A DIAZ-METCALF TYPE INEQUALITY FOR POSITIVE LINEAR MAPS AND ITS APPLICATIONS*

MOHAMMAD SAL MOSLEHIAN ${ }^{\dagger}$, RITSUO NAKAMOTO ${ }^{\ddagger}$, AND YUKI SEO ${ }^{\S}$

Abstract

We present a Diaz-Metcalf type operator inequality as a reverse Cauchy-Schwarz inequality and then apply it to get some operator versions of Pólya-Szegö's, Greub-Rheinboldt's, Kantorovich's, Shisha-Mond's, Schweitzer's, Cassels' and Klamkin-McLenaghan's inequalities via a unified approach. We also give some operator Grüss type inequalities and an operator Ozeki-Izumino-Mori-Seo type inequality. Several applications are included as well.

Key words. Diaz-Metcalf type inequality, Reverse Cauchy-Schwarz inequality, Positive map, Ozeki-Izumino-Mori-Seo inequality, Operator inequality.

AMS subject classifications. 46L08, 26D15, 46L05, 47A30, 47A63.

1. Introduction. The Cauchy-Schwarz inequality plays an essential role in mathematical analysis and its applications. In a semi-inner product space $(\mathscr{H},\langle\cdot, \cdot\rangle)$ the Cauchy-Schwarz inequality reads as follows

$$
|\langle x, y\rangle| \leq\langle x, x\rangle^{1 / 2}\langle y, y\rangle^{1 / 2} \quad(x, y \in \mathscr{H})
$$

There are interesting generalizations of the Cauchy-Schwarz inequality in various frameworks, e.g., finite sums, integrals, isotone functionals, inner product spaces, C^{*} algebras and Hilbert C^{*}-modules; see $[5,6,7,9,11,13,17,20]$ and references therein. There are several reverses of the Cauchy-Schwarz inequality in the literature: DiazMetcalf's, Pólya-Szegö's, Greub-Rheinboldt's, Kantorovich's, Shisha-Mond's, Ozeki-Izumino-Mori-Seo's, Schweitzer's, Cassels' and Klamkin-McLenaghan's inequalities.

Inspired by the work of J.B. Diaz and F.T. Metcalf [4], we present several reverse Cauchy-Schwarz type inequalities for positive linear maps. We give a unified treatment of some reverse inequalities of the classical Cauchy-Schwarz type for positive

[^0]linear maps.
Throughout the paper $\mathbb{B}(\mathscr{H})$ stands for the algebra of all bounded linear operators acting on a Hilbert space \mathscr{H}. We simply denote by α the scalar multiple αI of the identity operator $I \in \mathbb{B}(\mathscr{H})$. For self-adjoint operators A, B the partially ordered relation $B \leq A$ means that $\langle B \xi, \xi\rangle \leq\langle A \xi, \xi\rangle$ for all $\xi \in \mathscr{H}$. In particular, if $0 \leq A$, then A is called positive. If A is a positive invertible operator, then we write $0<A$. A linear map $\Phi: \mathscr{A} \rightarrow \mathscr{B}$ between C^{*}-algebras is said to be positive if $\Phi(A)$ is positive whenever A is. We say that Φ is unital if Φ preserves the identity. The reader is referred to $[9,19]$ for undefined notations and terminologies.
2. Operator Diaz-Metcalf type inequality. We start this section with our main result. Recall that the geometric operator mean $A \sharp B$ for positive operators $A, B \in \mathbb{B}(\mathscr{H})$ is defined by
$$
A \sharp B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}}
$$
if $0<A$.
THEOREM 2.1. Let $A, B \in \mathbb{B}(\mathscr{H})$ be positive invertible operators and Φ : $\mathbb{B}(\mathscr{H}) \rightarrow \mathbb{B}(\mathscr{K})$ be a positive linear map.
(i) If $m^{2} A \leq B \leq M^{2} A$ for some positive real numbers $m<M$, then the following inequalities hold:

- Operator Diaz-Metcalf inequality of first type

$$
M m \Phi(A)+\Phi(B) \leq(M+m) \Phi(A \sharp B) ;
$$

- Operator Cassels inequality

$$
\Phi(A) \sharp \Phi(B) \leq \frac{M+m}{2 \sqrt{M m}} \Phi(A \sharp B) ;
$$

- Operator Klamkin-McLenaghan inequality

$$
\Phi(A \sharp B)^{\frac{-1}{2}} \Phi(B) \Phi(A \sharp B)^{\frac{-1}{2}}-\Phi(A \sharp B)^{\frac{1}{2}} \Phi(A)^{-1} \Phi(A \sharp B)^{\frac{1}{2}} \leq(\sqrt{M}-\sqrt{m})^{2} ;
$$

- Operator Kantorovich inequality

$$
\Phi(A) \sharp \Phi\left(A^{-1}\right) \leq \frac{M^{2}+m^{2}}{2 M m}
$$

(ii) If $m_{1}^{2} \leq A \leq M_{1}^{2}$ and $m_{2}^{2} \leq B \leq M_{2}^{2}$ for some positive real numbers $m_{1}<M_{1}$ and $m_{2}<M_{2}$, then the following inequalities hold:

- Operator Diaz-Metcalf inequality of second type

$$
\frac{M_{2} m_{2}}{M_{1} m_{1}} \Phi(A)+\Phi(B) \leq\left(\frac{M_{2}}{m_{1}}+\frac{m_{2}}{M_{1}}\right) \Phi(A \sharp B) ;
$$

- Operator Pólya-Szegö inequality

$$
\Phi(A) \sharp \Phi(B) \leq \frac{1}{2}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right) \Phi(A \sharp B) ;
$$

- Operator Shisha-Mond inequality

$$
\begin{aligned}
& \Phi(A \sharp B)^{\frac{-1}{2}} \Phi(B) \Phi(A \sharp B)^{\frac{-1}{2}}-\Phi(A \sharp B)^{\frac{1}{2}} \Phi(A)^{-1} \Phi(A \sharp B)^{\frac{1}{2}} \\
& \leq\left(\sqrt{\frac{M_{2}}{m_{1}}}-\sqrt{\frac{m_{2}}{M_{1}}}\right)^{2}
\end{aligned}
$$

- Operator Grüss type inequality

$$
\Phi(A) \sharp \Phi(B)-\Phi(A \sharp B) \leq \frac{\sqrt{M_{1} M_{2}}\left(\sqrt{M_{1} M_{2}}-\sqrt{m_{1} m_{2}}\right)^{2}}{2 \sqrt{m_{1} m_{2}}} \min \left\{\frac{M_{1}}{m_{1}}, \frac{M_{2}}{m_{2}}\right\} .
$$

Proof. (i) If $m^{2} A \leq B \leq M^{2} A$ for some positive real numbers $m<M$, then $m^{2} \leq A^{\frac{-1}{2}} B A^{\frac{-1}{2}} \leq M^{2}$.
(ii) If $m_{1}^{2} \leq A \leq M_{1}^{2}$ and $m_{2}^{2} \leq B \leq M_{2}^{2}$ for some positive real numbers $m_{1}<M_{1}$ and $m_{2}<M_{2}$, then

$$
\begin{equation*}
m^{2}=\frac{m_{2}^{2}}{M_{1}^{2}} \leq A^{\frac{-1}{2}} B A^{\frac{-1}{2}} \leq \frac{M_{2}^{2}}{m_{1}^{2}}=M^{2} \tag{2.1}
\end{equation*}
$$

In any case we then have

$$
\left(M-\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{1 / 2}\right)\left(\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{1 / 2}-m\right) \geq 0
$$

whence

$$
M m+A^{\frac{-1}{2}} B A^{\frac{-1}{2}} \leq(M+m)\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\frac{1}{2}}
$$

Hence

$$
\begin{equation*}
M m A+B \leq(M+m) A^{1 / 2}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\frac{1}{2}} A^{1 / 2}=(M+m) A \sharp B \tag{2.2}
\end{equation*}
$$

Since Φ is a positive linear map, (2.2) yields the operator Diaz-Metcalf inequality of first type as follows:

$$
\begin{equation*}
M m \Phi(A)+\Phi(B) \leq(M+m) \Phi(A \sharp B) \tag{2.3}
\end{equation*}
$$

ELA

In the case when (ii) holds we get the following, which is called the operator DiazMetcalf inequality of second type:

$$
\frac{M_{2} m_{2}}{M_{1} m_{1}} \Phi(A)+\Phi(B) \leq\left(\frac{M_{2}}{m_{1}}+\frac{m_{2}}{M_{1}}\right) \Phi(A \sharp B) .
$$

Following the strategy of [21], we apply the operator geometric-arithmetic inequality to $\operatorname{Mm} \Phi(A)$ and $\Phi(B)$ to get:

$$
\begin{equation*}
\sqrt{M m}(\Phi(A) \sharp \Phi(B))=(M m \Phi(A)) \sharp \Phi(B) \leq \frac{1}{2}(M m \Phi(A)+\Phi(B)) . \tag{2.4}
\end{equation*}
$$

It follows from (2.3) and (2.4) that

$$
\Phi(A) \sharp \Phi(B) \leq \frac{M+m}{2 \sqrt{M m}} \Phi(A \sharp B),
$$

which is said to be the operator Cassels inequality under the assumption (i); see also [16]. Under the case (ii) we can represent it as the following inequality being called the operator Pólya-Szegö inequality or the operator Greub-Rheinboldt inequality:

$$
\begin{equation*}
\Phi(A) \sharp \Phi(B) \leq \frac{1}{2}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right) \Phi(A \sharp B) . \tag{2.5}
\end{equation*}
$$

It follows from (2.5) that

$$
\begin{align*}
\Phi(A) \sharp \Phi(B)-\Phi(A \sharp B) & \leq\left(\frac{1}{2}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right)-1\right) \Phi(A \sharp B) \\
& =\frac{\left(\sqrt{M_{1} M_{2}}-\sqrt{m_{1} m_{2}}\right)^{2}}{2 \sqrt{m_{1} m_{2}} \sqrt{M_{1} M_{2}}} \Phi(A \sharp B) . \tag{2.6}
\end{align*}
$$

It follows from (2.1) that

$$
\frac{m_{2}}{M_{1}} A \leq A^{1 / 2}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{1 / 2} A^{1 / 2} \leq \frac{M_{2}}{m_{1}} A
$$

so

$$
\begin{equation*}
\frac{m_{1}^{2} m_{2}}{M_{1}} \leq A \sharp B \leq \frac{M_{1}^{2} M_{2}}{m_{1}} . \tag{2.7}
\end{equation*}
$$

Now, (2.6) and (2.7) yield that

$$
\Phi(A) \sharp \Phi(B)-\Phi(A \sharp B) \leq \frac{\left(\sqrt{M_{1} M_{2}}-\sqrt{m_{1} m_{2}}\right)^{2}}{2 \sqrt{m_{1} m_{2}} \sqrt{M_{1} M_{2}}} \frac{M_{1}^{2} M_{2}}{m_{1}} .
$$

An easy symmetric argument then follows that

$$
\Phi(A) \sharp \Phi(B)-\Phi(A \sharp B) \leq \frac{\sqrt{M_{1} M_{2}}\left(\sqrt{M_{1} M_{2}}-\sqrt{m_{1} m_{2}}\right)^{2}}{2 \sqrt{m_{1} m_{2}}} \min \left\{\frac{M_{1}}{m_{1}}, \frac{M_{2}}{m_{2}}\right\},
$$

presenting a Grüss type inequality.
If A is invertible and Φ is unital and $m_{1}^{2}=m^{2} \leq A \leq M^{2}=M_{1}^{2}$, then by putting $m_{2}^{2}=1 / M^{2} \leq B=A^{-1} \leq 1 / m^{2}=M_{2}^{2}$ in (2.5) we get the following operator Kantorovich inequality:

$$
\Phi(A) \sharp \Phi\left(A^{-1}\right) \leq \frac{M^{2}+m^{2}}{2 M m}
$$

It follows from (2.3) that

$$
\begin{align*}
& \Phi(A \sharp B)^{\frac{-1}{2}} \Phi(B) \Phi(A \sharp B)^{\frac{-1}{2}}-\Phi(A \sharp B)^{\frac{1}{2}} \Phi(A)^{-1} \Phi(A \sharp B)^{\frac{1}{2}} \\
\leq & M+m-M m \Phi(A \sharp B)^{\frac{-1}{2}} \Phi(A) \Phi(A \sharp B)^{\frac{-1}{2}}-\Phi(A \sharp B)^{\frac{1}{2}} \Phi(A)^{-1} \Phi(A \sharp B)^{\frac{1}{2}} \\
\leq & M+m-2 \sqrt{M m}-\left(\sqrt{M m}\left(\Phi(A \sharp B)^{\frac{-1}{2}} \Phi(A) \Phi(A \sharp B)^{\frac{-1}{2}}\right)^{1 / 2}\right. \\
& \left.-\left(\Phi(A \sharp B)^{\frac{1}{2}} \Phi(A)^{-1} \Phi(A \sharp B)^{\frac{1}{2}}\right)^{1 / 2}\right)^{2} \\
\leq & (\sqrt{M}-\sqrt{m})^{2}, \tag{2.8}
\end{align*}
$$

that is, an operator Klakmin-Mclenaghan inequality when (i) holds. Under (ii), we get the following operator Shisha-Szegö inequality from (2.8):

$$
\Phi(A \sharp B)^{\frac{-1}{2}} \Phi(B) \Phi(A \sharp B)^{\frac{-1}{2}}-\Phi(A \sharp B)^{\frac{1}{2}} \Phi(A)^{-1} \Phi(A \sharp B)^{\frac{1}{2}} \leq\left(\sqrt{\frac{M_{2}}{m_{1}}}-\sqrt{\frac{m_{2}}{M_{1}}}\right)^{2} . \square
$$

3. Applications. If $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are n-tuples of real numbers with $0<m_{1} \leq a_{i} \leq M_{1}(1 \leq i \leq n), 0<m_{2} \leq b_{i} \leq M_{2}(1 \leq i \leq n)$, we can consider the positive linear map $\Phi(T)=\langle T x, x\rangle$ on $\mathbb{B}\left(\mathbb{C}^{n}\right)=M_{n}(\mathbb{C})$ and let $A=$ $\operatorname{diag}\left(a_{1}^{2}, \ldots, a_{n}^{2}\right), B=\operatorname{diag}\left(b_{1}^{2}, \ldots, b_{n}^{2}\right)$ and $x=(1, \ldots, 1)^{t}$ in the operator inequalities above to get the following classical inequalities:

- Diaz-Metcalf inequality [4]

$$
\sum_{k=1}^{n} b_{k}^{2}+\frac{m_{2} M_{2}}{m_{1} M_{1}} \sum_{k=1}^{n} a_{k}^{2} \leq\left(\frac{M_{2}}{m_{1}}+\frac{m_{2}}{M_{1}}\right) \sum_{k=1}^{n} a_{k} b_{k}
$$

- Pólya-Szegö inequality [23]

$$
\frac{\sum_{k=1}^{n} a_{k}^{2} \sum_{k=1}^{n} b_{k}^{2}}{\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2}} \leq \frac{1}{4}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right)^{2}
$$

- Shisha-Mond inequality [24]

$$
\frac{\sum_{k=1}^{n} a_{k}^{2}}{\sum_{k=1}^{n} a_{k} b_{k}}-\frac{\sum_{k=1}^{n} a_{k} b_{k}}{\sum_{k=1}^{n} b_{k}^{2}} \leq\left(\sqrt{\frac{M_{1}}{m_{2}}}-\sqrt{\frac{m_{1}}{M_{2}}}\right)^{2}
$$

- A Grüss type inequality

$$
\begin{aligned}
&\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n} b_{k}^{2}\right)^{1 / 2}-\sum_{k=1}^{n} a_{k} b_{k} \\
& \leq \frac{\sqrt{M_{1} M_{2}}\left(\sqrt{M_{1} M_{2}}-\sqrt{m_{1} m_{2}}\right)^{2}}{2 \sqrt{m_{1} m_{2}}} \min \left\{\frac{M_{1}}{m_{1}}, \frac{M_{2}}{m_{2}}\right\}
\end{aligned}
$$

Using the same argument with a positive n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ of real numbers with $0<m \leq a_{i} \leq M(1 \leq i \leq n), x=\frac{1}{\sqrt{n}}(1, \ldots, 1)^{t}$, we get from Kantorovich inequality that

- Schweitzer inequality [2]

$$
\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}\right)\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{-2}\right) \leq \frac{\left(M^{2}+m^{2}\right)^{2}}{4 M^{2} m^{2}} .
$$

If $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are n-tuples of real numbers with $0<m \leq a_{i} / b_{i} \leq$ $M(1 \leq i \leq n)$, we can consider the positive linear map $\Phi(T)=\langle T x, x\rangle$ on $\mathbb{B}\left(\mathbb{C}^{n}\right)=$ $M_{n}(\mathbb{C})$ and let $A=\operatorname{diag}\left(a_{1}^{2}, \ldots, a_{n}^{2}\right), B=\operatorname{diag}\left(b_{1}^{2}, \ldots, b_{n}^{2}\right)$ and $x=\left(\sqrt{w_{1}}, \ldots, \sqrt{w_{n}}\right)^{t}$ based on the weight $\overline{\mathbf{w}}=\left(w_{1}, \ldots, w_{n}\right)$, in the operator inequalities above to get the following classical inequalities:

- Cassels inequality [25]

$$
\frac{\sum_{k=1}^{n} w_{k} a_{k}^{2} \sum_{k=1}^{n} w_{k} b_{k}^{2}}{\left(\sum_{k=1}^{n} w_{k} a_{k} b_{k}\right)^{2}} \leq \frac{(M+m)^{2}}{4 m M}
$$

- Klamkin-McLenaghan inequality [14]

$$
\sum_{k=1}^{n} w_{k} a_{k}^{2} \sum_{k=1}^{n} w_{k} b_{k}^{2}-\left(\sum_{k=1}^{n} w_{k} a_{k} b_{k}\right)^{2} \leq(\sqrt{M}-\sqrt{m})^{2} \sum_{k=1}^{n} w_{k} a_{k} b_{k} \sum_{k=1}^{n} w_{k} a_{k}^{2}
$$

Using the same argument, we obtain a weighted form of the Pólya-Szegö inequality as follows:

- Grueb-Rheinboldt inequality [10]

$$
\frac{\sum_{k=1}^{n} w_{k} a_{k}^{2} \sum_{k=1}^{n} w_{k} b_{k}^{2}}{\left(\sum_{k=1}^{n} w_{k} a_{k} b_{k}\right)^{2}} \leq \frac{\left(M_{1} M_{2}+m_{1} m_{2}\right)^{2}}{4 m_{1} m_{2} M_{1} M_{2}}
$$

One can assert the integral versions of discrete results above by considering $L^{2}(X, \mu)$, where (X, μ) is a probability space, as a Hilbert space via $\left\langle h_{1}, h_{2}\right\rangle=$ $\int_{X} h_{1} \overline{h_{2}} d \mu$, multiplication operators $\left.A, B \in \mathbb{B}\left(L^{2}(X, \mu)\right)\right)$ defined by $A(h)=f^{2} h$

ELA

and $B(h)=g^{2} h$ for bounded $f, g \in L^{2}(X, \mu)$ and a positive linear map Φ by $\Phi(T)=\int_{X} T(1) d \mu$ on $\left.\mathbb{B}\left(L^{2}(X, \mu)\right)\right)$. For instance, let us state integral versions of the Cassels and Klamkin-McLenaghan inequalities. These two inequalities are obtained, first for bounded positive functions $f, g \in L^{2}(X, \mu)$ and next for general positive functions $f, g \in L^{2}(X, \mu)$ as the limits of sequences of bounded positive functions.

Corollary 3.1. Let (X, μ) be a probability space and $f, g \in L^{2}(X, \mu)$ with $0 \leq m g \leq f \leq M g$ for some scalars $0<m<M$. Then

$$
\int_{X} f^{2} d \mu \int_{X} g^{2} d \mu \leq \frac{(M+m)^{2}}{4 M m}\left(\int_{X} f g d \mu\right)^{2}
$$

and

$$
\int_{X} f^{2} d \mu \int_{X} g^{2} d \mu-\left(\int_{X} f g d \mu\right)^{2} \leq(\sqrt{M}-\sqrt{m})^{2} \int_{X} f g d \mu \int_{X} f^{2} d \mu
$$

Considering the positive linear functional $\Phi(R)=\sum_{i=1}^{n}\left\langle R \xi_{i}, \xi_{i}\right\rangle$ on $\mathbb{B}(\mathscr{H})$, where $\xi_{1}, \ldots, \xi_{n} \in \mathscr{H}$, we get the following versions of the Diaz-Metcalf and Pólya-Szegö inequalities in a Hilbert space.

Corollary 3.2. Let \mathscr{H} be a Hilbert space, let $\xi_{1}, \ldots, \xi_{n} \in \mathscr{H}$ and let $T, S \in$ $\mathbb{B}(\mathscr{H})$ be positive operators satisfying $0<m_{1} \leq T \leq M_{1}$ and $0<m_{2} \leq S \leq M_{2}$. Then

$$
\frac{M_{2} m_{2}}{M_{1} m_{1}} \sum_{i=1}^{n}\left\|T \xi_{i}\right\|^{2}+\sum_{i=1}^{n}\left\|S \xi_{i}\right\|^{2} \leq\left(\frac{M_{2}}{m_{1}}+\frac{m_{2}}{M_{1}}\right) \sum_{i=1}^{n}\left\|\left(T^{2} \sharp S^{2}\right)^{1 / 2} \xi_{i}\right\|^{2}
$$

and

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left\|T \xi_{i}\right\|^{2}\right)^{1 / 2} & \left(\sum_{i=1}^{n}\left\|S \xi_{i}\right\|^{2}\right)^{1 / 2} \\
& \leq \frac{1}{2}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right) \sum_{i=1}^{n}\left\|\left(T^{2} \sharp S^{2}\right)^{1 / 2} \xi_{i}\right\|^{2} .
\end{aligned}
$$

4. A Grüss type inequality. In this section we obtain another Grüss type inequality, see also [18]. Let \mathscr{A} be a C^{*}-algebra and let \mathscr{B} be a C^{*}-subalgebra of \mathscr{A}. Following [1], a positive linear map $\Phi: \mathscr{A} \rightarrow \mathscr{B}$ is called a left multiplier if $\Phi(X Y)=\Phi(X) Y$ for every $X \in \mathscr{A}, Y \in \mathscr{B}$.

The following lemma is interesting on its own right.

Lemma 4.1. Let Φ be a unital positive linear map on $\mathscr{A}, A \in \mathscr{A}$ and M, m be complex numbers such that

$$
\begin{equation*}
\operatorname{Re}\left((M-A)^{*}(A-m)\right) \geq 0 \tag{4.1}
\end{equation*}
$$

Then

$$
\Phi\left(|A|^{2}\right)-|\Phi(A)|^{2} \leq \frac{1}{4}|M-m|^{2}
$$

Proof. For any complex number $c \in \mathbb{C}$, we have

$$
\begin{equation*}
\Phi\left(|A|^{2}\right)-|\Phi(A)|^{2}=\Phi\left(|A-c|^{2}\right)-|\Phi(A-c)|^{2} \tag{4.2}
\end{equation*}
$$

Since for any $T \in \mathscr{A}$ the operator equality

$$
\frac{1}{4}|M-m|^{2}-\left|T-\frac{M+m}{2}\right|^{2}=\operatorname{Re}\left((M-T)(T-m)^{*}\right)
$$

holds, the condition (4.1) implies that

$$
\begin{equation*}
\Phi\left(\left|A-\frac{M+m}{2}\right|^{2}\right) \leq \frac{1}{4}|M-m|^{2} \tag{4.3}
\end{equation*}
$$

Therefore, it follows from (4.2) and (4.3) that

$$
\begin{aligned}
\Phi\left(|A|^{2}\right)-|\Phi(A)|^{2} & \leq \Phi\left(\left|A-\frac{M+m}{2}\right|^{2}\right) \\
& \leq \frac{1}{4}|M-m|^{2}
\end{aligned}
$$

REMARK 4.2. If (i) Φ is a unital positive linear map and A is a normal operator or (ii) Φ is a 2-positive linear map and A is an arbitrary operator, then it follows from [3] that

$$
\begin{equation*}
0 \leq \Phi\left(|A|^{2}\right)-|\Phi(A)|^{2} \tag{4.4}
\end{equation*}
$$

Condition (4.4) is stronger than positivity and weaker than 2-positivity; see [8]. Another class of positive linear maps satisfying (4.4) are left multipliers, cf. [1, Corollary 2.4].

Lemma 4.3. Let a positive linear map $\Phi: \mathscr{A} \rightarrow \mathscr{B}$ be a unital left multiplier. Then

$$
\begin{equation*}
\left|\Phi\left(A^{*} B\right)-\Phi(A)^{*} \Phi(B)\right|^{2} \leq\left\|\Phi\left(|A|^{2}\right)-|\Phi(A)|^{2}\right\|\left(\Phi\left(|B|^{2}\right)-|\Phi(B)|^{2}\right) \tag{4.5}
\end{equation*}
$$

ELA

Proof. If we put $[X, Y]:=\Phi\left(X^{*} Y\right)-\Phi(X)^{*} \Phi(Y)$, then \mathscr{A} is a right pre-inner product C^{*}-module over \mathscr{B}, since $\Phi\left(X^{*} Y\right)$ is a right pre-inner product \mathscr{B}-module, see [1, Corollary 2.4]. It follows from the Cauchy-Schwarz inequality in pre-inner product C^{*}-modules (see [15, Proposition 1.1]) that

$$
\begin{aligned}
\left|\Phi\left(A^{*} B\right)-\Phi(A)^{*} \Phi(B)\right|^{2} & =[B, A][A, B] \\
& \leq\|[A, A]\|[B, B] \\
& =\left\|\Phi\left(A^{*} A\right)-\Phi(A)^{*} \Phi(A)\right\|\left(\Phi\left(B^{*} B\right)-\Phi(B)^{*} \Phi(B)\right)
\end{aligned}
$$

and hence (4.5) holds.
THEOREM 4.4. Let a positive linear map $\Phi: \mathscr{A} \rightarrow \mathscr{B}$ be a unital left multiplier. If $M_{1}, m_{1}, M_{2}, m_{2} \in \mathbb{C}$ and $A, B \in \mathscr{A}$ satisfy the following conditions:

$$
\operatorname{Re}\left(M_{1}-A\right)^{*}\left(A-m_{1}\right) \geq 0 \quad \text { and } \quad \operatorname{Re}\left(M_{2}-B\right)^{*}\left(B-m_{2}\right) \geq 0
$$

then

$$
\left|\Phi\left(A^{*} B\right)-\Phi(A)^{*} \Phi(B)\right| \leq \frac{1}{4}\left|M_{1}-m_{1}\right|\left|M_{2}-m_{2}\right| .
$$

Proof. By Löwner-Heinz theorem, we have

$$
\begin{aligned}
& \left|\Phi\left(A^{*} B\right)-\Phi(A)^{*} \Phi(B)\right| \\
\leq & \left\|\Phi\left(|A|^{2}\right)-|\Phi(A)|^{2}\right\|^{\frac{1}{2}}\left(\Phi\left(|B|^{2}\right)-|\Phi(B)|^{2}\right)^{\frac{1}{2}} \\
\leq & \text { (by Lemma 4.3) } \\
\frac{1}{4}\left|M_{1}-m_{1}\right|\left|M_{2}-m_{2}\right| & \text { (by Lemma 4.1). }
\end{aligned}
$$

5. Ozeki-Izumino-Mori-Seo type inequality. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=$ $\left(b_{1}, \ldots, b_{n}\right)$ be n-tuples of real numbers satisfying

$$
0 \leq m_{1} \leq a_{i} \leq M_{1} \quad \text { and } \quad 0 \leq m_{2} \leq b_{i} \leq M_{2} \quad(i=1, \ldots, n)
$$

Then Ozeki-Izumino-Mori-Seo inequality [12, 22] asserts that

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \frac{n^{2}}{3}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{5.1}
\end{equation*}
$$

In [12] they also showed the following operator version of (5.1): If A and B are positive operators in $\mathbb{B}(\mathscr{H})$ such that $0<m_{1} \leq A \leq M_{1}$ and $0<m_{2} \leq B \leq M_{2}$ for some scalars $m_{1} \leq M_{1}$ and $m_{2} \leq M_{2}$, then

$$
\begin{equation*}
\left(A^{2} x, x\right)\left(B^{2} x, x\right)-\left(A^{2} \sharp B^{2} x, x\right)^{2} \leq \frac{1}{4 \gamma^{2}}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{5.2}
\end{equation*}
$$

ELA

188 M.S. Moslehian, R. Nakamoto, and Y. Seo
for every unit vector $x \in H$, where $\gamma=\max \left\{\frac{m_{1}}{M_{1}}, \frac{m_{2}}{M_{2}}\right\}$.
Based on the Kantorovich inequality for the difference, we present an extension of Ozeki-Izumino-Mori-Seo inequality (5.2) as follows.

Theorem 5.1. Suppose that $\Phi: \mathbb{B}(\mathscr{H}) \rightarrow \mathbb{B}(\mathscr{K})$ is a positive linear map such that $\Phi(I)$ is invertible and $\Phi(I) \leq I$. Assume that $A, B \in \mathbb{B}(\mathscr{H})$ are positive invertible operators such that $0<m_{1} \leq A \leq M_{1}$ and $0<m_{2} \leq B \leq M_{2}$ for some scalars $m_{1} \leq M_{1}$ and $m_{2} \leq M_{2}$. Then

$$
\begin{equation*}
\Phi\left(B^{2}\right)^{\frac{1}{2}} \Phi\left(A^{2}\right) \Phi\left(B^{2}\right)^{\frac{1}{2}}-\left|\Phi\left(B^{2}\right)^{-\frac{1}{2}} \Phi\left(A^{2} \sharp B^{2}\right) \Phi\left(B^{2}\right)^{\frac{1}{2}}\right|^{2} \leq \frac{\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}}{4} \times \frac{M_{2}^{2}}{m_{2}^{2}} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi\left(A^{2}\right)^{\frac{1}{2}} \Phi\left(B^{2}\right) \Phi\left(A^{2}\right)^{\frac{1}{2}}-\left|\Phi\left(A^{2}\right)^{-\frac{1}{2}} \Phi\left(A^{2} \sharp B^{2}\right) \Phi\left(A^{2}\right)^{\frac{1}{2}}\right|^{2} \leq \frac{\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}}{4} \times \frac{M_{1}^{2}}{m_{1}^{2}} . \tag{5.4}
\end{equation*}
$$

Proof. Define a normalized positive linear map Ψ by

$$
\Psi(X):=\Phi(A)^{-\frac{1}{2}} \Phi\left(A^{\frac{1}{2}} X A^{\frac{1}{2}}\right) \Phi(A)^{-\frac{1}{2}}
$$

By using the Kantorovich inequality for the difference, it follows that

$$
\begin{equation*}
\Psi\left(X^{2}\right)-\Psi(X)^{2} \leq \frac{(M-m)^{2}}{4} \tag{5.5}
\end{equation*}
$$

for all $0<m \leq X \leq M$ with some scalars $m \leq M$. As a matter of fact, we have

$$
\begin{aligned}
\Psi\left(X^{2}\right)-\Psi(X)^{2} & \leq \Psi((M+m) X-M m)-\Psi(X)^{2} \\
& =-\left(\Psi(X)-\frac{M+m}{2}\right)^{2}+\frac{(M-m)^{2}}{4} \\
& \leq \frac{(M-m)^{2}}{4}
\end{aligned}
$$

If we put $X=\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}}$, then due to

$$
0<(m=) \sqrt{\frac{m_{2}}{M_{1}}} \leq X \leq \sqrt{\frac{M_{2}}{m_{1}}}(=M)
$$

we deduce from (5.5) that

$$
\Phi(A)^{-\frac{1}{2}} \Phi(B) \Phi(A)^{-\frac{1}{2}}-\left(\Phi(A)^{-\frac{1}{2}} \Phi(A \sharp B) \Phi(A)^{-\frac{1}{2}}\right)^{2} \leq \frac{\left(\sqrt{M_{1} M_{2}}-\sqrt{m_{1} m_{2}}\right)^{2}}{4 M_{1} m_{1}}
$$

Pre- and post-multiplying both sides by $\Phi(A)$, we obtain

$$
\begin{aligned}
\Phi(A)^{\frac{1}{2}} \Phi(B) \Phi(A)^{\frac{1}{2}}-\left|\Phi(A)^{-\frac{1}{2}} \Phi(A \sharp B) \Phi(A)^{\frac{1}{2}}\right|^{2} & \leq \frac{\left(\sqrt{M_{1} M_{2}}-\sqrt{m_{1} m_{2}}\right)^{2}}{4 M_{1} m_{1}} \Phi(A)^{2} \\
& \leq \frac{\left(\sqrt{M_{1} M_{2}}-\sqrt{m_{1} m_{2}}\right)^{2}}{4} \times \frac{M_{1}}{m_{1}},
\end{aligned}
$$

since $0 \leq \Phi(A)^{2} \leq M_{1}^{2}$. Replacing A and B by A^{2} and B^{2} respectively, we have the desired inequality (5.4). Similarly, one can obtain (5.3).

Remark 5.2. If Φ is a vector state in (5.3) and (5.4), then we get Ozeki-Izumino-Mori-Seo inequality (5.2).

Acknowledgement. The authors would like to sincerely thank the anonymous referee for carefully reading the paper and for valuable comments.

REFERENCES

[1] Lj. Arambašić, D. Bakić and M.S. Moslehian. A treatment of the Cauchy-Schwarz inequality in C^{*}-modules. J. Math. Anal. Appl., to appear, doi:10.1016/j.jmaa.2011.02.062.
[2] P.S. Bullen. A Dictionary of Inequalities. Pitman Monographs and Surveys in Pure and Applied Mathematics, 97, Longman, Harlow, 1998.
[3] M.-D. Choi. Some assorted inequalities for positive linear maps on C^{*}-algebras. J. Operator Theory, 4:271-285, 1980.
[4] J.B. Diaz and F.T. Metcalf. Stronger forms of a class of inequalities of G. Pólya-G. Szegö and L.V. Kantorovich. Bull. Amer. Math. Soc., 69:415-418, 1963.
[5] S.S. Dragomir. A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities. JIPAM J. Inequal. Pure Appl. Math., 4, 2003, Article 63.
[6] S.S. Dragomir. A counterpart of Schwarz inequality in inner product spaces. RGMIA Res. Rep. Coll., 6, 2003, Article 18.
[7] S.S. Dragomir. Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces. Nova Science Publishers, Inc., New York, 2007.
[8] D.E. Evans and J.T. Lewis, Dilations of Irreversible Evolutions in Algebraic Quantum Theory. Comm. Dublin Inst. Adv. Studies. Ser. A, no. 24, 1977.
[9] T. Furuta, J.M. Hot, J.E. Pečarić and Y. Seo. Mond-Pec̆arić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Monographs in Inequalities 1, Element, Zagreb, 2005.
[10] W. Greub and W. Rheinboldt. On a generalization of an inequality of L.V. Kantorovich. Proc. Amer. Math. Soc., 10:407-415, 1959.
[11] D. Ilišević and S. Varošanec. On the Cauchy-Schwarz inequality and its reverse in semi-inner product C^{*}-modules. Banach J. Math. Anal., 1:78-84, 2007.
[12] S. Izumino, H. Mori and Y. Seo. On Ozeki's inequality. J. Inequal. Appl., 2:235-253, 1998.
[13] M. Joiţa. On the Cauchy-Schwarz inequality in C^{*}-algebras. Math. Rep. (Bucur.), 3(53):243246, 2001.
[14] M.S. Klamkin and R.G. Mclenaghan. An ellipse inequality. Math. Mag., 50:261-263, 1977.
[15] E.C. Lance. Hilbert C^{*}-Modules. London Math. Soc. Lecture Note Series 210, Cambridge Univ. Press, 1995.
[16] E.-Y. Lee. A matrix reverse Cauchy-Schwarz inequality. Linear Algebra Appl., 430:805-810, 2009.
[17] M.S. Moslehian and L.-E. Persson. Reverse Cauchy-Schwarz inequalities for positive C^{*}-valued sesquilinear forms. Math. Inequal. Appl., 12:701-709, 2009.
[18] M.S. Moslehian and R. Rajić. Grüss inequality for n-positive linear maps. Linear Alg. Appl., 433:1555-1560, 2010.
[19] G.J. Murphy, C^{*}-algebras and Operator Theory. Academic Press, Boston, 1990.
[20] C.P. Niculescu. Converses of the Cauchy-Schwarz inequality in the C^{*}-framework. An. Univ. Craiova Ser. Mat. Inform., 26:22-28, 1999.
[21] M. Niezgoda. Accretive operators and Cassels inequality. Linear Algebra Appl., 433:136-142, 2010.
[22] N. Ozeki. On the estimation of the inequalities by the maximum, or minimum values (in Japanese). J. College Arts Sci. Chiba Univ., 5:199-203, 1968.
[23] G. Pólya and G. Szegö. Aufgaben und Lehrsätze aus der Analysis, Vol. 1, Berlin, 213-214, 1925.
[24] O. Shisha and B. Mond. Bounds on differences of means. Inequalities I, 293-308, 1967.
[25] G.S. Watson. Serial correlation in regression analysis. I. Biometrika, 42:327-342, 1955.

[^0]: *Received by the editors on September 29, 2010. Accepted for publication on February 19, 2011 Handling Editor: Bit-Shun Tam.
 ${ }^{\dagger}$ Department of Pure Mathematics, Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran (moslehian@ ferdowsi.um.ac.ir, moslehian@ams.org). Supported by a grant from Ferdowsi University of Mashhad (No. MP89144MOS).
 ${ }^{\ddagger}$ Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316-0033, Japan (r-naka@net1. jway.ne.jp).
 ${ }^{\S}$ Faculty of Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitamacity, Saitama 337-8570, Japan (yukis@sic.shibaura-it.ac.jp).

