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Abstract. In this paper, several equivalent conditions related to the reverse order law for

the Moore-Penrose inverse in C∗-algebras are studied. Some well-known results are extended to

more general settings. Then this result is applied to obtain the reverse order rule for the weighted

Moore-Penrose inverse in C∗-algebras.
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1. Introduction. Let S be a semigroup with the unit 1. If a, b ∈ S are invertible,

then ab is invertible too and the inverse of the product ab satisfied the reverse order

law (ab)−1 = b−1a−1. This formula cannot trivially be extended to the Moore-

Penrose inverse of the product ab. In this paper, we investigate necessary and sufficient

conditions which are related to the reverse order law for the Moore-Penrose inverse.

The reverse order law for the weighted Moore-Penrose inverse in C∗-algebras follows

as a corollary.

Let A be a unital C∗-algebra. An element a ∈ A is regular if there exists some

b ∈ A satisfying aba = a. The set of all regular elements of A will be denoted by A−.

An element p ∈ A is idempotent if p2 = p. An element a ∈ A is self-adjoint if a∗ = a.

An element x ∈ A is positive if x = x∗ and σ(x) ⊆ [0,+∞), where the spectrum

of element x is denoted by σ(x). Notice that, positive elements are self-adjoint. If

x ∈ A, then x∗x is positive element.

The Moore-Penrose inverse (or MP-inverse) of a ∈ A is the element b ∈ A, if the

following equations hold [13]:

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4) (ba)∗ = ba.

There is at most one b such that above conditions hold (see [13]), and such b is denoted

by a†. The set of all Moore-Penrose invertible elements of A will be denoted by A†.
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If a is invertible, then a† coincides with the ordinary inverse of a.

Definition 1.1. Let A be a unital C∗-algebra and e, f two invertible positive

elements in A. We say that the element a ∈ A has the weighted MP-inverse with

weights e, f if there exists b ∈ A such that

(1) aba = a, (2) bab = b, (3e) (eba)∗ = eba, (4f) (fab)∗ = fab.

The unique weighted MP-inverse with weights e, f , will be denoted by a
†
e,f if it

exists [11]. The set of all weighted MP-invertible elements of A with weights e, f ,

will be denoted by A†
e,f .

If δ ⊂ {1, 2, 3, 4, 3e, 4f} and b satisfies the equations (i) for all i ∈ δ, then b is an

δ-inverse of a. The set of all δ-inverse of a is denote by a{δ}. If b ∈ a{1}, then a is

regular. If b ∈ a{1, 2} and ab = ba, then a is group invertible.

Let R be a ring with involution. An element a ∈ R is: left *-cancellable if

a∗ax = a∗ay implies ax = ay; it is right *-cancellable if xaa∗ = yaa∗ implies xa = ya;

and it is *-cancellable if it is both left and right *-cancellable. We observe that a is

left *-cancellable if and only if a∗ is right *-cancellable. In C∗-algebras all elements

are *-cancellable. A ring R is called *-reducing if every element of R is *-cancellable.

This is equivalent to the implication a∗a = 0 ⇒ a = 0 for all a ∈ R.

Now we formulate the following result, which is well-known and frequently used

in the rest of the paper.

Theorem 1.2. [6, 12] For any a ∈ A†, the following are satisfied:

(a) (a†)† = a;

(b) (a∗)† = (a†)∗;

(c) (a∗a)† = a†(a†)∗;

(d) (aa∗)† = (a†)∗a†;

(f) a∗ = a†aa∗ = a∗aa†;

(g) a† = (a∗a)†a∗ = a∗(aa∗)†;

(h) (a∗)† = a(a∗a)† = (aa∗)†a.

Theorem 1.3. [8] In a unital C∗-algebra A, a ∈ A is MP-invertible if and only

if a is regular.

It is useful to express the weighted MP-inverse in terms of the ordinary MP-

inverse.

Theorem 1.4. [11] Let A be a unital C∗-algebra and let e, f be positive invertible

elements of A. If a ∈ A is regular, then the unique weighted MP-inverse a
†
e,f exists

and

a
†
e,f = e−1/2(f1/2ae−1/2)†f1/2.
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In [7], Greville proved that (ab)† = b†a† holds for complex matrices if and only

if a†a commutes with bb∗ and bb† commutes with aa∗. Bouldin [2, 3] and Izumino

[10] generalized this result for closed range operators on Hilbert spaces. Their proofs

are based on operator theoretical methods and use properties of ranges of operators

and gaps between subspaces. In [11], a proof of the reverse order rule for the Moore-

Penrose inverse in the setting of rings with involution is presented, extending the

results for Hilbert space operators from [2, 3, 10]. This result is formulated as follows.

Theorem 1.5. [11] Let R be a ring with involution, let a, b ∈ R be MP-invertible

and let (1 − a†a)b be left *-cancellable. Then the following conditions are equivalent:

(a) ab is MP-invertible and (ab)† = b†a†;

(b) a†abb∗ = bb∗a†a and bb†a∗a = a∗abb†.

Necessary and sufficient conditions for the reverse order rule for the weighted

MP-inverse for matrices were given by Sun and Wei in [14] in terms of the inclusion

of matrix ranges (column spaces). In [11], the result for the reverse order rule for

the weighted Moore-Penrose inverse in C∗-algebras is proved, generalizing the matrix

results in [14].

Tian [15, 16] studied a group of rank equalities related to the Moore-Penrose

inverse of products of two matrices, which implies necessary and sufficient conditions

for (ab)† = b†a†. The extensions of these results to the weighted Moore-Penrose

inverse are considered too. The operator analogues of these results for the Moore-

Penrose inverse are proved in [4, 5] for linear bounded operators on Hilbert spaces,

using the matrix form of operators induced by some natural decomposition of Hilbert

spaces.

In this paper, we present a purely algebraic proof of some equivalent conditions

related to the reverse order law for the Moore-Penrose inverse in C∗-algebras, ex-

tending the known results for matrices [15, 16] and Hilbert space operators [4, 5].

We show that neither the rank (in the finite dimensional case) nor the properties of

operator matrices (in the infinite dimensional case) are necessary for the proof of the

reverse order rule for the Moore-Penrose inverse valid under certain conditions on

regular elements. Thus, we extend some recent results to more general settings. As a

corollary, we obtain the reverse order law for the weighted Moore-Penrose inverse.

2. Reverse order law in C∗-algebras. In this section, we present necessary

and sufficient conditions for the reverse order law for the Moore-Penrose inverse to

hold. The first list of some equivalent statements is given below.
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Theorem 2.1. Let A be a unital C∗-algebra and let a, b ∈ A−. Then the following

conditions are equivalent:

(a) abb†a†ab = ab;

(b) b†a†abb†a† = b†a†;

(c) a†abb† = bb†a†a;

(d) a†abb† is an idempotent;

(e) bb†a†a is an idempotent;

(f) b†(a†abb†)†a† = b†a†;

(g) (a†abb†)† = bb†a†a.

Proof. We can easy get that ab ∈ A− ⇔ a†abb† ∈ A−.

(a) ⇒ (c): From abb†a†ab = ab, we obtain a†abb†(1 − a†a)b = 0 and

a†a(b†)∗((1 − a†a)b)∗(1 − a†a)b = a†a(b†)∗b∗(1 − a†a)(1 − a†a)b

= a†abb†(1 − a†a)b

= 0.(2.1)

Because all elements are *-cancellable in C∗-algebra, we get

a†a(b†)∗((1 − a†a)b)∗ = 0.

This equality implies a†abb†(1 − a†a) = 0, i.e.,

a†abb† = a†abb†a†a.(2.2)

Now, by (2.2), we have

a†abb† = a†abb†a†a = (a†abb†a†a)∗ = (a†abb†)∗ = bb†a†a.

Hence, the condition (c) holds.

(c) ⇒ (d): By the equality a†abb† = bb†a†a, we get the condition (d):

a†a(bb†a†a)bb† = a†aa†abb†bb† = a†abb†.

(d) ⇒ (a): Multiplying the assumption

a†abb† = a†abb†a†abb†

by a from the left side and by b from the right side, we have that ab = abb†a†ab.

Therefore, the condition (a) is satisfied.
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(d) ⇔ (e): Applying the involution to a†abb† = a†abb†a†abb†, we get bb†a†a =

bb†a†abb†a†a. The opposite implication is analogous.

(b) ⇒ (e): The condition b†a†abb†a† = b†a† implies

b(b†a†)a = bb†a†abb†a†a.

(e) ⇒ (b): Multiplying the hypothesis

bb†a†a = bb†a†abb†a†a

by b† from the left side and by a† from the right side, we get that the condition (b)

holds: b†a† = b†a†abb†a†.

(d) ⇒ (g): Assume that a†abb† = a†abb†a†abb†. Then the condition (c) holds, so

(g) follows trivially.

(g) ⇒ (d): Using the assumption (a†abb†)† = bb†a†a, we have

a†abb†a†abb† = a†abb†(bb†a†a)a†abb† = a†abb†(a†abb†)†a†abb† = a†abb†.

(g) ⇒ (f): If (a†abb†)† = bb†a†a, then

b†(a†abb†)†a† = b†bb†a†aa† = b†a†.

(f) ⇒ (g): Suppose that b†(a†abb†)†a† = b†a† holds. Then

a†abb†(bb†a†a)a†abb† = a†ab(b†a†)abb† = a†abb†(a†abb†)†a†abb† = a†abb†,

bb†a†a(a†abb†)bb†a†a = b(b†a†)ab(b†a†)a = bb†(a†abb†)†a†abb†(a†abb†)†a†a

= b(b†(a†abb†)†a†)a = bb†a†a,

(a†abb†bb†a†a)∗ = a†abb†bb†a†a,

(bb†a†aa†abb†)∗ = bb†a†aa†abb†.

Hence, (a†abb†)† = bb†a†a holds.

The second list of equivalent statements follows.

Theorem 2.2. Let A be a unital C∗-algebra and let a, b, ab ∈ A−. Then the

following conditions are equivalent:

(a) ab(ab)† = abb†a†;
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(b) a∗ab = bb†a∗ab;

(c) a∗abb† = bb†a∗a;

(d) b†a† ∈ (ab){1, 2, 3};

(e) b†a† ∈ (ab){1, 3};

(f) b{1, 3} · a{1, 3} ⊆ (ab){1, 3};

(g) ab(ab)†a = abb†;

(h) (abb†)† = bb†a†;

(i) b†(abb†)† = b†a†.

Proof. Observe that ab ∈ A− ⇔ abb† ∈ A−.

(a) ⇒ (b): Since ab(ab)† = abb†a† and ab(ab)† is self-adjoint, then

abb†a† = (abb†a†)∗ = (a†)∗bb†a∗

and

a∗ab = a∗ab(ab)†ab = a∗(abb†a†)ab = a∗(a†)∗bb†a∗ab = a†abb†a∗ab.(2.3)

Using the hypothesis ab(ab)† = abb†a†, we get abb†a†ab = ab(ab)†ab = ab. This

equality implies, by Theorem 2.1 (parts (a) and (c)), a†abb† = bb†a†a. Now, from

(2.3), we obtain

a∗ab = (a†abb†)a∗ab = bb†a†aa∗ab = bb†a∗ab.

(b) ⇒ (c): If a∗ab = bb†a∗ab, we have

a∗abb† = bb†a∗abb† = (abb†)∗abb†.(2.4)

The right hand side of (2.4) is self-adjoint, which implies

a∗abb† = (a∗abb†)∗ = bb†a∗a.

(c) ⇒ (d): From a∗abb† = bb†a∗a, we obtain

abb†a† = aa†abb†a† = (a†)∗(a∗abb†)a† = (a†)∗bb†a∗aa† = (a†)∗bb†a∗.(2.5)

Then

(abb†a†)∗ = ((a†)∗bb†a∗)∗ = abb†a†.(2.6)

Using (2.5) and (c), we get

(abb†a†)ab = (a†)∗(bb†a∗a)b = (a†)∗a∗abb†b = ab.(2.7)
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Also,

b†a†abb†a† = b†a∗(a†)∗bb†a†aa† = b†a∗((a†)∗bb†a∗)(a†)∗a†

= b†(a∗abb†)a†(a†)∗a† = b†bb†a∗aa†(a†)∗a†

= b†a∗(a†)∗a† = b†a†.(2.8)

By (2.6), (2.7) and (2.8), we conclude that b†a† ∈ (ab){1, 2, 3}.

(d) ⇒ (e): This part is obvious.

(e) ⇒ (f): Suppose that a(1,3) ∈ a{1, 3} and b(1,3) ∈ b{1, 3}. Notice that

aa(1,3) = (aa(1,3))∗ = (a(1,3))∗a∗ = (a(1,3))∗(aa†a)∗

= (a(1,3))∗a∗aa† = aa(1,3)aa† = aa†.(2.9)

Since abb†a†ab = ab, by Theorem 2.1 (parts (a) and (c)), we have a†abb† = bb†a†a.

From this equality and (2.9), we get

abb(1,3)a(1,3) = a(a†abb†)a(1,3) = abb†a†aa(1,3) = abb†a†aa† = abb†a†.(2.10)

Because b†a† ∈ (ab){3}, then the element abb†a† is self-adjoint and we deduce, from

(2.10), that abb(1,3)a(1,3) is self-adjoint. So, b(1,3)a(1,3) ∈ (ab){3}. Using the equality

(2.10) and the assumption b†a† ∈ (ab){1}, we get

abb(1,3)a(1,3)ab = abb†a†ab = ab,

i.e., b(1,3)a(1,3) ∈ (ab){1}. Hence, the condition (f) holds.

(f) ⇒ (a): Since b† ∈ b{1, 3} and a† ∈ a{1, 3}, by the hypothesis b{1, 3}·a{1, 3} ⊆

(ab){1, 3}, it follows that b†a† ∈ (ab){1, 3}. This implies

ab(ab)† = (ab(ab)†)∗ = (abb†a†ab(ab)†)∗

= (ab(ab)†)∗(abb†a†)∗ = ab(ab)†abb†a†

= abb†a†.

(a) ⇒ (g): The equality ab(ab)† = abb†a† gives abb†a† = (a†)∗bb†a∗ and (c), by

the previous part of the proof. Now

ab(ab)†a = (abb†a†)a = (a†)∗(bb†a∗a) = (a†)∗a∗abb† = abb†.

(g) ⇒ (b): Applying ab(ab)†a = abb†, we have

a∗ab = a∗ab(ab)†ab = (ab(ab)†a)∗ab = (abb†)∗ab = bb†a∗ab.
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(d) ⇒ (h): Suppose that b†a† ∈ (ab){1, 2, 3}. Then

abb†(bb†a†)abb† = (abb†a†ab)b† = abb†,

bb†a†(abb†)bb†a† = b(b†a†abb†a†) = bb†a†,

(abb†bb†a†)∗ = (abb†a†)∗ = abb†a†,

(bb†a†abb†)∗ = bb†a†abb†.

Hence, (abb†)† = bb†a†.

(h) ⇒ (d): The condition (abb†)† = bb†a† implies

abb†a†ab = (abb†bb†a†abb†)b = abb†b = ab,

b†a†abb†a† = b†(bb†a†abb†bb†a†) = b†bb†a† = b†a†,

(abb†a†)∗ = (abb†bb†a†)∗ = abb†bb†a† = abb†a†.

Thus, b†a† ∈ (ab){1, 2, 3}.

(h) ⇒ (i): Obvious.

(i) ⇒ (h): Assume that b†(abb†)† = b†a† holds. Now, we have

abb†bb†a†abb† = ab(b†a†)abb† = abb†(abb†)†abb† = abb†,

bb†a†abb†bb†a† = b(b†a†)ab(b†a†) = bb†(abb†)†abb†(abb†)†

= b(b†(abb†)†) = bb†a†,

(abb†bb†a†)∗ = (ab(b†a†))∗ = (abb†(abb†)†)∗ = abb†(abb†)†

= abb†a† = abb†bb†a†,

(bb†a†abb†)∗ = bb†a†abb†.

So, we deduce that (abb†)† = bb†a† holds.

Theorem 2.3. Let A be a unital C∗-algebra and let a, b, ab ∈ A−. Then the

following conditions are equivalent:
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(a) (ab)†ab = b†a†ab;

(b) abb∗ = abb∗a†a;

(c) bb∗a†a = a†abb∗;

(d) b†a† ∈ (ab){1, 2, 4};

(e) b†a† ∈ (ab){1, 4};

(f) b{1, 4} · a{1, 4} ⊆ (ab){1, 4};

(g) b(ab)†ab = a†ab;

(h) (a†ab)† = b†a†a;

(i) (a†ab)†a† = b†a†.

Proof. Notice that ab ∈ A− ⇔ a†ab ∈ A−.

(a) ⇒ (b): Since (ab)†ab = b†a†ab and (ab)†ab is self-adjoint, it follows that

b†a†ab = (b†a†ab)∗ = b∗a†a(b†)∗.

Then

abb∗ = ab(ab)†abb∗ = ab(b†a†ab)b∗ = abb∗a†a(b†)∗b∗ = abb∗a†abb†.(2.11)

Using the assumption (ab)†ab = b†a†ab, we obtain abb†a†ab = ab(ab)†ab = ab. By

Theorem 2.1 (parts (a) and (c)), this equality gives a†abb† = bb†a†a. So, from (2.11),

we get

abb∗ = abb∗(a†abb†) = abb∗bb†a†a = abb∗a†a.

(b) ⇒ (c): By the condition abb∗ = abb∗a†a, we have

a†abb∗ = a†abb∗a†a = a†ab(a†ab)∗.(2.12)

The right hand side of (2.12) is self-adjoint, which gives

a†abb∗ = (a†abb∗)∗ = bb∗a†a.

(c) ⇒ (d): The hypothesis bb∗a†a = a†abb∗ gives

b†a†ab = b†a†abb†b = b†(a†abb∗)(b†)∗ = b†bb∗a†a(b†)∗ = b∗a†a(b†)∗.(2.13)

Now

(b†a†ab)∗ = (b∗a†a(b†)∗)∗ = b†a†ab.(2.14)

From the equalities (2.13) and (c), we obtain

ab(b†a†ab) = a(bb∗a†a)(b†)∗ = aa†abb∗(b†)∗ = ab(2.15)
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and

b†a†abb†a† = b†bb†a†a(b†)∗b∗a† = b†(b†)∗(b∗a†a(b†)∗)b∗a†

= b†(b†)∗b†(a†abb∗)a† = b†(b†)∗b†bb∗a†aa†

= b†(b†)∗b∗a† = b†a†.(2.16)

Hence, by (2.14), (2.15) and (2.16), it follows that b†a† ∈ (ab){1, 2, 4}.

(d) ⇒ (e): Obvious.

(e) ⇒ (f): Assume that a(1,4) ∈ a{1, 4} and b(1,4) ∈ b{1, 4}. Observe that

a(1,4)a = (a(1,4)a)∗ = a∗(a(1,4))∗ = (aa†a)∗(a(1,4))∗

= a†aa∗(a(1,4))∗ = a†aa(1,4)a = a†a.(2.17)

It is well known that the hypothesis b†a† ∈ (ab){1} implies a†abb† = bb†a†a. By this

and (2.17), we obtain

b(1,4)a(1,4)ab = b(1,4)(a†abb†)b = b(1,4)bb†a†ab = b†bb†a†ab = b†a†ab.(2.18)

Now the condition b†a† ∈ (ab){4} implies that b(1,4)a(1,4) ∈ (ab){4}. From the equality

(2.18) and the assumption b†a† ∈ (ab){1}, we get

abb(1,4)a(1,4)ab = abb†a†ab = ab.

Thus, b(1,4)a(1,4) ∈ (ab){1} and the condition (f) is satisfied.

(f) ⇒ (a): Because b† ∈ b{1, 4} and a† ∈ a{1, 4}, from the assumption b{1, 4} ·

a{1, 4} ⊆ (ab){1, 4}, we get b†a† ∈ (ab){1, 4}. Then

(ab)†ab = ((ab)†ab)∗ = ((ab)†abb†a†ab)∗

= (b†a†ab)∗((ab)†ab)∗ = b†a†ab(ab)†ab

= b†a†ab.

(a) ⇒ (g): The equality (ab)†ab = b†a†ab implies b†a†ab = b∗a†a(b†)∗ and (c), by

the previous part of the proof. Then

b(ab)†ab = b(b†a†ab) = (bb∗a†a)(b†)∗ = a†abb∗(b†)∗ = a†ab.

(g) ⇒ (b): From b(ab)†ab = a†ab, we obtian

abb∗ = ab(ab)†abb∗ = ab(b(ab)†ab)∗ = ab(a†ab)∗ = abb∗a†a.

(d) ⇒ (h): Assume that b†a† ∈ (ab){1, 2, 4}. Now

a†abb†a†aa†ab = a†(abb†a†ab) = a†ab,
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b†a†aa†abb†a†a = (b†a†abb†a†)a = b†a†a,

(a†abb†a†a)∗ = a†abb†a†a,

(b†a†aa†ab)∗ = (b†a†ab)∗ = b†a†ab = b†a†aa†ab.

Thus, by definition, (a†ab)† = b†a†a.

(h) ⇒ (d): If (a†ab)† = b†a†a, then

abb†a†ab = a(a†abb†a†aa†ab) = aa†ab = ab,

b†a†abb†a† = (b†a†aa†abb†a†a)a† = b†a†aa† = b†a†,

(b†a†ab)∗ = (b†a†aa†ab)∗ = b†a†aa†ab = b†a†ab.

Therefore, b†a† ∈ (ab){1, 2, 4}.

(h) ⇒ (i): Obvious.

(i) ⇒ (h): Applying the equality (a†ab)†a† = b†a†, we have

a†abb†a†aa†ab = a†ab(b†a†)ab = a†ab(a†ab)†a†ab = a†ab,

b†a†aa†abb†a†a = (b†a†)ab(b†a†)a = (a†ab)†a†ab(a†ab)†a†a

= ((a†ab)†a†)a = b†a†a,

(a†abb†a†a)∗ = a†abb†a†a,

(b†a†aa†ab)∗ = ((b†a†)ab)∗ = ((a†ab)†a†ab)∗ = ((a†ab)†a†)ab

= b†a†ab = b†a†aa†ab.

Hence, (a†ab)† = b†a†a.

The combination of Theorem 2.2 and Theorem 2.3 yields a group of equivalent

conditions for (ab)† = b†a† to hold. Notice that the equivalences (c) and (d) of the

following theorem appear in [9, Lemma 5].

Theorem 2.4. Let A be a unital C∗-algebra and let a, b, ab ∈ A−. Then the

following conditions are equivalent:

(a) (ab)† = b†a†;
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(b) ab(ab)† = abb†a† and (ab)†ab = b†a†ab;

(c) a∗ab = bb†a∗ab and abb∗ = abb∗a†a;

(d) a∗abb† = bb†a∗a and bb∗a†a = a†abb∗;

(e) b†a† ∈ (ab){1, 3, 4};

(f) b{1, 3} · a{1, 3} ⊆ (ab){1, 3} and b{1, 4} · a{1, 4} ⊆ (ab){1, 4};

(g) ab(ab)†a = abb† and b(ab)†ab = a†ab;

(h) (abb†)† = bb†a† and (a†ab)† = b†a†a;

(i) b†(abb†)† = b†a† and (a†ab)†a† = b†a†.

Remark 2.5. The preceding theorems hold in rings with involution assuming

that (1 − a†a)b is left *-cancellable. This hypothesis is automatically satisfied in

C∗ and *-reducing rings. Hence, we recover the results in [4, 5] for Hilbert space

operators. The results of Tian [16] are obtained as a special case of our results.

In the following theorem, we prove another group of equivalent conditions for

(ab)† = b†a† to be satisfied.

Theorem 2.6. Let A be a unital C∗-algebra and let a, b, ab ∈ A−. Then (ab)† =

b†a† if and only if (ab)† = b†(a†abb†)†a† and any one of the following equivalent

conditions holds:

(a) abb†a†ab = ab;

(b) b†a†abb†a† = b†a†;

(c) a†abb† = bb†a†a;

(d) a†abb† is an idempotent;

(e) bb†a†a is an idempotent;

(f) b†(a†abb†)†a† = b†a†;

(g) (a†abb†)† = bb†a†a.

Proof. =⇒: From the equality (ab)† = b†a†, we get abb†a†ab = ab. Thus, by

Theorem 2.1, the conditions (a)-(g) are satisfied and (ab)† = b†a† = b†(a†abb†)†a†.

⇐=: Conversely, the conditions (a)-(g) imply b†a† = b†(a†abb†)†a†. Now the

hypothesis (ab)† = b†(a†abb†)†a† gives (ab)† = b†a†.

The condition (ab)† = b†(a†abb†)†a† in Theorem 2.6 can be replaced by some

equivalent conditions, as it can be seen in the following theorem.

Theorem 2.7. Let A be a unital C∗-algebra and let a, b, ab ∈ A−. Then the

following statements are equivalent:

(a) (ab)† = b†(a†abb†)†a†;

(b) (a†abb†)† = b(ab)†a;

(c) (ab)† = (a†ab)†a† = b†(abb†)†;

(d) (a†ab)† = (ab)†a and (abb†)† = b(ab)†;
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(e) (a†ab)† = b†(a†abb†)† and (abb†)† = (a†abb†)†a†;

(f) (ab)† = b∗(a∗abb∗)†a∗;

(g) (a∗abb∗)† = (b∗)†(ab)†(a∗)†.

Proof. We can easily see that ab ∈ A− ⇔ a∗abb∗ ∈ A−.

(a) ⇒ (e): By the hypothesis (ab)† = b†(a†abb†)†a†, we have

a†abb†(a†abb†)†a†ab = a†ab(ab)†ab = a†ab,

b†(a†abb†)†a†abb†(a†abb†)† = b†(a†abb†)†,

(a†abb†(a†abb†)†)∗ = a†abb†(a†abb†)†,

(b†(a†abb†)†a†ab)∗ = ((ab)†ab)∗ = (ab)†ab = b†(a†abb†)†a†ab.

So, (a†ab)† = b†(a†abb†)†.

Similarly

abb†(a†abb†)†a†abb† = ab(ab)†abb† = abb†,

(a†abb†)†a†abb†(a†abb†)†a† = (a†abb†)†a†,

(abb†(a†abb†)†a†)∗ = (ab(ab)†)∗ = ab(ab)† = abb†(a†abb†)†a†,

((a†abb†)†a†abb†)∗ = (a†abb†)†a†abb†.

Thus, (abb†)† = (a†abb†)†a†.

(e) ⇒ (a): The conditions (a†ab)† = b†(a†abb†)† and (abb†)† = (a†abb†)†a† imply

abb†(a†abb†)†a†ab = aa†abb†(a†abb†)†a†abb†b = aa†abb†b = ab,

b†(a†abb†)†a†abb†(a†abb†)†a† = b†(a†abb†)†a†,

(abb†(a†abb†)†a†)∗ = abb†(a†abb†)†a†,

(b†(a†abb†)†a†ab)∗ = b†(a†abb†)†a†ab,

i.e., (ab)† = b†(a†abb†)†a†.
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(b) ⇒ (a): From the equality (a†abb†)† = b(ab)†a, we get

abb†(a†abb†)†a†ab = abb†b(ab)†aa†ab = ab(ab)†ab = ab,

b†(a†abb†)†a†abb†(a†abb†)†a† = b†b(ab)†aa†abb†b(ab)†aa†

= b†b(ab)†ab(ab)†aa†

= b†b(ab)†aa†

= b†(a†abb†)†a†,

(abb†(a†abb†)†a†)∗ = (abb†b(ab)†aa†)∗ = (ab(ab)†aa†)∗

= aa†ab(ab)† = ab(ab)† = (ab(ab)†)∗

= (aa†ab(ab)†)∗ = ab(ab)†aa†

= abb†b(ab)†aa† = abb†(a†abb†)†a†,

(b†(a†abb†)†a†ab)∗ = (b†b(ab)†aa†ab)∗ = (b†b(ab)†ab)∗

= (ab)†abb†b = (ab)†ab = ((ab)†ab)∗

= ((ab)†abb†b)∗ = b†b(ab)†ab

= b†b(ab)†aa†ab = b†(a†abb†)†a†ab.

Therefore, (ab)† = b†(a†abb†)†a†.

(a) ⇒ (c): Assume that (ab)† = b†(a†abb†)†a† holds. Then the condition (e) holds

and (ab)† = (a†ab)†a† = b†(abb†)†.

(c) ⇒ (d): The hypothesis (ab)† = (a†ab)†a† implies

a†ab(ab)†aa†ab = a†ab(ab)†ab = a†ab,

(ab)†aa†ab(ab)†a = (ab)†ab(ab)†a = (ab)†a,

(a†ab(ab)†a)∗ = (a†ab(a†ab)†a†a)∗ = a†aa†ab(a†ab)†

= a†ab(a†ab)† = (a†ab(a†ab)†)∗

= (a†aa†ab(a†ab)†)∗ = a†ab(a†ab)†a†a

= a†ab(ab)†a,

((ab)†aa†ab)∗ = ((ab)†ab)∗ = (ab)†ab = (ab)†aa†ab.

Thus, (a†ab)† = (ab)†a. By an analogy, from (ab)† = b†(abb†)†, we obtain

abb†b(ab)†abb† = ab(ab)†abb† = abb†,
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b(ab)†abb†b(ab)† = b(ab)†ab(ab)† = b(ab)†,

(abb†b(ab)†)∗ = (ab(ab)†)∗ = ab(ab)† = abb†b(ab)†,

(b(ab)†abb†)∗ = (bb†(abb†)†abb†)∗ = (abb†)†abb†bb†

= (abb†)†abb† = ((abb†)†abb†)∗

= ((abb†)†abb†bb†)∗ = bb†(abb†)†abb†

= b(ab)†abb†.

So, we deduce that (abb†)† = b(ab)†.

(d) ⇒ (g): Suppose that (a†ab)† = (ab)†a and (abb†)† = b(ab)†. Now,

a∗abb∗(b∗)†(ab)†(a∗)†a∗abb∗ = a∗abb†b(ab)†aa†abb∗

= a∗ab(ab)†abb∗

= a∗abb∗,

(b∗)†(ab)†(a∗)†a∗abb∗(b∗)†(ab)†(a∗)† = (b∗)†(ab)†aa†abb†b(ab)†(a∗)†

= (b∗)†(ab)†ab(ab)†(a∗)†

= (b∗)†(ab)†(a∗)†,

(a∗abb∗(b∗)†(ab)†(a∗)†)∗ = (a∗abb†b(ab)†(a∗)†)∗ = (a∗ab(ab)†(a∗)†)∗

= a†ab(ab)†a = (a†ab(ab)†a)∗

= a∗ab(ab)†(a∗)† = a∗abb†b(ab)†(a∗)†

= a∗abb∗(b∗)†(ab)†(a∗)†,

((b∗)†(ab)†(a∗)†a∗abb∗)∗ = ((b∗)†(ab)†aa†abb∗)∗ = ((b∗)†(ab)†abb∗)∗

= b(ab)†abb† = (b(ab)†abb†)∗

= (b∗)†(ab)†abb∗ = (b∗)†(ab)†aa†abb∗

= (b∗)†(ab)†(a∗)†a∗abb∗

Therefore, (a∗abb∗)† = (b∗)†(ab)†(a∗)†.

(g) ⇒ (f): From the condition (a∗abb∗)† = (b∗)†(ab)†(a∗)†, we get

b∗(a∗abb∗)†a∗ = b∗(b∗)†(ab)†(a∗)†a∗ = b†b(ab)†aa†. Then, in the same way as in

the proof of (b) ⇒ (a), we conclude (ab)† = b∗(a∗abb∗)†a∗.

(f) ⇒ (b): If (ab)† = b∗(a∗abb∗)†a∗, then

a†abb†b(ab)†aa†abb† = a†ab(ab)†abb† = a†abb†,
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b(ab)†aa†abb†b(ab)†a = b(ab)†ab(ab)†a = b(ab)†a,

(a†abb†b(ab)†a)∗ = (a†ab(ab)†a)∗ = a∗ab(ab)†(a†)∗

= a∗abb∗(a∗abb∗)†a∗(a†)∗ = (a†aa∗abb∗(a∗abb∗)†)∗

= (a∗abb∗(a∗abb∗)†)∗ = a∗abb∗(a∗abb∗)†

= a†aa∗abb∗(a∗abb∗)† = (a∗abb∗(a∗abb∗)†a∗(a†)∗)∗

= (a∗ab(ab)†(a†)∗)∗ = a†ab(ab)†a

= a†abb†b(ab)†a,

(b(ab)†aa†abb†)∗ = (b(ab)†abb†)∗ = (b†)∗(ab)†abb∗

= (b†)∗b∗(a∗abb∗)†a∗abb∗ = ((a∗abb∗)†a∗abb∗bb†)∗

= ((a∗abb∗)†a∗abb∗)∗ = (a∗abb∗)†a∗abb∗

= (a∗abb∗)†a∗abb∗bb† = ((b†)∗b∗(a∗abb∗)†a∗abb∗)∗

= ((b†)∗(ab)†abb∗)∗ = b(ab)†abb†

= b(ab)†aa†abb†.

Hence, (a†abb†)† = b(ab)†a.

3. Reverse order law for the weighted MP-inverse. We can also consider

reverse order law for the weighted Moore-Penrose inverse. Based on the results in

Section 2, we now can establish various equivalent conditions related to the weighted

MP-inverse of a product of elements in C∗-algebra.

Corollary 3.1. Let A be a unital C∗-algebra and let e, f , h be positive invertible

elements of A. If a, b ∈ A are regular, then the following conditions are equivalent:

(a) abb
†
e,fa

†
f,hab = ab;

(b) b
†
e,fa

†
f,habb

†
e,fa

†
f,h = b

†
e,fa

†
f,h;

(c) a
†
f,habb

†
e,f = bb

†
e,fa

†
f,ha;

(d) a
†
f,habb

†
e,f is an idempotent;

(e) bb
†
e,fa

†
f,ha is an idempotent;

(f) b
†
e,f (a†

f,habb
†
e,f )†f,fa

†
f,h = b

†
e,fa

†
f,h;

(g) (a†
f,habb

†
e,f )†f,f = bb

†
e,fa

†
f,ha.

Proof. (a) ⇔ (b): Suppose that a1 = h1/2af−1/2 and b1 = f1/2be−1/2. Then

a1b1 = h1/2abe−1/2 and a1, b1 are regular if and only if a, b are regular, respectively.

From Theorem 1.4, we have a
†
f,h = f−1/2(h1/2af−1/2)†h1/2 = f−1/2a

†
1h

1/2 and b
†
e,f =

e−1/2(f1/2be−1/2)†f1/2 = e−1/2b
†
1f

1/2.
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It is easy to verify that the condition abb
†
e,fa

†
f,hab = ab holds if and only if

a1b1b
†
1a

†
1a1b1 = a1b1. By Theorem 2.1, this is necessary and sufficient condition for

the equality b
†
1a

†
1a1b1b

†
1a

†
1 = b

†
1a

†
1 which is equivalent to b

†
e,fa

†
f,habb

†
e,fa

†
f,h = b

†
e,fa

†
f,h.

The rest of the proof follows analogously. We only mention that a
†
f,habb

†
e,f is

regular ⇔ f−1/2a
†
1a1b1b

†
1f

1/2 is regular ⇔ a
†
1a1b1b1 is regular and, by Theorem 1.4,

(a†
f,habb

†
e,f )†f,f = (f−1/2a

†
1a1b1b

†
1f

1/2)†f,f = f−1/2(a†
1a1b1b

†
1)

†f1/2.

In order to prove Corollary 3.1 (and other corollaries in this section) in ring with

involution, we need to assume that (1 − a
†
f,ha)b is left *e,f -cancellable where the

function *e,f is not general an involution. Hence, it is not enough to assume that an

element is just cancellable.

Let e, f be positive invertible elements of a unital C∗-algebra A and define x∗e,f =

e−1x∗f .

Corollary 3.2. Let A be a unital C∗-algebra and let e, f , h be positive invertible

elements of A. If a, b, ab ∈ A are regular, then the following conditions are equivalent:

(a) ab(ab)†e,h = abb
†
e,fa

†
f,h;

(b) a∗f,hab = bb
†
e,fa∗f,hab;

(c) a∗f,habb
†
e,f = bb

†
e,fa∗f,ha;

(d) b
†
e,fa

†
f,h ∈ (ab){1, 2, 4h};

(e) b
†
e,fa

†
f,h ∈ (ab){1, 4h};

(f) b{1, 4f} · a{1, 4h} ⊆ (ab){1, 4h};

(g) ab(ab)†e,ha = abb
†
e,f ;

(h) (abb
†
e,f )†f,h = bb

†
e,fa

†
f,h;

(i) b
†
e,f (abb

†
e,f )†f,h = b

†
e,fa

†
f,h.

Proof. (a) ⇔ (b): Let a1 = h1/2af−1/2 and b1 = f1/2be−1/2 as in the previous

corollary. Thus, a1b1 = h1/2abe−1/2 and a1, b1, a1b1 are regular if and only if a, b,

ab are regular, respectively. By Theorem 1.4, we get (ab)†e,h = e−1/2(a1b1)
†h1/2 and

b
†
e,fa

†
f,h = e−1/2b

†
1a

†
1h

1/2.

Now, by Theorem 2.2,

ab(ab)†e,h = abb
†
e,fa

†
f,h ⇔ a1b1(a1b1)

† = a1b1b
†
1a

†
1

⇔ a∗
1a1b1 = b1b

†
1a

∗
1a1b1

⇔ a∗f,hab = bb
†
e,fa∗f,hab.

The rest of the proof follows analogously.

Corollary 3.3. Let A be a unital C∗-algebra and let e, f , h be positive invertible
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elements of A. If a, b, ab ∈ A are regular, then the following conditions are equivalent:

(a) (ab)†e,hab = b
†
e,fa

†
f,hab;

(b) abb∗e,f = abb∗e,fa
†
f,ha;

(c) bb∗e,fa
†
f,ha = a

†
f,habb∗e,f ;

(d) b
†
e,fa

†
f,h ∈ (ab){1, 2, 3e};

(e) b
†
e,fa

†
f,h ∈ (ab){1, 3e};

(f) b{1, 3e} · a{1, 3f} ⊆ (ab){1, 3e};

(g) b(ab)†e,hab = a
†
f,hab;

(h) (a†
f,hab)†e,f = b

†
e,fa

†
f,ha;

(i) (a†
f,hab)†e,fa

†
f,h = b

†
e,fa

†
f,h.

Proof. Let a1 and b1 be the same as in the previous corollary. For conditions (a)–

(g) we can find the equivalent expressions in terms of a1 and b1, and apply Theorem

2.3 to finish the proof.

The combination of Corollary 3.2 and Corollary 3.3 gives a list of equivalent

conditions for (ab)†e,h = b
†
e,fa

†
f,h to hold.

Corollary 3.4. Let A be a unital C∗-algebra and let e, f , h be positive invertible

elements of A. If a, b, ab ∈ A are regular, then the following conditions are equivalent:

(a) (ab)†e,h = b
†
e,fa

†
f,h;

(b) ab(ab)†e,h = abb
†
e,fa

†
f,h and (ab)†e,hab = b

†
e,fa

†
f,hab;

(c) a∗f,hab = bb
†
e,fa∗f,hab and abb∗e,f = abb∗e,fa

†
f,ha;

(d) a∗f,habb
†
e,f = bb

†
e,fa∗f,ha and bb∗e,fa

†
f,ha = a

†
f,habb∗e,f ;

(e) b
†
e,fa

†
f,h ∈ (ab){1, 3e, 4h};

(f) b{1, 3e} · a{1, 3f} ⊆ (ab){1, 3e} and b{1, 4f} · a{1, 4h} ⊆ (ab){1, 4h};

(g) ab(ab)†e,ha = abb
†
e,f and b(ab)†e,hab = a

†
f,hab;

(h) (abb
†
e,f )†f,h = bb

†
e,fa

†
f,h and (a†

f,hab)†e,f = b
†
e,fa

†
f,ha;

(i) b
†
e,f (abb

†
e,f )†f,h = b

†
e,fa

†
f,h and (a†

f,hab)†e,fa
†
f,h = b

†
e,fa

†
f,h.

Corollary 3.5. Let A be a unital C∗-algebra and let e, f , h be positive invertible

elements of A. If a, b, ab ∈ A are regular, then the following statements are equivalent:

(a) (ab)†e,h = b
†
e,f (a†

f,habb
†
e,f )†f,fa

†
f,h;

(b) (a†
f,habb

†
e,f )†f,f = b(ab)†e,ha;

(c) (ab)†e,h = (a†
f,hab)†e,fa

†
f,h = b

†
e,f (abb

†
e,f )†f,h;

(d) (a†
f,hab)†e,f = (ab)†e,ha and (abb

†
e,f )†f,h = b(ab)†e,h;

(e) (a†
f,hab)†e,f = b

†
e,f (a†

f,habb
†
e,f )†f,f and (abb

†
e,f )†f,h = (a†

f,habb
†
e,f )†f,fa

†
f,h;

(f) (ab)†e,h = b∗e,f (a∗f,habb∗e,f )†f,fa∗f,h;
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(g) (a∗f,habb∗e,f )†f,f = (b†)∗f,e(ab)†e,h(a†)∗h,f .

Proof. Let a1 and b1 be the same as in Corollary 3.1. Applying Theorem 2.7 to

the equivalent expressions, in terms of a1 and b1, for conditions (a)–(g) we prove this

corollary.

In the next result, we present again some equivalent conditions for the reverse

order rule for the weighted Moore-Penrose inverse.

Corollary 3.6. Let A be a unital C∗-algebra and let e, f , h be positive invertible

elements of A. If a, b, ab ∈ A are regular, then (ab)†e,h = b
†
e,fa

†
f,h if and only if

(ab)†e,h = b
†
e,f (a†

f,habb
†
e,f )†f,fa

†
f,h and any one of the following equivalent conditions

holds::

(a) abb
†
e,fa

†
f,hab = ab;

(b) b
†
e,fa

†
f,habb

†
e,fa

†
f,h = b

†
e,fa

†
f,h;

(c) a
†
f,habb

†
e,f = bb

†
e,fa

†
f,ha;

(d) a
†
f,habb

†
e,f is an idempotent;

(e) bb
†
e,fa

†
f,ha is an idempotent;

(f) b
†
e,f (a†

f,habb
†
e,f )†f,fa

†
f,h = b

†
e,fa

†
f,h;

(g) (a†
f,habb

†
e,f )†f,f = bb

†
e,fa

†
f,ha.

Proof. This proof follows from Corollary 3.1 in the same way as in the proof of

Theorem 2.6.

Notice that in Corollary 3.6 the condition (ab)†e,h = b
†
e,f (a†

f,habb
†
e,f )†f,fa

†
f,h can be

replaced with some equivalent conditions from Corollary 3.5.

Arghiriade [1] proved that (ab)† = b†a† holds if and only if a∗abb∗ is EP, i.e.,

a∗abb∗ commutes with its Moore-Penrose inverse. The conjecture is: Is there a simi-

larly result involving weighted MP inverse?

4. Conclusions. In this paper, we consider a number of necessary and suffi-

cient conditions related to the reverse order law for the Moore-Penrose inverse in

C∗-algebras. Applying this result we obtain the equivalent conditions for the reverse

order rule for the weighted Moore-Penrose inverse of elements in C∗-algebras. All of

these results are already known for complex matrices and some of them for closed

range linear bounded operators on Hilbert spaces. However, we used the different

technique in proving the results. In the theory of complex matrices various authors

used the matrix rank to prove the equivalent conditions related to the reverse order

law. In the case of linear bounded operators on Hilbert spaces, it seems that the

method of operator matrices is very useful. In this paper, we applied a purely al-

gebraic technique. It could be interesting to extend this work to the Moore-Penrose
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inverse and the weighted Moore-Penrose inverse of a triple product.
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[12] D. Mosić and D.S. Djordjević. Moore-Penrose-invertible normal and Hermitian elements in

rings. Linear Algebra Appl., 431(5-7):732–745, 2009.

[13] R. Penrose. A generalized inverse for matrices. Proc. Cambridge Philos. Soc., 51:406–413, 1955.

[14] W. Sun and Y. Wei. Inverse order rule for weighted generalized inverse. SIAM J. Matrix Anal.

Appl., 19:772–775, 1998.

[15] Y. Tian. On mixed-type reverse-order laws for Moore-Penrose inverse of a matrix product. Int.

J. Math. Math. Sci., 58:3103–3116, 2004.

[16] Y. Tian. Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix

product. Appl. Math. Comput., 147:581–600, 2004.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 92-111, February 2011


