ABA =

[

y −y

y −y

]

.

The requirement δ(ABA) = δ(B)δ(A)2 = 0 dictates that y = 0, which is a contra-

diction. Hence, it must be that y = 0 is the only option. In this case, the condition

δ(ABA) = δ(B)δ(A)2 can be easily seen to state that (x−v)2 = 0, which is a required

conclusion.

The preceding three structure theorems give two immediate reducibility or de-

composability results

Corollary 4.5. If the diagonal product δ is multiplicative on a semigroup S of

invertibles (in M2(C)) with nonzero trace, then S is (completely) decomposable.
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Proof. By Theorem 4.1 all elements of S are triangular with no zeros on the

diagonal. Theorem 4.4 does the rest.

Corollary 4.6. If δ is multiplicative on a semigroup S in SL2, then S is

reducible.

Proof. If S contains an element of type 1, then S is abelian (and hence reducible)

by Theorem 4.2. By Theorem 4.1, the only alternative is that S is a semigroup of

triangular matrices. In such a case, by Theorem 4.4, S is (completely) decompo-

sable.
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