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MULTIPLICATIVITY OF PERMANENTS OVER MATRIX SEMIRINGS∗

DAVID DOLŽAN†

Abstract. In this paper, we investigate the conditions for the multiplicativity of the permanent over a matrix semiring.

We prove that if S is either a commutative antiring or a commutative semiring where the set V (S) of all additively invertible

elements coincides with the set of all nilpotents, then the permanent is multiplicative on the group of invertible matrices over

S if and only if 1+2V (S)2 = 1. We then use this result to investigate the number of invertible matrices over S with a specified

permanent.
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1. Introduction. A semiring is a set S equipped with binary operations + and · such that (S,+) is a

commutative monoid with identity element 0 and (S, ·) is a monoid with identity element 1. In addition, op-

erations + and · are connected by distributivity and 0 annihilates S. A semiring is commutative if ab = ba for

all a, b ∈ S. The theory of semirings has many applications in optimization theory, automatic control, models

of discrete event networks, and graph theory (see e.g. [1, 6, 12, 16]). For an extensive theory of semirings,

we refer the reader to [11]. There are many natural examples of commutative semirings, for example, the set

of nonnegative integers (or reals) with the usual operations of addition and multiplication. Other examples

include distributive lattices, tropical semirings, diöıds, fuzzy algebras, inclines, and bottleneck algebras. A

semiring S is called entire or zero-divisor-free if ab = 0 for some a, b ∈ S implies that a = 0 or b = 0, and it

is called antinegative or zero-sum-free if a + b = 0 for some a, b ∈ S implies that a = b = 0. Antinegative

semirings are also called antirings. The simplest example of an antinegative semiring is the binary Boolean

semiring, the set {0, 1} in which addition and multiplication are the same as in Z except that 1 + 1 = 1.

For a (semi)ring S, the permanent of an n-by-n matrix A with entries in S is defined by per(A) =∑
π∈Sn

∏n
i=1 Aiπ(i), where Sn denotes the symmetric group on n elements, i.e., the group of all permutations

of the numbers 1, 2, . . . , n, and Aij denotes the entry of matrix A at position (i, j). Studies on permanents,

since their introduction in 1812 by Binet [4] and Cauchy [5] have mainly focused on matrices over fields

and commutative rings. The permanent of a square matrix has significant graph theoretic interpretations.

For example, the number of vertex-disjoint cycle covers in a directed graph is equal to the permanent of its

adjacency matrix. Also, the number of perfect matchings in a bipartite graph is equal to the permanent of its

bipartite adjacency matrix. Theory of permanents also provides us with an effective tool in dealing with order

statistics corresponding to random variables which are independent but possibly nonidentically distributed

[2]. While the determinant of a matrix can be computed in polynomial time, computing the permanent of

a matrix is a “#P-complete problem,” which cannot be done in polynomial time unless P = NP [14, 15].
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In [7], the author studied the multiplicativity of a generalized permanent dH corresponding to a subgroup

H of Sn with matrices having entries in a semiring. Over antinegative cancellation semirings, the author

proved some results for the permanent that are similar to the results over fields. For chain semirings, the

semigroup of all matrices A such that dH(A) ̸= 0 is maximal with respect to the equation of multiplicativity of

the permanent over the 2-element Boolean semiring. In [3], the author proved that the set of all nonsingular

matrices of the form PD, where P is a permutation matrix and D is a diagonal matrix with complex entries

is a maximal group on which the permanent function is multiplicative.

Let us give some basic definitions we shall be using throughout the paper. We shall denote the set of all

multiplicatively invertible elements in S by S∗ and the set of all additively invertible elements in S by V (S).

Furthermore, let N (S) denote the set of all nilpotent elements in S. For a semiring S and a subset T ⊆ S,

we shall denote the semiring of n by n matrices with entries in T by Mn(T ). We shall denote the diagonal

matrix with elements d1, d2, . . . , dn ∈ S along the diagonal with Diag(d1, d2, . . . , dn). A matrix with 1 at

(i, j)-th entry and zeroes elsewhere will be denoted by Eij . For a permutation σ ∈ Sn, the permutation

matrix Pσ will denote the 0/1 matrix where the (i, j)-th entry of Pσ is equal to 1 if and only if i = σ(j). We

shall often denote the (i, j)-th entry of matrix A simply by Aij . An element e ∈ S is called idempotent if

e2 = e and e is called nilidempotent if e2 = e+ x for some x ∈ N (S). A set {a1, a2, . . . , ar} ⊆ S of nonzero

elements is called an orthogonal decomposition of 1 of length r in S if a1 + a2 + . . . + ar = 1 and aiaj = 0

for all i ̸= j. A matrix A ∈ Mn(S) is an orthogonal combination of matrices A1, A2, . . . , Ar if there exists

an orthogonal decomposition {a1, a2, . . . , ar} of 1, such that A =
∑r

i=1 aiAi. The group of all invertible

matrices in Mn(S) will be denoted by GLn(S).

In this paper, we shall investigate the properties of permanents in two different settings: commutative

antirings and commutative semirings with V (S) = N (S). The latter family obviously includes all antirings

without (nonzero) nilpotent elements, as well as all semirings of the form S+R, where R is a nilpotent ring

which is also an S-semimodule. Some further examples of such semirings are also given in [10]. The paper is

organized as follows. In the next section, we examine the conditions for the permanent to be multiplicative

on the group of all invertible matrices over S. The main result of the section is Theorem 2.5, where we prove

that in each of the two above settings, the permanent is multiplicative on the group of invertible matrices

over S if and only if 1 + 2V (S)2 = 1. In the final section, we use these results to investigate the number of

(invertible) matrices with a specified permanent (see Theorem 3.2 and Proposition 3.5).

2. Multiplicativity of permanents. In this section, we investigate the conditions on the semiring S

under which the permanent is multiplicative on GLn(S).

We start with the following lemma, which shows that the condition of the multiplicativity of the per-

manent on the set of all matrices is too restrictive to be of any real interest.

Lemma 2.1. Let S be a commutative semiring such and n ≥ 2. Then per(AB) = per(A)per(B) for

every A,B ∈ Mn(S) if and only if S is a ring of characteristic 2.

Proof. Denote A = E11 +E12 +E33 + . . .+Enn and B = A+E21 +E22 ∈ Mn(S) and observe that we

have EijEkl = Eil for j = k, and 0 otherwise. This implies that BA = B. Since per(A) = 0 and per(B) = 2,

we get 2 = 0. This implies that V (S) = S, so S is a ring of characteristic 2. On the contrary, if S is a ring

of characteristic 2, the permanent is equal to the determinant, which is of course multiplicative.

Therefore, we loosen the multiplicativity condition somewhat and observe the commutative semirings

such that the multiplicativity of the permanent holds only for all the invertible matrices.
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Lemma 2.2. Let S be a commutative semiring and n ≥ 2. If per(AB) = per(A)per(B) for every

A,B ∈ GLn(S) then 1 + 2V (S)2 = 1.

Proof. Choose x, y ∈ V (S) and denote A(x) = I + xE12 and B(y) = I + yE21, where I is the identity

matrix. Observe that A(x)A(−x) = B(y)B(−y) = I, so A(x), B(y) ∈ GLn(S). However, 1 + 2xy =

per(A(x)B(y)) = per(A(x))per(B(y)) = 1.

We shall also need the following lemma, which appears in [10] but we include it here for the sake of

completeness.

Lemma 2.3. Let S be a commutative semiring. If 1 = f1 + f2 + . . .+ fk is an orthogonal decomposition

of 1 of maximal length and 1 = e1+e2+ . . .+el is an orthogonal decomposition of 1, then for every 1 ≤ i ≤ l

there exists a set ∅ ≠ Ii ⊆ {1, 2, . . . , k} such that ei =
∑

j∈Ii
fj.

Proof. By multiplying the two equations, we get
∑k

j=1

∑l
i=1 fjei = 1. Suppose there exist 1 ≤ j1 ≤ k

and 1 ≤ i1, i2 ≤ l such that fj1ei1 , fj1ei2 ̸= 0. Since the maximal length of an orthogonal decomposition

of 1 is k, there exists 1 ≤ j2 ≤ k such that fj2ei = 0 for every 1 ≤ i ≤ l, so fj2 = 0, a contradiction.

This implies that for every 1 ≤ j ≤ k there exists a unique 1 ≤ ij ≤ l such that fjeij ̸= 0 and observe

that fjeij = fj . For every 1 ≤ i ≤ l now define Ii = {1 ≤ j ≤ k; eifj = fj} and observe that Ii ̸= ∅ and

ei = ei

(∑
j∈Ii

fj

)
=
∑

j∈Ii
fj .

Before proving our main result of this section, we also need the following lemma.

Lemma 2.4. Let S be a commutative semiring and n ≥ 2. Suppose that

A = D

(∑
σ∈X

fσPσ

)
B,

for some X ⊆ Sn and an invertible diagonal matrix D, where Pσ is a permutation matrix for every σ ∈ X,∑
σ∈X fσ = 1 is an orthogonal decomposition of 1, and B ∈ Mn(S). Then per(A) = per(D)per(B).

Proof. Observe first that A = DA′ for A′ = (
∑

σ∈X fσPσ)B and that for every 1 ≤ i ≤ n, each entry

in the i-th row of A′ is multiplied with the i-th diagonal element from D, thus implying that per(A) =

per(D)per(A′). We now have to prove that per(A′) = per(B). Note that for every 1 ≤ i, j ≤ n, the (i, j)-th

entry of A′ equals
∑

σ∈X fσBσ−1(i)j . Since for every σ ̸= σ′ ∈ X, idempotents fσ and f ′
σ are orthogonal,

we conclude that per(A′) =
∑

τ∈Sn

(∏n
i=1

(∑
σ∈X fσBσ−1(i)τ(i)

))
=
∑

τ∈Sn

(∑
σ∈X fσ

(∏n
i=1 Bσ−1(i)τ(i)

))
=∑

σ∈X fσ
(∑

τ∈Sn

(∏n
i=1 Bσ−1(i)τ(i)

))
. Since Pσ is a permutation matrix, we have per(PσB) = per(B) for

every σ ∈ X, which finally yields per(A′) =
∑

σ∈X fσper(B) = per(B).

We now have the following theorem, which is the main theorem of this section.

Theorem 2.5. Let n ≥ 2 and S be a commutative antiring or a commutative semiring with V (S) =

N (S) a finitely generated S-semimodule. Then per(AB) = per(A)per(B) for every A,B ∈ GLn(S) if and

only if 1 + 2V (S)2 = 1.

Proof. One side of the implication follows directly from Lemma 2.2.

Suppose that S is a commutative antiring. Then by [8, Theorem 1], every A ∈ GLn(S) is of the

form A = D
∑

σ∈Sn
aσPσ, where D is an invertible diagonal matrix, Pσ is a permutation matrix, and∑

σ∈Sn
aσ is an orthogonal decomposition of 1. So, choose two invertible matrices A = D

∑
σ∈Sn

aσPσ

and A′ = D′∑
σ′∈Sn

a′σ′P ′
σ′ . Observe first that per(A) = Πn

i=1dii and per(A′) = Πn
i=1d

′
ii. By Lemma
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2.3, we can assume that aσa
′
σ′ is an idempotent and

∑
σ,σ′∈Sn

aσa
′
σ′ is an orthogonal decomposition of

1. Therefore, we have AA′ = D
∑

σ,σ′∈Sn
aσa

′
σ′PσD

′P ′
σ′ . Now, [9, Lemma 5] implies that for every σ ∈

Sn we have PσD
′ = D′′Pσ, where D′′ is an invertible diagonal matrix with per(D′′) = per(D′). So,

per(DD′′) = per(DD′) and AA′ =
∑

σ,σ′∈Sn
DD′′aσa

′
σ′PσP

′
σ′ , which implies that per(AA′) = per(DD′) =

per(D)per(D′) = per(A)per(A′).

Next, assume that S is a commutative semiring with V (S) = N (S) a finitely generated S-semimodule.

Then [10, Theorem 3.2] implies that A is invertible if and only if A = D

( ∑
σ∈X

fσPσ

)
+N , whereX ⊆ Sn, D is

an invertible diagonal matrix, Pσ is a permutation matrix for every σ ∈ X, and
∑

σ∈X fσ = 1 is an orthogonal

decomposition of 1 and N ∈ Mn(N (S)). So, let A be as above and choose A′ = D′
( ∑

σ′∈X′
fσ′Pσ′

)
+N ′ ∈

GLn(S). Denote A1 = D

( ∑
σ∈X

fσPσ

)
and observe that A = A1(I + N1) for some N1 ∈ Mn(N (S)) and

similarly A′ = A2(I + N2) for some N2 ∈ Mn(N (S)). By Lemma 2.4 and by using [9, Lemma 5] similarly

as above, we arrive at per(AA′) = per(D)per(D′)per((I +N1)(I +N2)). Now, observe that all the diagonal

elements of the matrix (I+N1)(I+N2) belong to the set 1+V (S) and all the off-diagonal elements belong to

V (S). Since 1+2V (S)2 = 1, we have 1+xy = 1−xy for all x, y ∈ V (S) and furthermore xyz = −xyz for all

x, y, z ∈ V (S). The fact that the only summands in the permanent of the matrix (I+N1)(I+N2) that do not

contain at least two factors from V (S) come from multiplying the diagonal elements of the matrix, implies

that per((I + N1)(I + N2)) = det((I + N1)(I + N2)) = det(I + N1) det(I + N2). The same argument now

yields det(I +Ni) = per(I +Ni) for i = 1, 2. Finally, Lemma 2.4 implies that per(I +N1)per(D) = per(A)

and per(I +N2)per(D
′) = per(A′), so we have proved that per(AA′) = per(A)per(A′).

Furthermore, we have some reasons to believe that the above theorem might hold in a more general

setting. Thus, we have the following conjecture.

conjecture. Let n ≥ 2 and S be a commutative semiring. Then per(AB) = per(A)per(B) for every

A,B ∈ GLn(S) if and only if 1 + 2V (S)2 = 1.

3. (Invertible) matrices with a specified permanent. In this section, we use the results of the

previous section to estimate the number of different (invertible) matrices with a specified permanent.

Definition 3.1. Let S be a finite commutative semiring. For a ∈ S we define pn(S, a) = |{A ∈
GLn(S); per(A) = a}|.

We now immediately have the following theorem.

Theorem 3.2. Assume that n ≥ 2, S is a finite commutative semiring, and a ∈ S. Let f1+f2+. . .+fk =

1 be an orthogonal decomposition of 1 of maximal length.

1. If V (S) = 0, then

pn(S, a) = pn(S, 1) =

{
0, a /∈ S∗,

|S∗|n−1(n!)k, a ∈ S∗.

2. If V (S) = N (S) is a finitely generated S-semimodule and 1 + 2V (S)2 = 1, then

pn(S, a) = 0, if a /∈ S∗, and

pn(S, a) = pn(S, 1) ≥ |S∗|n−1(n!)k|N (S)|nmax{0,n−k}, if a ∈ S∗.
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Proof. By Theorem 2.5, we know that in both the above cases, the permanent is multiplicative on

the set GLn(S). So, choose A ∈ GLn(S). Then per(A)per(A−1) = 1, so a = per(A) is invertible in S.

Furthermore, there exists an invertible diagonal matrix D = Diag(a−1, 1, 1, . . . , 1) such that per(DA) = 1.

Since multiplying with matrix D is a bijection mapping from the set of all invertible matrices with their

permanent equal to a to the set of all invertible matrices with their permanent equal to 1, we have pn(S, a) =

pn(S, 1), therefore pn(S, a) =
|GLn(S)|

|S∗| .

Suppose first that V (S) = 0, so S is an antiring. By [8, Theorem 1], every A ∈ GLn(S) is of the

form A = D
∑

σ∈Sn
aσPσ, where D is an invertible diagonal matrix, Pσ are permutation matrices and∑

σ∈Sn
aσ is an orthogonal decomposition of 1 (where some elements aσ may be equal to 0). Suppose that

D
∑

σ∈Sn
aσPσ = D′∑

σ∈Sn
a′σPσ for some invertible diagonal matrix D′, permutation matrices Pσ, and

an orthogonal decomposition of 1 =
∑

σ∈Sn
a′σ. By Lemma 2.3, we can multiply this equation with fi

for i = 1, . . . , k and observe that aσ = a′σ for every σ ∈ Sn and then also D = D′. By our assumption,

the number of nonzero summands in this sum is at most k, so Lemma 2.3 implies that we have exactly

|GLn(S)| = |S∗|n(n!)k invertible matrices (since every permutation matrix can appear with each of the k

summands f1, . . . , fk). Thus, the statement follows.

Suppose now that V (S) = N (S) and 1 + 2V (S)2 = 1. Then [10, Theorem 3.2] implies that A is

invertible if and only if A = D

( ∑
σ∈X

fσPσ

)
+N , where X ⊆ Sn, D is an invertible diagonal matrix, Pσ is a

permutation matrix for every σ ∈ X,
∑

σ∈X fσ = 1 is an orthogonal decomposition of 1 and N ∈ Mn(N (S)).

Suppose that D

( ∑
σ∈X

fσPσ

)
+N = D′

( ∑
σ∈X′

f ′
σPσ

)
+N ′ for some invertible diagonal matrix D′, X ′ ⊆ Sn,

permutation matrices Pσ, an orthogonal decomposition of 1 =
∑

σ∈X′ f ′
σ and N ′ ∈ Mn(N (S)). It is easy

to see (by multiplying both sides of the equation by fσ and f ′
σ and applying Lemma 2.3) that X = X ′

and fσ = f ′
σ for every σ ∈ X. If k < n, then at least n − k entries in each row of the matrix on the

left side of the equation are nilpotents, and they have to be equal to the corresponding entries on the

right side of the equation. This implies that at least n(n− k) entries of N ′ are uniquely determined by the

corresponding entries in N , therefore obtaining a different matrix by choosing different entries. Furthermore,

by summing all entries in the i-th row of both matrices on the left and the right sides of the equation, we

get di +
∑n

j=1 Nij = d′i +
∑n

j=1 N
′
ij ; therefore, d

′
i = di +

∑n
j=1 Nij −N ′

ij is uniquely determined for every

1 ≤ i ≤ n. Thus, we again obtain a different matrix by choosing different entries for the matrix D′. This

implies that |GLn(S)| ≥ |S∗|n(n!)k|N (S)|nmax{0,n−k} and the statement follows.

The following example shows that the bound in the second case of the Theorem 3.2 can be achieved.

Example 3.3. Let R be a finite ring and S = N ∪ Rx with x2 = 0 and a + bx = a and a(bx) = (ab)x

for every a ∈ N and b ∈ R. It can be readily verified that S is indeed a semiring with V (S) = N (S) = Rx

a finitely generated S-semimodule and 1 + 2V (S)2 = 1. Notice that S does not contain any nontrivial

idempotents and |S∗| = 1, so by Theorem 3.2(2), we have pn(S, 1) ≥ n!|R|n(n−1). On the other hand,

pn(S, 1) = |GLn(S)| and by [10, Theorem 3.2] we know that A is an invertible matrix in Mn(S) if and only

if A = P +N , where P ∈ Mn(S) is a permutation matrix and N ∈ Mn(N (S)). Since 1 +N (S) = 1, A is

therefore invertible if and only if we can write A = P +N , where P ∈ Mn(S) is a permutation matrix and

N ∈ Mn(N (S)) is such that Nij ̸= 0 if and only if Pij = 0. Since this notation is obviously unique, we have

pn(S, 1) = |GLn(S)| = n!|N (S)|n(n−1) = n!|R|n(n−1) and thus the bound is achieved.

Let us finally explore the number of different (arbitrary, not necessarily invertible) matrices with a

prescribed permanent.
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Definition 3.4. Let S be a finite commutative semiring. For a ∈ S we define Pn(S, a) = |{A ∈
Mn(S); per(A) = a}|.

We have the following proposition.

Proposition 3.5. Let n ≥ 2 and S a finite commutative semiring. Then

1. if S is entire and V (S) = 0 then

Pn(S, 0) = |S|n
2

−
n∑

i=0

(
n

i

)
(−1)i(|S|n−i − 1)n;

2. if V (S) = N (S) then for every a ∈ N (S) we have

Pn(S, a) ≥ |S|∗
(
Pn−1(S, 1)|N (S)|n−1(2|S|n−1 − |N (S)|n−1) + Pn−1(S, x)(2|S|n−1 − 1)

)
.

Proof. 1. Since S is an entire antiring, the only way for the permanent of an n × n matrix to

equal zero is that the matrix has either a zero row or a zero column. So, let us count the number

of matrices in Mn(S) with no zero rows or columns. Observe that there are (|S|n − 1)n matrices

that have all rows nonzero. Now, some of them of course may have some zero columns. Suppose

therefore that we have at least i zero columns for some i ∈ {1, 2, . . . , n}. We have
(
n
i

)
possible

ways to choose the i columns. But if we disregard the zero columns, there are |S|n−i − 1 possible

ways to choose the remaining elements in every (nonzero) row. Since there are n rows, this yields

(|S|n−i − 1)n matrices. Now, in this way, we may have counted some matrices (with more than i

zero columns) multiple times, but the inclusion exclusion principle then yields that there are exactly∑n
i=0

(
n
i

)
(−1)i(|S|n−i − 1)n matrices in Mn(S) with no zero rows or columns.

2. Suppose now that V (S) = N (S) and choose a ∈ N (S). Choose x ∈ S∗ and suppose An−1 ∈
Mn−1(S) is such a matrix that per(An−1) = x. Choose any y2, . . . , yn ∈ N (S) and any z2, . . . , zn ∈

S. Suppose that α ∈ S and let A =


α y2 . . . yn
z2
... An−1

zn

. Then per(A) = αx + n for some

n ∈ N (S), so per(A) = a for α = x−1(a − n). Similarly, we have per(A′) = αx + n for matrix

A′ =


α z2 . . . zn
y2
... An−1

yn

, so again α = x−1(a−n) ensures that per(A′) = a. This means that we

can obtain at least
∑

x∈S∗ Pn−1(S, x)|N (S)|n−1(2|S|n−1−|N (S)|n−1) matrices in this way. Observe

that Pn−1(S, x) ≥ Pn−1(S, 1) for every x ∈ S∗, since we can multiply the first row of any matrix

with permanent 1 by x to obtain a matrix with permanent x (and this constitutes an injective

mapping). Thus, we have at least |S∗|Pn−1(S, 1)|N (S)|n−1(2|S|n−1 − |N (S)|n−1) matrices with

permanent equal to a. On the other hand, we can also obtain matrices with permanent equal to

a thusly: suppose that Bn−1 ∈ Mn−1(S) is such a matrix that per(Bn−1) = xa for some x ∈ S∗

and y2, . . . , yn are arbitrary elements from S. Then matrices A =


x−1 y2 . . . yn
0
... Bn−1

0

 and
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A′ =


x−1 0 . . . 0

y2
... Bn−1

yn

 have their permanents equal to a and by a similar argument as above,

we have at least Pn−1(S, x)|S∗|(2|S|n−1 − 1) such matrices. Since x ∈ S∗ and α ∈ N (S), we have

not yet counted any of these matrices above. Thus, the statement follows.

Remark 3.6. There is no known closed formula for the expression in (1) of Proposition 3.5 even in the

case of the binary Boolean semiring (see [13]).
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