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A NOTE ON MINIMUM RANK AND MAXIMUM NULLITY

OF SIGN PATTERNS∗
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Abstract. The minimum rank of a sign pattern matrix is defined to be the smallest possible rank over

all real matrices having the given sign pattern. The maximum nullity of a sign pattern is the largest possible

nullity over the same set of matrices, and is equal to the number of columns minus the minimum rank of the

sign pattern. Definitions of various graph parameters that have been used to bound maximum nullity of a

zero-nonzero pattern, including path cover number and edit distance, are extended to sign patterns, and the

SNS number is introduced to usefully generalize the triangle number to sign patterns. It is shown that for

tree sign patterns (that need not be combinatorially symmetric), minimum rank is equal to SNS number, and

maximum nullity, path cover number and edit distance are equal, providing a method to compute minimum

rank for tree sign patterns. The minimum rank of small sign patterns is determined.
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1. Introduction. The minimum rank problem for a sign pattern asks for a determina-

tion of the minimum rank among all real matrices whose pattern of signs is described by a

given sign pattern matrix. This is a variant on the symmetric minimum rank problem for a

simple graph, which asks for a determination of the minimum rank among all real symmetric

matrices whose zero-nonzero pattern of off-diagonal entries is described by a given simple

graph G (the diagonal of the matrix is free), and the asymmetric minimum rank problem,

which asks for a determination of the minimum rank among all real matrices whose zero-

nonzero pattern of entries is described by a given digraph or zero-nonzero pattern. The

symmetric minimum rank problem arose from the study of possible eigenvalues of real sym-

metric matrices described by a graph and has received considerable attention over the last

ten years (see [7] and references therein). Recently minimum rank problems for digraphs or

zero-nonzero patterns have been receiving attention (see, for example, [1, 5]).

Minimum rank problems have found application to the study of communication com-

plexity in computer science. Many of these connections involve the minimum rank of a sign

pattern rather than a graph or digraph. For example, Forster [9] establishes a lower bound

on the minimum rank of a sign pattern having no zero entries and uses this to establish a
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linear lower bound on unbounded error probabilistic communication complexity. The appli-

cation to communication complexity gives added importance to the minimum rank problem

for sign patterns.

One obvious strategy is to attempt to extend results for the minimum rank of graphs

and digraphs to sign patterns. However, not all results remain valid for sign patterns, and

in order to extend some other results new parameters are needed, since the straightforward

extensions fail. For example, the triangle number is used to study digraphs, but it is not

useful for sign patterns. We introduce the SNS number (Definition 3.1) to usefully generalize

triangle number to sign patterns, and this allows us to extend the solutions of the minimum

rank problem for combinatorially symmetric tree sign patterns [6] and for directed trees [1]

to tree sign patterns (see Section 4). In Section 5 we consider extreme minimum rank of

sign patterns and determine the minimum rank of small sign patterns having no entry equal

to zero.

2. Definitions and terminology. A sign pattern is amatrixhaving entries in {+,−, 0};
a full sign pattern has entries in {+,−}. A zero-nonzero pattern is a matrix having entries

in {∗, 0}, where ∗ indicates a nonzero entry. For a real matrix A, sgn(A) is the sign pattern

having entries that are the signs of the corresponding entries in A. If X is an n × m sign

pattern, the sign pattern class (or qualitative class) of X, denoted Q(X), is the set of all

A ∈ R
n×m such that sgn(A) = X. The minimum rank of a sign pattern X is

mr(X) = min{rank(A) : A ∈ Q(X)},

and the maximum nullity of X is

M(X) = max{null(A) : A ∈ Q(X)}.

If X is n × m, then mr(X) + M(X) = m.

A signature pattern is a diagonal sign pattern that does not have any zero entries on

the main diagonal. A permutation pattern is a sign pattern that does not have any negative

entries and that has exactly one positive entry in each row and column. Signs are multiplied

in the obvious manner, and in this paper, sign patterns are multiplied only when no ambi-

guity arises; for example, we can multiply any sign pattern by a signature pattern. Pre- or

post-multiplication of a sign pattern X by a signature pattern or permutation pattern does

not change the minimum rank of X, nor does taking the transpose. A sign pattern X̃ that

is obtained from X by performing one or more of these operations is called equivalent to X;

if only one type of operation is used, X̃ is referred to as signature equivalent, permutation

equivalent, or transpose equivalent to X.

Let X = [xij ] be an n × n sign pattern. We say X is sign nonsingular (SNS) if X

requires nonsingularity, i.e., if every matrix A ∈ Q(X) is nonsingular; otherwise X allows

singularity. The generic matrix MX of X is the matrix having i, j entry xijzij , where
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{zij , i, j = 1, . . . , n}, is a set of independent indeterminates. It is well-known that X is an

SNS sign pattern if and only if at least one of the n! terms in the standard expansion of the

determinant of MX is nonzero and all nonzero terms have the same sign [4, p. 8]. Thus,

one can determine whether X is an SNS sign pattern by evaluating detMX .

A graph is simple (no loops or multiple edges), whereas a digraph allows loops (but

not multiple copies of the same arc) and is denoted by Γ = (VΓ, EΓ) where VΓ and EΓ are

the sets of vertices and arcs of Γ; in both cases, the set of vertices is finite and nonempty.

If X = [xij ] is an n × n sign pattern, the signed digraph of X, Γ±(X), is obtained from

the digraph ({1, . . . , n}, {(i, j) : xij 6= 0}) by attaching the sign xij ∈ {+,−} to the arc

(i, j). A digraph Γ is symmetric if (v, w) ∈ Γ implies (w, v) ∈ Γ. A signed digraph Γ is

combinatorially symmetric if the digraph obtained by ignoring the signs is symmetric, and

a sign pattern X is combinatorially symmetric if Γ±(X) is combinatorially symmetric.

We use the term (signed) digraph to mean a digraph or a signed digraph. The underlying

simple graph of a (signed) digraph Γ is the graph obtained from Γ by ignoring the signs in

the case of a signed digraph, deleting all loops, and replacing each arc (v, w) or pair of arcs

(v, w) and (w, v) by the edge {v, w}. A path is a (signed) digraph Pk = ({v1, . . . , vk}, E)

such that i 6= j implies vi 6= vj and E = {(vi, vi+1) : i = 1, . . . , k − 1}. A cycle is (signed)

digraph Ck = ({v1, . . . , vk}, E) such that i 6= j implies vi 6= vj and E = {(vi, vi+1) : i =

1, . . . , k − 1} ∪ {(vk, v1)}; the order in which the vertices appear in the cycle is denoted

(v1, . . . , vk). A generalized cycle is the disjoint union of one or more cycles. The length of

a path or cycle is the number of arcs. Let X be a sign pattern, let B = [bij ] be a matrix

having sign pattern X (possibly the generic matrix of X). The cycle product in B of a

cycle (v1, . . . , vk) in Γ±(X) is bv1,v2
. . . bvk−1,vk

bvk,v1
, and a generalized cycle product in B

is the product of the cycle products corresponding to the cycles in the generalized cycle.

A pseudocycle is a digraph from which a cycle of length at least three can be obtained by

reversing the direction of one or more arcs. A (signed) ditree is a (signed) digraph that does

not contain any pseudocycles. A square sign pattern T is a tree sign pattern if Γ±(T ) is a

signed ditree.

A sign pattern X is an L-matrix if every matrix in Q(X) has linearly independent rows

[4, p. 6]. Clearly, an n × m sign pattern with n < m has mr(X) = n if and only if X in

an L-matrix. No full n × n sign pattern is SNS for n ≥ 3 [3, p. 39]. See [3, 4] for more

information on L-matrices.

For an n×m sign pattern X and R ⊆ {1, . . . , n}, C ⊆ {1, . . . ,m}, define X[R|C] to be

the submatrix of X lying in the rows that have indices in R and columns that have indices

in C. In a square sign pattern, the principal submatrix X[R|R] is denoted X[R], and the

principal submatrix X[R] is usually denoted by X(R), or in the case R is a single index k,

by X(k) (where R = {1, . . . , n} \ R). For a (signed) digraph Γ = (VΓ, EΓ) and R ⊆ VΓ, the

induced subdigraph Γ[R] is the digraph with vertex set R and arc set {(v, w) ∈ EΓ | v, w ∈ R}.
The induced subdigraph Γ±(X)[R] is naturally associated with the signed digraph of the
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the principal submatrix for R, i.e., Γ±(X[R]).

There is a one-to-one correspondence between square zero-nonzero patterns and di-

graphs, and likewise between square sign patterns and signed digraphs. The associated sign

pattern of a signed digraph Γ is the sign pattern X such that Γ±(X) = Γ. We apply digraph

terminology to square sign patterns and vice versa. Specifically, a component of a square sign

pattern X is a principal submatrix X[R] of X such that Γ±(X)[R] is a component of Γ±(X),

i.e., Γ±(X)[R] is the signed digraph induced by the vertices of a connected component of

the underlying simple graph of Γ±(X). The generic matrix of a signed digraph Γ is the

generic matrix of its associated sign pattern, and a signed digraph requires nonsingularity if

its associated sign pattern requires nonsingularity.

3. SNS number. One of the parameters that played a major role in the study of

minimum rank of digraphs in [1] was the triangle number, and it was shown that if T is

a ditree then mr(T ) = tri(T ). It is easy to give an example of a tree sign pattern T for

which mr(T ) > tri(T ), e.g., T =

[
+ +

+ −

]
. However, the SNS number (see Definition 3.1)

is a generalization of triangle number that retains the property of being equal to minimum

rank for tree sign patterns (see Theorem 4.12).

Definition 3.1. The SNS number of a sign pattern X, denoted SNS(X), is the maxi-

mum size of an SNS sign pattern submatrix X[R|C] of X.

An n × n zero-nonzero pattern requires nonsingularity (or equivalently, has minimum

rank n) if and only if it is permutationally similar to a triangle zero-nonzero pattern [1,

Proposition 4.6]. Thus, the SNS number is a generalization of triangle number to sign

patterns.

Observation 3.2. For any sign pattern X, SNS(X) ≤ mr(X).

As is the case with triangle number, the inequality in Observation 3.2 can be strict, as

the next example shows.

Example 3.3. Let

H =




+ + + +

+ − + −
+ + − −
+ − − +


 and H ′ =




+ + + +

+ − + −
+ + − −


 . (3.1)

Since no full n × n pattern is SNS for n ≥ 3 [3, p. 39], mr(H) ≤ 3 and SNS(H) ≤ 2.

Since detMH [{1, 2}] = −z11z22 − z12z21, SNS(H) = 2. It is known [3, p. 42] that H ′ is an

L-matrix, so mr(H ′) = 3. Since H ′ is a submatrix of H, this implies mr(H) = 3.

Note that H in Example 3.3 is a Hadamard sign pattern, i.e., the sign pattern of a

Hadamard matrix, and Hadamard sign patterns are the sign patterns to which Forster ap-
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plies his lower bound on minimum rank of a full sign pattern to obtain a linear bound on

unbounded error probabilistic communication complexity. Forster’s lower bound on mini-

mum rank of a full n × n sign pattern X is

n

‖AX‖ , (3.2)

where AX is the matrix obtained from a sign pattern X by replacing + by 1 and − by

−1, and ‖A‖ is the spectral norm of A [9]. For any n × n Hadamard matrix Hn, Forster’s

bound (3.2) gives
√

n ≤ mr(sgn(Hn)), since ‖Hn‖ =
√

n. Thus, Example 3.3 also shows

that the minimum rank of a Hadamard sign pattern can be strictly greater than that given

by Forster’s lower bound, and suggests further investigation of the minimum ranks of sign

patterns of Hadamard matrices.

The next result is used in place of [1, Observation 4.8] in Section 4.2.

Proposition 3.4. Let X ′ be obtained from the n × m sign pattern X by deleting one

row. Then SNS(X ′) ≥ SNS(X) − 1.

Proof. Let X ′ be obtained from X by deleting row r. Let R ⊆ {1, . . . , n}, C ⊆ {1, . . . ,m}
be such that |R| = |C| = SNS(X) and X[R|C] is SNS. If r /∈ R then SNS(X ′) = SNS(X).

So assume that r ∈ R. Let MX = [xijzij ] be the generic matrix for X = [xij ]. Since

det MX [R|C] 6= 0, by computing this determinant by the Laplace expansion on row r, it is

clear that there is an index c ∈ C such that xrc 6= 0 and det(MX [R \ {r}|C \ {c}]) 6= 0.

Since X[R|C] is SNS, all the terms in det(MX [R \ {r}|C \ {c}]) have the same sign, i.e.,

X[R \ {r}|C \ {c}] is SNS. Thus, SNS(X ′) ≥ SNS(X) − 1.

4. Tree sign patterns. In this section, we adapt edit distance and path cover number

to square sign patterns, establish relationships analogous to those proved in [1], and show

these parameters and SNS number can be used to compute the minimum rank of a tree sign

pattern.

4.1. Other parameters.

Definition 4.1. Let X be a square sign pattern. The (row) edit distance to nonsin-

gularity, ED(X), of X is the minimum number of rows that must be changed to obtain an

SNS pattern.

Theorem 4.2. For any n × n sign pattern X, SNS(X) + ED(X) = n.

Proof. Observe that ED(X) ≤ n − SNS(X), because if X[R|C] is SNS and |R| = |C| =

SNS(X), then we can edit the n − SNS(X) rows with indices in R to get a sign pattern

permutation equivalent to the SNS sign pattern
[
X[R|C] X[R|C]

0 I

]
,
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where I = diag(+,+, . . . ,+).

To show SNS(X) ≥ n − ED(X), let e = ED(X). Perform edits on rows r1, . . . , re to

obtain an SNS sign pattern X̃. Let X ′ be obtained from X (or equivalently from X̃) by

deleting rows r1, . . . , re. By starting with X̃ and applying Lemma 3.4 repeatedly, n − e ≤
SNS(X ′) ≤ SNS(X).

Corollary 4.3. For any square sign pattern X, M(X) ≤ ED(X).

We extend the definition of path cover number given in [1] to square sign patterns.

Following the definition in that paper, paths are not required to be induced, whereas in

many papers studying symmetric minimum rank, paths are required to be induced (see [7]

and the references therein). As with zero-nonzero patterns, allowing paths that are not

induced is necessary to obtain P(X) ≤ ED(X) (Theorem 4.5). However, the distinction is

irrelevant for tree sign patterns, to which Theorem 4.5 will be applied in Section 4.2.

Definition 4.4. Let X be a square sign pattern. The path cover number P(X) of X

is the minimum number of vertex-disjoint paths whose deletion from Γ±(X) leaves a signed

digraph that requires nonsingularity (or the empty set), i.e., the deletion of the rows and

columns corresponding to the vertices of the paths leaves an SNS sign pattern (or the empty

set).

The proof that P(Γ) ≤ ED(Γ) given in [1] uses the zero forcing number, which we have

not been able to adapt to sign patterns in a useful way. In the next theorem, we give a

different proof of the analogous inequality for sign patterns.

Theorem 4.5. For any square sign pattern X, P(X) ≤ ED(X).

Proof. Let X̃ be an SNS sign pattern obtained from X by editing rows r1, . . . , re, where

e = ED(X), let Γ̃ = Γ±(X̃), and let Γ = Γ±(X). Since X̃ is an SNS pattern, all terms

in the determinant of the generic matrix M
X̃

of X̃ have the same sign. Select one nonzero

term t in detM
X̃

. Note that t is a generalized cycle product. Let Ci, i = 1, . . . , f ≤ e be

the cycles in Γ̃ associated with the simple cycle products in t that contain entries from rows

r1, . . . , re. If Ci contains rk1
, . . . , rksi

(in that order on the cycle), then denote the cycle

vertex immediately following rkj
by ukj+1

where si + 1 is interpreted as 1. If there are no

other vertices between the vertices rkj
and rkj+1

, then ukj+1
= rkj+1

. All the vertices of

cycle Ci can be deleted from X by deleting the si paths in Γ consisting of the vertices and

cycle arcs from uij
to rij

, j = 1, . . . , si. Note that the arcs involved in these paths are all in

Γ, because the only cycle arcs of Γ̃ that may not exist in Γ are the arcs (rkj
, ukj+1

), which

are not used in these paths. Let VC = ∪f
i=1VCi

. We claim that X̃(VC) = X(VC) is an SNS

sign pattern or the empty set; one this is established, it is clear that P(X) ≤ ED(X).

Assume that {1, . . . , n} \ VC is nonempty. Since we have removed vertices of complete

cycles in the generalized cycle product t, t can be factored as t = t1t2, where all of the
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indices in cycle products in t1 are in VC and all of the indices in cycle products in t2 are in

{1, . . . , n} \ VC . Thus, t2 is a nonzero term in detM
X̃

(VC). Suppose that there is a term t3
in detM

X̃
(VC) that has the opposite sign from t2. Then t1t3 would be a term of opposite

sign from t = t1t2 in detM
X̃

, contradicting the fact that X̃ is an SNS sign pattern. Thus,

all the terms in detM
X̃

(VC) = detM
X̃(VC) have the same sign and X̃(VC) = X(VC) is an

SNS sign pattern.

It is easy to find an example of a sign pattern that has path cover number strictly less

than edit distance and maximum nullity.

Example 4.6. (cf. [1, Example 4.21]) Let [+]n denote the n×n sign pattern consisting

entirely of positive entries. If n ≥ 3, then

P([+]n) = 1 < n − 1 = M([+]n) = ED([+]n).

4.2. Tree sign patterns. The proofs of the results in this section are omitted because

they can be adapted from the proofs of the corresponding results in [1, Section 5], using

results in previous sections of this paper to replace those in [1, Section 4]; the proofs are

also available in the on-line appendix [10].

Theorem 4.7. (cf. [1, Theorem 5.1]) For every tree sign pattern T , ED(T ) ≤ P(T ).

Using Theorems 4.5 and 4.7, we have the following corollary (cf. [1, Corollary 5.2]).

Corollary 4.8. For every tree sign pattern T ,

P(T ) = ED(T ).

Lemma 4.9. (cf. [1, Lemma 5.5]) Let T be a combinatorially symmetric n×n tree sign

pattern, let v ∈ {1, . . . , n}, and let S ⊆ {1, . . . , n} such that

1. T [S] is a component of T − v,

2. T [S] allows singularity, and

3. if x ∈ S, then T − x has at most one component that is a submatrix of T [S] and

allows singularity.

Then there is a path P in Γ±(T ) from v to a vertex u ∈ S such that every component of

T − VP that is a submatrix of T [S] is SNS.

Theorem 4.10. (cf. [1, Theorem 5.6]) If T is a combinatorially symmetric tree sign

pattern, then

M(T ) = P(T ) = ED(T ) and mr(T ) = SNS(T ).
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Lemma 4.11. (cf. [1, Lemma 5.7]) Let Z be a sign pattern of the form Z =

[
X O

U W

]
.

where U is k × m, U has exactly one nonzero entry, and that entry is in the 1,m-position

of U . Let X̃ be obtained from X by replacing the last column of X by 0s and W̃ be obtained

from W by replacing the first row of W by 0s. If mr(X) = SNS(X), mr(W ) = SNS(W ),

mr(X̃) = SNS(X̃) and mr(W̃ ) = SNS(W̃ ), then mr(Z) = SNS(Z).

Theorem 4.12. (cf. [1, Theorem 5.8]) If T is a tree sign pattern, then

M(T ) = P(T ) = ED(T ) and mr(T ) = SNS(T ).

Note that whereas the parameters mr(T ) and M(T ) involve optimizing over an infinite

set of matrices, the computation of SNS(T ) or P(T ) involves only a finite (but possibly very

large) number of subsets of vertices. Thus, Theorem 4.12 allows (at least in theory) the

computation of mr(T ) and M(T ) for a tree sign pattern T .

5. Extreme minimum rank and minimum rank of small patterns. In this sec-

tion, we examine extreme minimum ranks of sign patterns and determine minimum ranks of

small sign patterns. Minimum rank 0, 1, 2, n, n − 1 has been characterized for both graphs

and digraphs of order n (and n − 2 has been characterized for graphs), but the situation

is more complicated for sign patterns, except in the most trivial cases (minimum rank 0, 1,

and n for an n × n sign pattern).

A zero-nonzero pattern Y has minimum rank zero if and only if all entries are zero, and

the same is obviously true for a sign pattern. After eliminating any zero rows and/or zero

columns, a zero-nonzero pattern Y has mr(Y ) = 1 if and only if every entry of Y is ∗. A

similar result it true for sign patterns, accounting for signature equivalence.

Proposition 5.1. For a sign pattern X that has no zero row or column, mr(X) = 1

if and only if X = D1[+]D2 where D1,D2 are signature patterns and [+] denotes a sign

pattern consisting entirely of positive entries.

Proof. Clearly, mr(D1[+]D2) = 1. Let X be a sign pattern such that every row and every

column has a nonzero entry. If X has a zero entry then X has a 2-triangle so mr(X) > 1. So

suppose X is a full sign pattern. Then there exists a signature pattern D1 such that every

entry of the first column of D1X is +. For column j > 1, if (D1X)ij = + and (D1X)kj = −,

then (D1X)[{i, k}|{1, j}] is SNS, so mr(X) = mr(D1X) > 1. Thus, if mr(X) = 1, then

D1X is striped and there exists a signature pattern D2 such that D1XD2 = [+].

For a zero-nonzero pattern Y , tri(Y ) ≤ 2 implies mr(Y ) = tri(Y ) [1, Theorem 4.5], but

Example 3.3 shows that this need not be the case for sign patterns, since SNS(H) = 2 <

3 = mr(H).
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For a n × m zero-nonzero pattern Y with n ≤ m, mr(Y ) = n if and only if tri(Y ) = n

[1, Proposition 4.6]. For an n × n sign pattern X, obviously mr(X) = n if and only if

SNS(X) = n. However, if X is an n × m pattern with n < m, then it is possible to have

SNS(X) < mr(X) = n, as for the sign pattern H ′ in Example 3.3.

For symmetric minimum rank of a graph, the minimum rank is always less than the

order of the graph (since the main diagonal of a matrix described by the graph is free).

Fiedler’s Theorem shows that symmetric minimum rank of a graph is equal to order minus

one if and only if the graph is a path [8, 7]. The situation for minimum rank equal to order

minus one is more complicated for digraphs (equivalently, square zero-nonzero patterns).

For example, [5, Example 1.11] presents an example of a 7×7 nonzero pattern, here denoted

by Y7, that has mr(Y7) = 6 = |Y7| − 1 and tri(Y7) = 5. A characterization of digraphs Γ

having mr(Γ) = |Γ|− 1 has been obtained [2]; this characterization is quite complex and the

situation for sign patterns is likely to be much more complicated.

We now consider the minimum rank of small sign patterns. Since it is straightforward

to determine whether a n×m sign pattern has minimum rank equal to 0 or 1, or equal to n

in the case that m = n, the minimum rank of any n×m sign pattern with n,m ≤ 3 can be

easily computed. Square full sign patterns are of particular interest due to their application

to communication complexity.

We now determine the minimum rank of all 4× 4 full sign patterns. Since sign patterns

having minimum rank equal to 1 have been characterized (Proposition 5.1) and no full sign

4×4 sign pattern is SNS, it suffices to determine which 4×4 full sign patterns have minimum

rank equal to 3. A sign pattern has duplicate rows (respectively, columns) if it has two rows

(columns) that are equal.

Theorem 5.2. Let X = [xij ] be a 4 × 4 full sign pattern. Then mr(X) = 3 if and only

if X contains a submatrix equivalent to H ′ in equation (3.1).

Proof. If X contains a submatrix equivalent to H ′, then mr(X) = 3 because mr(X) ≤ 3

and mr(X) ≥ mr(H ′) = 3. For the converse, we assume that X does not contain a submatrix

equivalent to H ′, and show that mr(X) ≤ 2. Without loss of generality, all the entries of

the first row and first column of X are positive.

If X has duplicate rows, then delete one of the equal rows. The resulting full 3× 4 sign

pattern X ′ is not equivalent to H ′, and thus is not a L-matrix [3, p. 42]. So there is a

matrix A ∈ Q(X ′) that has linearly dependent rows, i.e., rankA ≤ 2. Thus, mr(X) ≤ 2.

The argument is the same for columns by using transpose equivalence.

So assume that X has neither duplicate rows nor duplicate columns. Since the submatrix

of X obtained by deleting row 4 is not equivalent to H ′, two columns of this 3×4 submatrix

are equal. By multiplying by a permutation pattern and/or signature pattern, we may

assume that x22 = x32 = +. Since the first two columns of X are not equal, x42 = −. Since
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rows 2 and 3 of X are not equal, the entries x23, x24, x33, x34 cannot all be the same. Thus,

one must be must be +, and without loss of generality, we can assume that x23 = +. Then

x24 = − (because rows 1 and 2 are not equal) and x33 = −, because if not, two of the first

three columns of X would be equal. Thus, X is equivalent to




+ + + +

+ + + −
+ + − x34

+ − x43 x44


 . (5.1)

The assumption that no submatrix is equivalent to H ′ eliminates four of the eight

possibilities for the patterns of the form (5.1), as shown in Table 5.1.

Table 5.1

x34 x43 x44 Rows or columns equivalent to H ′

+ + + Rows 2, 3, 4

− + − Rows 1, 3, 4

+ − − Columns 1, 3, 4

− − + Rows 1, 3, 4

Let

A1 =




1 1 1 1

1 1
2

9
5 − 1

5

1 3 − 11
5

29
5

1 − 1
4 3 −2


 , A2 =




1 1 1 1

1 2 1
5 − 3

5

1 3 − 3
5 − 11

5

1 − 1
4 2 3




and A3 =




1 1 1 1

1 1
2

7
22 − 4

11

1 1
10 − 5

22 − 16
11

1 − 1
10 − 1

2 −2


 .

The only 4×4 full sign patterns that have neither duplicate rows nor duplicate columns and

do not contain a submatrix equivalent to H ′ are sgn(A1), sgn(A2), sgn(A2)
T , and sgn(A3).

The matrices A1, A2, A3 show that

mr(sgn(A1)) = mr(sgn(A2)) = mr(sgn(A2)
T ) = mr(sgn(A3)) = 2.
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