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Abstract. Linear dependence of two Hilbert space operators is expressed in terms of equality

in modulus of certain sesquilinear and quadratic forms associated with the operators. The forms are

based on generalized numerical ranges.
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1. Introduction and main result. Let H be a complex Hilbert space with the

inner product 〈·, ·〉, and let L(H) be the algebra of linear bounded operators on H.

It will be assumed without further notice that dimH ≥ 2. Denote by Tr X the trace

of a trace-class operator X ∈ L(H). We let R and C stand for the real and complex

field, respectively.

Given an operator T ∈ L(H), to what extent is it determined by its numerical

range W (T ) = {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}? In some rare situations, the numerical

range alone can be used to classify a special type of operator. For instance, the

W (T ) = {µ} if and only if T = µI; W (T ) ⊆ R if and only if T = T ∗; W (T ) ⊆ [0,∞)

if and only if T is positive semidefinite. On the other hand, it is a standard result that

an operator on a complex Hilbert space is completely determined with the quadratic

form that defines its numerical range. Based on applications in preserver problems

and elsewhere, we asked in [5] to what extent an operator is determined if only partial

information is known about the quadratic form. More precisely, we showed that, given

a number q ∈ [0, 1], the operators A and B satisfy |〈Ax, y〉| = |〈Bx, y〉| for every pair
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of normalized vectors x, y ∈ H with 〈x, y〉 = q only if A = µB + νI or A = µB∗ + νI

for some scalars µ, ν with |µ| = 1. In effect, this covers the modulus of quadratic

form of classical numerical range (with q = 1) as well as of its generalization, the

q-numerical range, defined by Wq(T ) := {〈Tx, y〉 : ‖x‖ = 1 = ‖y‖, 〈x, y〉 = q}.

There are many more generalizations of classical numerical range which are ex-

tensively studied (see [7] for a survey). Two examples are the k-numerical range

Wk(T ) := {
∑k

i=1〈Txi, xi〉 : 〈xi, xj〉 = δij} and the c-numerical range for a summable

sequence c =
(
ci

)
i∈N

given by Wc := {
∑

i ci〈Txi, xi〉 : 〈xi, xj〉 = δij}. The common

extension of all these three types of numerical ranges is the C-numerical range, de-

fined for a trace-class operator C by WC(T ) = {Tr(CUTU∗) : UU∗ = I = U∗U}.

For example, the q-numerical range equals the C-numerical range given by a rank-one

operator C = q〈·, y〉y +
√

1 − q2〈·, z〉y for a fixed orthonormal pair (y, z). In light of

this, our result [5] is about C-numerical ranges for rank-one operators C. Presently,

we study the same kind of problem for general normal trace-class or finite rank C;

see Theorem 1.5 below.

The following conjecture was formulated in [5]. It will be convenient to use the

marker ∆X = 1 if TrX = 0; ∆X = 0 if TrX 6= 0; here X is a trace-class operator.

Conjecture 1.1.1 Suppose C ∈ L(H) is a non-scalar trace-class operator. Then

two operators A,B ∈ L(H) have the property

|Tr(CU∗AU)| = |Tr(CU∗BU)|, ∀ unitary U ∈ L(H) (1.1)

if and only if one of the following conditions holds:

(1) C and C∗ are linearly dependent, and either A = µB + ν∆CI or A = µB∗ +

ν∆CI for some µ, ν ∈ C, |µ| = 1;

(2) C and C∗ are linearly independent, and A = µB + ν∆CI for some µ, ν ∈ C,

|µ| = 1.

Note that we have dimH ≥ 2 in Conjecture 1.1 because of the hypothesis that C

is non-scalar. The example below shows that this hypothesis is vital.

Example 1.2. If dimH < ∞ and C = zI, z ∈ C \ {0}, then (1.1) is equivalent

to |Tr A| = |Tr B|. There is not much to say in this situation.

The “if” part of Conjecture 1.1 is clear. Indeed, assume for example that (1)

holds with A = µB∗ + ν∆CI, µ, ν ∈ C, |µ| = 1. Then necessarily C = αC∗ for some

1We use this opportunity to correct an inaccuracy in the formulation of [5, Conjecture 6.6];

C = C∗ (resp., C 6= C∗) was used there in place of “C and C∗ are linearly dependent” (resp., “C

and C∗ are linearly independent”).
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|α| = 1 and moreover ν∆C 6= 0 only if TrC = 0. Therefore,

Tr(CU∗AU)=µTr(CU∗B∗U)=µα Tr(C∗U∗B∗U)

=µαTr(U∗BUC)=µαTr(CU∗BU)

for every unitary U ∈ L(H), so (1.1) holds.

Conjecture 1.1 was proven in [5] for the case when C has rank one. However,

the conjecture generally fails if C has rank larger than one, as the following examples

show.

Example 1.3. Assume dimH < ∞, and let the operators A,B,C have the

following properties:

(a) C,C∗, I are linearly dependent;

(b) C,C∗ are linearly independent;

(c) B,B∗, I are linearly independent, and Tr(B) = 0;

(d) A = µB∗ + ν∆CI for some µ, ν ∈ C, |µ| = 1.

If Conjecture 1.1 would hold, then we necessarily have C = αC∗ + βI, |α| = 1, β ∈ C

(the hypothesis that C is non-scalar is used here). Since ∆C · (Tr C) = 0, we now

obtain

Tr(CU∗AU) = Tr(CU∗(µB∗ + ν∆CI)U) = µTr(CU∗B∗U)

= µα Tr(C∗U∗B∗U) = µαTr(CU∗BU).

Thus, (1.1) holds, but clearly neither (1) nor (2) holds. The property (c) is used to

preclude the possibility that A = µ′B + ν′∆CI for some µ′, ν′ ∈ C, |µ′| = 1.

Note that if C is non-scalar of rank-one, then it is easy to see that C,C∗, I are

linearly dependent only if C,C∗ are, and the situation of Example 1.3 cannot occur

in this case.

Example 1.4. Let dimH = 2 (we identify H with C
2), and

A =

[
−1 − i 0

1 −i

]
, B =

[
1 i

0 1 + i

]
, C =

[
1 0

0 i

]
.

A computation shows that for every unitary U , we have

Tr(CU∗AU) = Tr(CU∗BU), (1.2)

and so (1.1) holds. Indeed, to prove (1.2) we use the fact that every unitary U ∈ C
2×2

has the form

U =

[
cos t eiξ sin t

−e−iξ sin t cos t

]
·

[
p 0

0 q

]
, for some ξ, t ∈ [0, 2π), p, q ∈ C, |p| = |q| = 1.
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Then Tr(CU∗AU) is computed to be equal to

sin2 t − (sin ξ + cos ξ) sin t cos t − i(1 + sin2 t + (sin ξ − cos ξ) sin t cos t),

and similarly,

Tr(CU∗BU) = sin2 t− (sin ξ + cos ξ) sin t cos t + i(1 + sin2 t + (sin ξ − cos ξ) sin t cos t).

Note that C,C∗, I are linearly dependent, C,C∗ are linearly independent, B,B∗, I

are linearly independent, and A = iB∗ + (−1 − 2i)I. Note also that A is not of the

form A = µB + ν∆CI or A = µB∗ + ν∆CI for any µ, ν ∈ C.

We mention in passing that a related problem to characterize pairs of operators

A,B ∈ L(H) for which

Tr(CU∗AU) = Tr(CU∗BU) ∀ unitary U ∈ L(H) (1.3)

holds, has been resolved in [5]. Namely, assuming C is non-scalar trace-class, (1.3)

holds if and only if either (1) TrC 6= 0 and A = B, or (2) TrC = 0 and A − B is

scalar.

In view of these examples, it is of interest to find out whether or not (1.1) implies

that either A = µB + νI or A = µB∗ + νI for some µ, ν ∈ C, |µ| = 1. We prove that

this is indeed the case for finite rank operators and for normal trace-class operators.

An operator X ∈ L(H) is said to be essentially selfadjoint if there is ν ∈ C such

that X−νI is a scalar multiple of a selfadjoint operator. Elementary calculations show

that X is essentially selfadjoint if and only if either one of the following equivalent

statements holds:

(a) X,X∗, I are linearly dependent;

(b) X = µX∗ + νI for some µ, ν ∈ C, with |µ| = 1 and Re (νµ−1/2) = 0;

(c) X is normal with spectrum on a straight line.

Theorem 1.5. (1) Assume C is a non-scalar trace-class operator which is finite

rank or normal. If (1.1) holds for A,B ∈ L(H), then either A = µB + νI or A =

µB∗ + νI for some µ, ν ∈ C, |µ| = 1.

(2) If in addition C is normal, and B, A, and C are not essentially selfadjoint,

then

A = µB + ν∆CI or A = µB∗ + ν∆CI for some µ, ν ∈ C, |µ| = 1. (1.4)

It is easy to see (in view of the first part of Theorem 1.5) that under the hypothe-

ses of the theorem, A and B either are both essentially selfadjoint or both are not

essentially selfadjoint.
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Note that

Tr(V ∗CV · U∗AU) = Tr(C · (UV ∗)∗A(UV ∗))

for all unitary V ∈ L(H). Thus, we may replace C by any operator which is unitarily

similar to C in Conjecture 1.1 and Theorem 1.5. We will use this observation in the

proof of Theorem 1.5.

The following notation will be used throughout: C
m×n stands for the vector

space of m × n complex matrices, with C
m×1 simplified to C

m; diag (X1, . . . ,Xp) =

X1 ⊕X2 ⊕ · · · ⊕Xp is the block diagonal matrix with the diagonal blocks X1, . . . ,Xp

(in this order). We denote by Eij the matrix (or operator with respect to a fixed

orthonormal basis) having 1 in the (i, j)th position and zeros elsewhere; ej stands

for the unit coordinate vector with 1 in the jth position and zeros elsewhere. Thus,

Eij = eie
∗
j .

Upon completion of our paper, we learned that Professor Fangyan Lu has studied

Conjecture 1.1 independently with a different approach [9].

We conclude the introduction with a short overview of the next sections. Sections

2, 3, and 4 are preparatory for the proof of Theorem 1.5. There, we recall basic prop-

erties of real-analytic functions, study properties of linear dependence of operators on

the whole space vs these properties on subspaces of fixed dimension (these results are

of independent interest), and provide some information on C-numerical ranges. In

Sections 5 and 6, we prove Theorem 1.1 for the cases when C is normal and when C

is finite rank, respectively. In latter case, the proof is reduced to a finite-dimensional

H, and then proceeds by induction on the dimension of H. Finally, in the last short

section, we indicate an extension of Theorem 1.5 to a larger class of operators C.

2. Preliminaries on real-analytic functions. Here, we collect several well-

known facts on real-analytic functions to be used in the sequel.

Let W ⊆ R
k be open subset. A function f = f(x1, . . . , xk) : W → C is said to be

real-analytic if for each point of W , there is a polydisc contained in W with positive

radii such that f equals its Taylor series on this polydisc. Clearly, f is real-analytic

if and only if the real and imaginary parts of f are real-analytic.

Proposition 2.1.

(a) If f = f(x1, . . . , xk) : W → C is real-analytic, then so are f and |f |2 = ff .

(b) The zero set of any real-analytic function with the connected domain of defi-

nition W is either equal to W or its complement is dense in W .

(c) A product of two nonzero real-analytic functions is itself nonzero real-analytic.

For part (b), see e.g., [11, I §3 Lemma 3.2]; (c) obviously follows from (b).
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A subset M ⊆ C
n is a real-analytic manifold if it has an open cover with charts

(fα(Wα), fα), with Wα ⊆ R
k open and fα : Wα → f(Wα) a homeomorphism onto a

relatively open subset f(Wα) ⊆ M such that (fβ)−1 ◦fα : Wα∩f−1
α (fβ(Wβ)) → R

k is

real-analytic. If M is a real-analytic manifold, then a map F : M → C is real-analytic

if F ◦ fα : Wα → C is real-analytic for every index α [10, pp. 54].

It is well-known (see e.g., [12]) that the group Un of unitaries in C
n×n is a compact

real-analytic manifold. Moreover, it is pathwise connected with real-analytic paths

(which take the form t 7→ ei(tH1+(1−t)H2) for appropriate hermitian H1,H2).

Proposition 2.2. Given two fixed vectors a,b, the map U 7→ a∗Ub, U ∈ Un,

is real-analytic. Also, given two matrices C and A, the function U 7→ Tr(CUAU∗),

U ∈ Un, is real-analytic.

It easily follows from Proposition 2.1 that if F : M → C is a nonzero real-

analytic map on a compact, real-analytic, pathwise connected manifold M , then the

set of points where F does not vanish is dense in M .

3. Local vs global linear dependence of operators. In this section, we

prove results concerning local (i.e., restricted to proper subspaces) vs global linear

dependence of operators that will be used in the proof of Theorem 1.5, and are

of independent interest. We will consider the following properties of two operators

A,B ∈ L(H) frequently in our subsequent discussion.

(P1) There exist a unimodular number µ and some complex number ν such that

B = µA + νI or B = µA∗ + νI.

(P2) There exist a unimodular number µ and some complex number ν such that

B = µA + νI.

Theorem 3.1. Fix a positive integer k > 1. Suppose dimH ≥ 2 and let A,B ∈

L(H).

(1) Assume that for every rank-k orthogonal projection P , the compressions A′ =

PAP |Im P and B′ = PBP |Im P of A and B onto Im P have property (P1). Then A

and B have property (P1).

(2) Assume that for every rank-k orthogonal projection P , the compressions A′ =

PAP |Im P and B′ = PBP |Im P of A and B onto Im P have property (P2). Then A

and B have property (P2).

We indicate an immediate corollary of Theorem 3.1.

Corollary 3.2. Fix cardinalities ℵ′, ℵ′′ such that ℵ′ + ℵ′′ coincides with the

dimension (= cardinality of an orthonormal basis) of H and ℵ′′ ≥ 2.
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(1) Assume that for every orthogonal projection P ∈ L(H) with the image of

dimension ℵ′′ and the kernel of dimension ℵ′, the compressions A′ = PAP |Im P and

B′ = PBP |Im P of A and B onto Im P have property (P1). Then A and B have

property (P1).

(2) Assume that for every orthogonal projection P ∈ L(H) with the image of

dimension ℵ′′ and the kernel of dimension ℵ′, the compressions A′ = PAP |Im P and

B′ = PBP |Im P of A and B onto Im P have property (P2). Then A and B have

property (P2).

Proof. Indeed, the hypotheses of part (1) of Corollary 3.2 imply that for every

rank-two orthogonal projection Q the compressions of A and B to the range of Q

have property (P1). Now apply Theorem 3.1. The proof of part (2) is analogous.

For the proof of Theorem 3.1, we need a lemma (presented in greater generality

than is needed in this paper.) Denote by Grk (Cn) (Grassmannian) the set of all

k-dimensional subspaces of C
n with the standard topology.

Lemma 3.3. Let A1, . . . , Aq ∈ C
n×n. Fix an integer k, 1 ≤ k ≤ n. Then

either PA1P, . . . , PAqP are linearly dependent (over C) for every rank k orthogonal

projection P , or the set of k-dimensional subspaces M ⊆ C
n such that PMA1PM, . . . ,

PMAqPM are linearly independent, where PM ∈ C
n×n stands for the orthogonal

projection onto M, is dense in Grk (Cn).

Proof. We assume k2 ≥ q (if q > k2, then PMA1PM, . . . , PMAqPM are always

linearly dependent).

We consider Grk (Cn) as a manifold with the standard charts {Ci1,...,ik
}, where

Ci1,...,ik
:=





Column space of




x1

x2

...

xn


 , xj ∈ C

1×k, j = 1, 2, . . . , n,




xi1

xi2
...

xik


 = Ik





.

Here, {i1, . . . , ik} is a selection of indices i1, . . . , ik ∈ {1, 2, . . . , n} such that i1 < i2 <

· · · < ik. Then Grk (Cn) is a real-analytic manifold whose charts are parametrized by

2k(n − k) real variables t1, . . . , t2k(n−k) that represent the real and imaginary parts

of the xj ’s for j 6∈ {i1, . . . , ik}.
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Fix a chart Ci1,...,ik
. Applying the Gram-Schmidt orthogonalization to the co-

lumns of




x1

x2

...

xn


 ,

we obtain an orthonormal basis in the subspace M spanned by these orthonormal

columns, which we temporarily denote by c1, . . . , ck. Then, PM = c1c
∗
1 + · · · + ckc∗k.

Note that the orthonormal basis c1, . . . , ck is a real-analytic function of t1, . . . , t2k(n−k)

(as readily follows from the formulas for the Gram-Schmidt orthogonalization), and

same then holds for the projections PM. So, we have

PMA1PM = B1, . . . , PMAqPM = Bq,

where B1, . . . , Bq are n × n matrices whose entries are analytic functions of real

variables t1, . . . , t2k(n−k) (as well as functions of the entries of A1, . . . , Aq which are

assumed to be fixed). We write the entries of each Bj as a n2-component column

vector (in some fixed order of the entries), and collect these column vectors in a

n2 × q matrix Z. Clearly, PMA1PM, . . . , PMAqPM are linearly dependent if and

only if

Re (det Q1) = 0, Im (det Q1) = 0, . . . , Re (det Qs) = 0, Re (det Qs) = 0, (3.1)

where Q1, . . . , Qs are all q × q submatrices of Z. The equations (3.1) are of the form

f1(t1, . . . , t2k(n−k)) = 0, . . . , f2s(t1, . . . , t2k(n−k)) = 0, (3.2)

where f1, . . . , f2s are real valued real-analytic functions of t1, . . . , t2k(n−k). Note that

the solutions of equations (3.2) are exactly the zeros of F = |f1|
2 + · · ·+ |f2s|

2, which

is an analytic function of real variables (t1, . . . , t2k(n−k)). By Proposition 2.1, either

the solution set of (3.2) comprises all of R
2k(n−k), or the complement of the solution

set is dense in R
2k(n−k). In the former case, using the property that intersection of

any two charts is open and non-empty in either one of the two charts, we obtain that

PA1P, . . . , PAqP are linearly dependent for every rank k orthogonal projection P

(see [11, I §1, Remark 1.20]), and in the latter case analogously we obtain that the

set of subspaces M for which PMA1PM, . . . , PMAqPM are linearly independent, is

dense in Grk (Cn).

For convenience, we state also the following easily verified fact.

Lemma 3.4. The following statements are equivalent for A ∈ L(H):

(1) A is scalar;
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(2) Every nonzero x ∈ H is an eigenvector of H;

(3) The compression of A to any 2-dimensional subspace is scalar.

Proof. Obviously, (1) implies (2) and (3). Assume (2) holds. Choose linearly

independent x, y in H, and let Ax = λxx, Ay = λyy (λx, λy ∈ C). Since x + y is

also an eigenvector of A, we easily obtain λx = λy. Thus, all eigenvalues of A are the

same, and (1) holds. If (3) holds, then (2) holds as well, otherwise for some nonzero

x, the compression of A to the 2-dimensional subspace spanned by x and Ax would

not be scalar.

Proof of Theorem 3.1. Evidently, we need only to prove the case k = 2. It will

be assumed therefore for the rest of the proof that k = 2. We also assume dimH > k

(if dimH = k, the result is trivial).

We dispose first of the easy case when A (or B) is scalar. If A is scalar, then by

Lemma 3.4 (the equivalence of (1) and (3)) it follows that B is scalar as well. Thus,

we assume that neither A nor B are scalar.

Proof of Statement (2). Let x, y be an orthonormal pair in H, and let M =

Span {x, y}. Then 〈Ay, x〉 (resp., 〈By, x〉) is the (1, 2) entry in the matrix representa-

tion of PMAPM|ImPM
(resp., PMBPM|ImPM

) with respect to the basis {x, y}. Since

PMAPM|ImPM
and PMBPM|ImPM

satisfy the property (P2), we have

|〈Ay, x〉| = |〈By, x〉|.

Since the orthonormal pair {x, y} is arbitrary, the result follows from [5, Theorem 2.2].

Proof of Statement (1). Assume first that dimH = n < ∞.

We consider several cases.

Case 1. For some rank-2 orthogonal projection P , the compressions of B,A∗, I

to the range of P are linearly independent.

Then by Lemma 3.3, the set

Gr0 := {M ∈ Gr2(H) : compressions of B,A∗, I to M are linearly independent}

is dense in Gr2(H). By the hypotheses of Theorem 3.1, we have

PMBPM|M = µPMAPM|M + qIM, ∀M ∈ Gr0, (3.3)

where the unimodular number µ = µ(M) and q = qM ∈ C depend on M. If

M ∈ Gr2(H) \ Gr0, then select a sequence {Mm}∞m=1 such that Mm ∈ Gr0 and
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limm→∞ Mm = M (equivalently, limm→∞ PMm
= PM), and upon selecting a con-

vergent subsequence of {µ(Mm)}∞m=1, it is easy to see that (3.3) holds also for M.

Thus, A and B have property (P2) in view of Statement (2), and the proof is com-

pleted in Case 1.

Case 2. For some rank-2 orthogonal projection P , the compressions of B,A, I to

the range of P are linearly independent.

Then we argue as in the Case 1, replacing B with B∗.

Case 3. For all rank-2 orthogonal projections P , the compressions of B,A, I to

the range of P are linearly dependent, and the compressions of B,A∗, I to the range

of P are linearly dependent.

Since A and B are not scalar, by Lemma 3.4, there exist M′,M′′ ∈ Gr2 (H) such

that the compressions of A and I to M′, as well as the compressions of B and I to

M′′, are linearly independent. By a slight adaptation of the proof of Lemma 3.3, the

set

Gr1 := {M ∈ Gr2(H) : compressions of A, I to M are linearly independent,

as well as those of B, I}

is dense in Gr2(H). Pick M0 ∈ Gr1, and denote by B′, A′, I ′ the compressions of

B,A, I, respectively, to M0. We then have, in view of the hypotheses of Case 3 and

selection of M0,

B′ = aA′ + bI ′, B′ = cA′∗ + dI ′, a, b, c, d ∈ C,

where a 6= 0, c 6= 0. Then

A′ = (c/a)A′∗ + ((d − b)/a)I ′. (3.4)

Taking adjoints, we have

A′∗ = (c/a)A′ + ((d − b)/a)I ′,

or, solving for A′,

A′ = (a/c)A′∗ − ((d − b)/c)I ′.

Comparing with (3.4), it follows from linear independence of A′ and I ′ that |a| = |c|.

On the other hand, since A′ and B′ satisfy the property (P1), at least one of the

numbers a and c is unimodular, hence both are. Thus, for every M0 ∈ Gr1, the

compressions of A and B to M0 satisfy the property (P2). Now argue as in the

proof of Case 1 to obtain that the compressions of A and B to any 2-dimensional
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subspace of H have property (P2), and application of Statement (2) of Theorem 3.1

completes the proof of Case 3.

This completes the proof of Statement (1) for finite-dimensional H.

Now assume H is infinite-dimensional. By replacing, if necessary, A with A∗

we easily deduce, from the above considerations, that all the compressions of A

and B onto any 2-dimensional subspace of H simultaneously have property (P2).

Indeed, otherwise, there would be rank-two projections P,Q such that the com-

pressed triples (A′, I ′, B′) = (PAP |Im P , P |Im P , PBP |Im P ) and ((A′′)∗, I ′′, B′′) =

(QA∗Q|Im Q, Q|Im Q, QBQ|Im Q) are linearly independent. Consider the compressions

A′′′ and B′′′ to the finite-dimensional subspace H′′′ = Im P +ImQ. Clearly, they still

satisfy the assumption (1) of Theorem 3.1, with k = 2. Hence, by the above ar-

gument, either A′′′ and B′′′ enjoy property (P2) or else (A′′′)∗ = (A∗)′′′ and B′′′

enjoy property (P2). Either case contradicts the erroneous assumption that A′ =

PA′′′P |Im P , I ′, B′ = PB′′′P |Im P and (A′′)∗ = Q(A′′′)∗Q|Im Q, I ′′, B′′ = QB′′′Q|Im Q

are two linearly independent triples. The result now follows from the already proven

Statement (2).

4. C-numerical range. In what follows, we will use the concept of the C-

numerical range of an operator X ∈ L(H) defined as follows:

WC(X) := {Tr(CU∗XU) : U is unitary}.

Lemma 4.1. If C ∈ L(H) is trace-class, then the closure clWC(X) of WC(X) is

star-shaped for every X ∈ L(H); moreover, if TrC = 0, then zero is a star-center of

cl WC(X).

Proof. In the case H is finite-dimensional, the result is proved in [2]. Now assume

H is infinite-dimensional. Let {Cm}∞m=1 be a sequence of finite rank operators such

that limm→∞ Cm = C in the trace norm, denoted ‖ · ‖1, and TrCm = TrC for all

m = 1, 2, . . . By a result of Jones [4], clWCm
(X) is star-shaped with a star-center

at (Tr C)z0, where z0 is any element in the essential numerical range of X. Arguing

by contradiction, assume (TrC)z0 is not a star-center of cl WC(X), and let d > 0 be

the distance from some point y0 := α(Tr C)z0 + (1 − α)y, where y ∈ cl WC(X) and

0 < α < 1, to the closure of WC(X). Using the standard norm inequalities

|Tr(CU∗XU) − Tr(CmU∗XU)| ≤ ‖CmU∗XU − CU∗XU‖1

≤ ‖Cm − C‖1‖U
∗XU‖ = ‖Cm − C‖1‖X‖, ∀ unitary U, (4.1)

we see that there is a sequence {ym}∞m=1 such that ym ∈ cl WCm
(X) and limm→∞ ym

= y. By [4], α(Tr C)z0 + (1 − α)ym ∈ cl WCm
(X), and obviously

lim
m→∞

(α(Tr C)z0 + (1 − α)ym) = y0.
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So, there exists a sequence of unitary operators {Um}∞m=1 such that

lim
m→∞

(Tr(CmU∗
mXUm)) = y0.

Now, using (4.1) again, we have

lim
m→∞

|Tr(CU∗
mXUm) − Tr(CmU∗

mXUm)| = 0,

a contradiction with the choice of y0.

Lemma 4.2. Assume C ∈ L(H) is a trace-class operator. Then:

(a) WC(X) is a nondegenerate line segment, with or without one or both end-

points, if and only if both C and X are essentially selfadjoint non-scalar

operators.

(b) WC(X) is a singleton if and only if C or X is a scalar operator.

Proof. Part (b) follows from [5, Theorem 6.1]. For the case of finite-dimensional

H, part (a) is stated in [7, property (7.3.a)]; a proof (again in finite dimensions) is

found in [6].

Consider now part (a) for the case of infinite-dimensional H. By the definition of

essentially selfadjoint operators, as well as part (b), the “if” statement is easily veri-

fied. We prove the “only if” statement. Thus, assume that WC(X) is a nondegenerate

line segment. By (b), we know that C and X are non-scalars.

Suppose first that C has finite rank. Recall that the operator X is essentially

selfadjoint if and only if X,X∗, I are linearly dependent, which, by using (2) of Corol-

lary 3.2 on (A,B) = (X∗,X), is equivalent to the fact that all the compressions of

X to k-dimensional subspaces of H are essentially selfadjoint; here k ≥ 2 is a fixed

integer. Assume erroneously that some finite-dimensional compression of X is not

essentially selfadjoint. Since the rank of C is finite, we can then find a suitable choice

of orthonormal basis in H so that C and X have operator matrices C = C1 ⊕ 0 and

X =

[
X11 X12

X21 X22

]
with C1,X11 ∈ C

k×k, where k ≥ 2 is fixed, and X11 is not es-

sentially selfadjoint. Now, WC(X) = WC1
(X11) and by [7, property (7.3.a)] we know

that X11 must be essentially selfadjoint, a desired contradiction. Suppose now C has

infinite rank. Then let V ∈ L(H) be a unitary such that V ∗CV − C is of finite rank

and non-scalar (choose V so that V − I is of finite rank). We have

Tr((V ∗CV − C)U∗XU) = Tr(C · (V U∗)X(UV ∗)) − Tr(CU∗XU)

for every unitary U ∈ L(H). Therefore, WV ∗CV −C(X) is contained in a line, and is

in fact a nondegenerate line segment (because V ∗CV −C and X are non-scalars). By

the already proved case of part (a), we obtain that X is again essentially selfadjoint.
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To prove that C is essentially selfadjoint, we repeat the arguments in the preceding

paragraph with the roles of X and C interchanged.

Using Lemma 4.1 we can prove another (easy) case of Conjecture 1.1:

Proposition 4.3. Assume C ∈ L(H) is non-scalar trace-class, and (1.1) holds

for A,B ∈ L(H). If one of A and B is scalar, then Conjecture 1.1 holds true for A

and B.

Proof. Say, B = αI, α ∈ C. Then WC(A) is contained in the circle of radius

|α TrC| centered at the origin. Since the closure of WC(A) is star-shaped by Lemma

4.1, we must have that WC(A) is a singleton. But then A is scalar by Lemma 4.2(b).

Thus A = βI, where β ∈ C satisfies |β TrC| = |α TrC|. Obviously, at least one of the

two conditions (1), (2) in Conjecture 1.1 holds.

5. Proof of Theorem 1.5, the case of normal C. Throughout this section,

it will be assumed that C ∈ L(H) is a non-scalar trace class normal operator (not

necessarily of finite rank).

5.1. Proof of the first part of Theorem 1.5. We divide the proof into two

cases: one for finite-dimensional H and the other for infinite-dimensional. We start

with the finite-dimensional case.

Lemma 5.1. Let n ≥ 2 be an integer. If (1.1) holds for matrices A,B ∈ C
n×n,

then A = µB + νI or A = µB∗ + νI for some µ, ν ∈ C, |µ| = 1.

Proof. Induction on rank of C. For rankC = 1, this was proven in [5]. Assume

the lemma holds for every normal non-scalar C of rank at most k. If k = n, then

there is nothing to prove. If k < n, pick any normal non-scalar C ∈ C
n×n with rank

k + 1 ≤ n. Assume first n = 2. Then, C has two distinct eigenvalues and we may

clearly pick one, name it γ such that C ′ := C − γI is normal, with rankC ′ ≤ k, and

moreover Tr C ′ 6= 0. Then,

Tr(CUXU∗) = Tr(C ′UXU∗ + γUXU∗) = Tr
(
C ′U

(
X + ((Tr C ′)−1γ Tr X)I

)
U∗

)
,

for every X ∈ C
n×n and for every unitary U ∈ C

n×n. So, from identity (1.1), we

derive that for A′ = A+((Tr C ′)−1γ TrA)I and B′ = B+((Tr C ′)−1γ TrB)I, it holds

|Tr(C ′UA′U∗)| = |Tr(C ′UB′U∗)|, ∀ unitary U ∈ C
n×n.

By induction, A′ and B′ enjoy property (P1).

Assume now n > 2. Let c1, . . . , ck+1 be all nonzero eigenvalues of C counted with

multiplicities. Arguing by contradiction, it is easy to see that there is at least one

index j such that c1 + · · · + cj−1 + cj+1 + · · · + ck+1 6= 0. Fix a unimodular vector
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x ∈ C
n. By applying unitary similarity to C we may assume Cx = cjx, where cj is

chosen so that c1 + · · · + cj−1 + cj+1 + · · · + ck+1 6= 0. Now suppose A,B ∈ C
n×n

are such that |Tr(CU∗AU)| = |Tr(CU∗BU)| for all unitary U . With respect to the

orthogonal decomposition C
n = Span {x} ⊕ (Span {x})⊥, write

C =

[
cj 0

0 C ′

]
; A =

[
〈Ax,x〉 ∗

∗ A′

]
; B =

[
〈Bx,x〉 ∗

∗ B′

]
.

We may assume that C ′ is not scalar (otherwise rank (C−γI) = 1 and Tr(C−γI) 6= 0

for some γ ∈ C, and we can repeat the arguments of the case n = 2). We take the

unitaries U in the block diagonal form

U =

[
1 0

0 Û

]
;

here Û is any unitary on (Span {x})⊥. Now

Tr(CU∗AU) = cj〈Ax,x〉 + Tr(C ′Û∗A′Û) = Tr(C ′Û∗(A′ + cj〈Ax,x〉(Tr C ′)−1I)Û),

and similarly for B. Thus,

|Tr(C ′Û∗(A′ + cj〈Ax,x〉(Tr C ′)−1I)Û)| = |Tr(C ′Û∗(B′ + cj〈Bx,x〉(Tr C ′)−1I)Û |.

Since this holds for all unitaries Û , by the induction hypothesis the operators A′ and

B′ have property (P1). In view of the arbitrariness of x, by Theorem 3.1, A and B

have property (P1) as well, and we are done.

It remains to consider infinite-dimensional H. We consider two cases separately.

Case 1. C has distinct eigenvalues c1, c2 such that c1 + c2 6= 0. Let x1, x2 be any

orthonormal pair of vectors in H. Applying a suitable unitary similarity to C, we

may assume that x1, x2 are eigenvectors of C corresponding to the eigenvalues c1, c2,

respectively. Write operators as 2 × 2 block matrices with respect to the orthogonal

decomposition H = (Span {x1, x2})
⊥ ⊕ (Span {x1, x2}):

C =

[
C1 0

0 C ′

]
; A =

[
A1 ∗

∗ A′

]
; B =

[
B1 ∗

∗ B′

]
; C ′ = diag (c1, c2).

We restrict ourselves to consider unitaries U having the block diagonal form

U =

[
I 0

0 Û

]
;

here Û is any unitary on Span {x1, x2}. Note that our hypothesis guarantees that C ′

is not a scalar operator. Now

Tr(CU∗AU) = Tr(C1A1) + Tr(C ′Û∗A′Û) = Tr(C ′Û∗(A′ + Tr(C1A1)(Tr C ′)−1I)Û),
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and similarly for B. Then, the assumptions of the theorem give

|Tr(C ′Û∗(A′ + Tr(C1A1)(Tr C ′)−1I)Û)| = |Tr(C ′Û∗(B′ + Tr(C1B1)(Tr C ′)−1I)Û)|.

Since this holds for all unitaries Û , by Lemma 5.1, the operators A′ and B′ have

property (P1). In view of the arbitrariness of x1, x2, all compressions of A and B

to 2-dimensional subspaces have property (P1), and by Corollary 3.2, A and B have

property (P1).

Case 2. There is no pair of distinct eigenvalues of C that sum up to a nonzero

number. It is easy to see that C must have exactly two distinct eigenvalues a and −a

(the case when C has all eigenvalues equal is excluded by the hypothesis that C is

non-scalar). Because C is of trace-class, both a and −a 6= a have finite multiplicities.

Then KerC = 0 implies dimH < ∞, and Lemma 5.1 applies.

5.2. Proof of the second part of Theorem 1.5. Here, we prove (1.4) under

additional hypotheses that C,C∗, I are linearly independent and A and B are not

essentially selfadjoint. It will be convenient to have a lemma first.

Lemma 5.2. Let B,C ∈ L(H) be such that C is a trace-class normal operator

and B and C are not essentially selfadjoint. If γ ∈ C is such that |Tr(CU∗BU)+γ| =

|Tr(CU∗B∗U)| for all unitary operators U ∈ L(H), then γ = 0.

Proof. We necessarily have dimH ≥ 3 as every normal operator in L(C2) is

essentially selfadjoint.

With respect to a suitable orthogonal decomposition of H, we may assume that

C = C1 ⊕ C2 is such that

C1 = diag (c1, c2), C2 = diag (c3, C3),

where c1, c2, c3 ∈ C and c1 − c2 = r 6= 0. We also assume that c1 − c2 = 1. Otherwise,

replace (C, γ) by (C/r, γ/r). Also, we assume that

c2 − c2 − c3 + c3 6= 0; (5.1)

this choice of c3 is possible in view of non-essential selfadjointness of C . By Corollary

3.2 (indeed, the pair of operators B∗, B does not have property (P2), therefore there

exists a 2-dimensional compression of B∗, B that does not have property (P2)), we

may replace B by V ∗BV for a suitable unitary V ∈ L(H) and assume that B =[
B1 ∗

∗ B2

]
so that B1 ∈ C

2×2 is not essentially selfadjoint. Then the trace condition

of the lemma implies that

|Tr(C(U∗ ⊕ I)B(U ⊕ I)) + γ| = |Tr(C(U∗ ⊕ I)B∗(U ⊕ I))|
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for any unitary U ∈ C
2×2. Let E11 be the rank-one operator with 1 in the top left

corner and zeros elsewhere (with respect to the same orthogonal decomposition of H).

It follows that

|(c1 − c2)Tr(E11U
∗B1U) + c2 Tr B1 + Tr(C2B2) + γ|

= |Tr(CU∗BU) + γ|

= |Tr(C1U
∗B∗

1U) + Tr(C2B
∗
2)|

= |(c1 − c2)Tr(E11U
∗B∗

1U) + c2 TrB∗
1 + Tr(C2B

∗
2)|. (5.2)

Let

c2 TrB1 + Tr(C2B2) = f + ig, c2 Tr B∗
1 + Tr(C2B

∗
2) = f ′ + ig′, and γ = α + iβ,

where f, g, f ′, g′, α, β are real. If Tr(E11U
∗B1U) = x + iy, then Tr(E11U

∗B∗
1U) =

x − iy. Together with the assumption that c1 − c2 = 1, equality (5.2) becomes

|(x + iy) + (f + ig) + (α + iβ)| = |(x − iy) + (f ′ + ig′)|,

or equivalently,

(x + f + α)2 + (y + g + β)2 = (x + f ′)2 + (g′ − y)2. (5.3)

Since B1 is not essentially selfadjoint, the set of numbers x + iy = Tr(E11U
∗B1U)

is just the numerical range W (B1) of B1, which has non-empty interior. Thus, (5.3)

holds for infinitely many x + iy0 for a fixed y0 and infinitely many x0 + iy for a fixed

x0. Thus, comparing the coefficients of x and y, we have

(f + α, g + β) = (f ′,−g′). (5.4)

We can assume that

B =

[
(bij)

3
i,j=1

∗

∗ ∗

]

and B1 is in triangular form. Since B1 is not essentially selfadjoint, we see that B1 =[
b11 b12

0 b22

]
and b12 6= 0. Thus, b11 is an interior point of W (B1). For any nonzero ε1

with sufficiently small modulus, there is U1 ∈ C
2×2 such that B̂ = (U∗

1 ⊕ I)B(U1 ⊕ I)

has diagonal entries b11 + ε1, b22 − ε1 with b22 − ε1 6= b33. Then we can find a unitary

U2 ∈ C
2×2 such that

B̃ = ([1] ⊕ U∗
2 ⊕ I)B̂([1] ⊕ U2 ⊕ I)

has its first three diagonal entries equal to b11 + ε1, b22 − ε2, b33 − ε3 with nonzero

ε2, ε3 satisfying ε2 + ε3 = ε1. Thus, we can choose nonzero εj for j = 1, 2, 3 such that

for B̃ =

[
B̃1 ∗

∗ B̃2

]
the following hold:
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(a) the matrix B̃1 ∈ C
2×2 is still not essentially selfadjoint;

(b) if

f̃ + ig̃ := c2 Tr B̃1 + Tr(C2B̃2) = c2 TrB1 + Tr(C2B2) + c2(ε1 − ε2) − c3ε3

= f + ig + c2(ε1 − ε2) − c3ε3, (5.5)

and

f̃ ′ + ig̃′ := c2 Tr B̃∗
1 + Tr(C2B̃

∗
2) = c2 TrB∗

1 + Tr(C2B
∗
2) + c2(ε1 − ε2) − c3ε3

= f ′ + ig′ + c2(ε1 − ε2) − c3ε3, (5.6)

where f̃ , g̃, f̃ ′, g̃′ are real, then adding α + iβ to (5.5) and subtracting the

complex conjugate of (5.6) yields (in view of (5.4))

(f̃ + ig̃) + (α + iβ) − (f̃ ′ − ig̃′) = (c2 − c2)(ε1 − ε2) − (c3 − c3)ε3

= (c2 − c2 − c3 + c3)ε3 6= 0.

((a) is possible because the set of non-essentially selfadjoint matrices is open, and (b)

is possible in view of (5.1).) Consequently,

(f̃ + α, g̃ + β) 6= (f̃ ′,−g̃′). (5.7)

Now, similar to the derivation of equalities (5.2), (5.3), (5.4), if Tr(E11U
∗B̃1U) =

x + iy ∈ W (B̃1), then Tr(E11U
∗B̃∗

1U) = x − iy, and

|(x + iy) + (f̃ + ig̃) + (α + iβ)| = |(x − iy) + (f̃ ′ + ig̃′)|.

Thus, we have (f̃ + α, g̃ + β) = (f̃ ′,−g̃′), contradicting (5.7).

Proof of part 2 of Theorem 1.5. By the first part of the theorem, we assume that

(1.1) holds, and in addition A = µB +νI or A = µB∗ +νI for some µ, ν ∈ C, |µ| = 1,

and Tr(C) 6= 0. We consider two cases separately:

(1) A = µB + νI holds;

(2) A = µB∗ + νI holds.

Case (1). Under the hypotheses of Case (1), we have

|x + z| = |x|, ∀ x ∈ WC(B), (5.8)

where z = νµ−1 TrC. Arguing by contradiction, suppose z 6= 0. Then the set of

complex numbers Γz = {x : |x + z| = |x|} is a line and WC(B) ⊆ Γz. But B is assumed

to be not essentially selfadjoint, a contradiction with Lemma 4.2(a). Therefore, z =

0 = ν and A = µB.
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Case (2). We have

Tr(CU∗AU) = µTr(CU∗B∗U) + ν Tr(C),

and therefore by (1.1),

|Tr(CU∗B∗U) + νµ−1 Tr(C)| = |Tr(CU∗BU)|

for every unitary U . By Lemma 5.2, we must have ν = 0, as required.

6. Proof of Theorem 1.5, the case of finite rank C.

6.1. Preliminary results. In this subsection, we present several lemmas needed

for the proof.

The following was proven by Brešar and Šemrl [1, Theorem 2.4].

Lemma 6.1. Let U and V be vector spaces over an infinite field F , charF 6= 2,

and let Ri : U → V , i = 1, 2, 3, be linear operators. Then the following two statements

are equivalent:

(i) The vectors R1u, R2u, and R3u are linearly dependent for every u ∈ U .

(ii) One of (a)-(d) holds:

(a) R1, R2, R3 are linearly dependent;

(b) there exist v, w ∈ V such that RiU ∈ Span{v, w}, i = 1, 2, 3;

(c) there exist linearly independent vectors v1, v2, v3 ∈ V , 3 × 3 invertible

matrices Q1 and Q2, a linear mapping R from U into the space of all

3×3 skew-symmetric matrices such that Ri : u 7→
∑3

k=1[Q1(Ru)Q2]kivk,

i = 1, 2, 3, where [Q1(Ru)Q2]ki stands for the (k, i) entry of the matrix

Q1(Ru)Q2;

(d) there exists an idempotent P : V → V of rank one such that

dim Span{(IV − P )R1, (IV − P )R2, (IV − P )R3} = 1.

Here, IV denotes the identity operator on V .

Remark 6.2. Lemma 6.1 will be applied on at least 3-dimensional V = U = C
n,

and operators R1 = A, R2 = B, R3 = I, the identity operator. Then options (b), (c)

are not possible because both (b) and (c) imply that rankRi ≤ 2. The conclusion

is that either A,B, I are linearly dependent or, under (d), A = λAI + xf∗ and B =

λBI + xg∗ for some vectors x, f ,g ∈ C
n and scalars λA, λB .

Lemma 6.3. Let n ≥ 2 and let the nonzero vectors a, c1, c2,b ∈ C
n be such that

c∗1Ua = 0 implies c∗2Ub = 0 for every unitary U ∈ C
n×n. Then, there exists a unitary

V such that c1 ∈ Span{V a} and c2 ∈ Span{V b}. Moreover, if n = 2 then c1 and c2
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are linearly dependent or orthogonal, and if n ≥ 3 then c1 and c2 are always linearly

dependent.

Proof. There exist unitary W1,W2 such that W1c1 = λe1 and W2a = µe1 for some

nonzero scalars λ, µ, where e1 belongs to the standard basis of C
n. We may assume the

two vectors c1 and a are already collinear with e1, otherwise we would regard unitary

W ∗
1 UW2 in place of U , and thus replace (c1,a; c2,b) with (W1c1,W2a;W1c2,W2b).

Using unitary matrices that fix e1, we may further assume b = β1e1 + β2e2 and

c2 = γ1e1 + γ2e2 + γ3e3 for some scalars βi, γj where we agreed upon that γ3 is

absent when n = 2. Use the unitaries Ut :=

[
0 1

eit 0

]
⊕ In−2 for t ∈ R. Clearly,

c∗1Uta = λµeite∗1e2 = 0 for every t, hence also

0 = c∗2Utb = γ2e
itβ1 + γ1β2

for every t. This is possible only if

γ2β1 = 0 = γ1β2.

If n = 2, we have from b 6= 0 6= c2 that either β1 = 0 = γ1 or γ2 = 0 = β2. In each

case, b is a scalar multiple of c2, and both are either orthogonal to c1 (equivalently,

to a) or are collinear with a.

If n ≥ 3, we also use unitaries

U ′
t :=




0 0 1

0 eit 0

1 0 0


 ⊕ In−3, t ∈ R,

to derive additionally γ3β1 + eitγ2β2 = 0 for every t ∈ R, which further gives

γ3β1 = 0 = γ2β2.

Combined with the previously obtained identities gives either (i) β1 = 0 which forces

γ1 = 0 = γ2, or (ii) β2 = 0 which forces γ3 = 0 = γ2. The second option gives that

b and c2 are both collinear with a and c1. The first option is contradictory, because

then, a unitary

U =




0 0 1

1 0 0

0 1 0


 ⊕ In−3

would satisfy c∗1Ua = 0 6= c∗2Ub. Clearly, the unitary matrix V := W ∗
1 W2 finishes

the proof.
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Lemma 6.4. Let n ≥ 2 and suppose x,y,x2,y2,x3,y3 ∈ C
n are nonzero vectors.

If x∗Uy = 0 implies (x∗
2Uy2) · (x

∗
3Uy3) = 0 for every unitary U ∈ C

n×n, then there

exists an index i ∈ {2, 3} such that already x∗Uy = 0 implies x∗
i Uyi = 0 for all

unitary U .

Proof. Without loss of generality, we can assume that x,y are both collinear with

e1, otherwise we replace U by V ∗UW for suitably chosen unitaries V,W . Assume

erroneously that there is no such index. Then, there would exist unitary U1, U2 such

that x∗U1y = 0 = x∗U2y and (x∗
2U1y2) · (x

∗
3U2y3) 6= 0.

We will show that there exists a real-analytic path f : [0, 1] → Un, which connects

U1 with U2 in the set of those unitaries that satisfy x∗Uy = 0. Once we verify this,

the assumptions of the Lemma would imply (x∗
2f(t)y2) · (x∗

3f(t)y3) = 0 for every

0 ≤ t ≤ 1. This would contradict Proposition 2.1(c).

To verify the existence of the path with the above properties, we start by choosing

f1(t) = (1 − t)U1 + te−iα(t)U2 where α : [0, 1] → R is any real-analytic function such

that α(1) = 0 and eiα(1/2) /∈ Sp (−U−1
1 U2). Then, f1(t), 0 ≤ t ≤ 1 is never singular

because otherwise,

eiα(t)

t
U−1

1 f1(t) =
1 − t

t
eiα(t)I + U−1

1 U2

would be singular and hence 1−t
t eiα(t) would be an eigenvalue of a unitary −U−1

1 U2.

As the eigenvalues of unitary matrix are unimodular, this would imply that t = 1/2,

a contradiction. Hence, f1(t) is invertible matrix for 0 ≤ t ≤ 1. Then, the Gram-

Schmidt orthogonalization performed on columns of f1(t) gives a real-analytic function

f(t) that connects U1 and U2 in the set of unitaries. Due to

x∗f(t)y ∈ Ce∗1f1(t)e1 = C(1 − t)e∗1U1e1 + te−iα(t)e∗1U2e1 = 0 + 0 = 0,

the constructed path has all the desired properties.

Lemma 6.5. Let n ≥ 3 and let C ∈ Cn×n be a non-scalar matrix. Then there

exists a unitary U ∈ Cn×n such that for UCU∗ :=

[
c11 c∗12
c21 Ĉ

]
the following hold:

• Column vectors c12, c21 ∈ C
n−1 are both nonzero.

• When n = 3, c12 and c21 are not orthogonal.

• Ĉ is a non-scalar matrix with Tr Ĉ 6= 0.

Proof. Let us first find U such that c12, c21 are nonzero. Since C is non-scalar,

there exists a normalized vector x such that x and Cx are linearly independent.

Write Cx = αx + βy where normalized y is orthogonal to x, and enlarge it to an or-

thonormal basis (z1 = x, z2 = y, z3, . . . , zn). Clearly, z∗2Cz1 = β 6= 0. Consequently,
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there exists a unitary V1, which maps (z1, . . . , zn) onto the standard basis, and for

which e∗2(V1CV ∗
1 )e1 6= 0. Considering orthonormal basis (z2, z1, z3, . . . , zn) in place

of (z1, . . . , zn) we further see that for some unitary V2, we have e∗1(V2CV ∗
2 )e2 6= 0.

There exists hermitian Hk such that Vk = eiHk , k = 1, 2. Note that

t 7→ e∗1 exp(i(tH1 + (1 − t)H2)) · C · exp(−i(tH1 + (1 − t)H2))e2

and

t 7→ e∗2 exp(i(tH1 + (1 − t)H2)) · C · exp(−i(tH1 + (1 − t)H2))e1

are two real-analytic nonzero functions of t ∈ [0, 1]. By Proposition 2.1(c) we can

find some t = t0 ∈ [0, 1] such that both functions are nonzero. Consequently, the

unitary V3 = ei(t0H1+(1−t0)H2) forces (e∗2V3CV ∗
3 e1) · (e∗1V3CV ∗

3 e2) 6= 0. Clearly, we

can assume V3 = I for the rest of the proof.

We next achieve that also Tr Ĉ 6= 0. Since C is non-scalar, its numerical range

is not a singleton. So, there exists a unitary V4 such that e∗1V4CV ∗
4 e1 6= TrC. With

this V4, we have

Tr(C) = Tr(V4CV ∗
4 ) = e∗1V4CV ∗

4 e1 + Tr
(
(I − E11)V4UV ∗

4 (I − E11)
)
,

so that Tr Ĉ 6= 0. Again, writing V3 = eiH3 and V4 = eiH4 for hermitian H3 = 0, H4,

and forming a real-analytic function

f : t 7→ exp(i(tH3 + (1 − t)H4))C exp(−i(tH3 + (1 − t)H4))

we find that the two functions t 7→ (e∗2f(t)e1) · (e
∗
1f(t)e2), and t 7→ Tr(I − E11)f(t),

which are both nonzero real-analytic functions of t, are simultaneously nonzero at

some t = t0 ∈ [0, 1]. Hence, with the unitary V5 := exp(i(t0H3 +(1− t0)H4)) we have

c12, c21 6= 0 and Tr Ĉ 6= 0. Again we can assume V5 = I. Since C is non-scalar, there

exists a permutation matrix V6 such that the lower-right (n − 1) × (n − 1) block of

V6CV ∗
6 is non-scalar. Again, the real-analytic path that connects V5 with V6 in the

set of unitaries must contain a unitary V7 such that V7CV ∗
7 satisfies all the claims,

with the sole exception that, when n = 3, c12, c21 might be orthogonal.

So, suppose n = 3. If c12, c21 ∈ C
2 are not orthogonal, then we are done. If

they are orthogonal, we can use unitary V8 = [1] ⊕ V̂8 ∈ C ⊕ C
2×2 such that the two

off-diagonal blocks of C ′ := V8CV ∗
8 equal c∗12V̂

∗
8 = λe∗1 6= 0 and V̂8c21 = µe2 6= 0,

respectively. We then use a unitary of the form

V9 =

[
cos t eiφ sin t

− sin t eiφ cos t

]
⊕ [1], t, φ ∈ R,

to achieve that the corresponding off-diagonal vectors c′12 and c′21 of

V9C
′V ∗

9 :=

[
c′11 (c′12)

∗

c′21 C ′
22

]
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are not orthogonal vectors. In fact, if the entries of C ′ at positions (2, 3) and (3, 2)

are both nonzero we can set t = π
2 , and if either of the entries (2, 3) or (3, 2) is zero,

we use t = π
4 and appropriate φ ∈ R. Having found a unitary V10 = V9V8 such

that the two side blocks of V10CV ∗
10 are not orthogonal, we connect V10CV ∗

10 with a

real-analytic path to V7CV ∗
7 and complete the proof as before.

We will also need a well known result (see e.g., [3]) on rational functions that

take unimodular values on the unit circle:

Lemma 6.6. If a rational function r(λ) = p(λ)
q(λ) , where p(λ) and q(λ) are polyno-

mials, satisfies |r(eiξ)| = 1 for every ξ ∈ R, then there exists a unimodular number µ

and integers d ≥ 0 and k such that

r(λ) = µλk a0 + a1λ + a2λ
2 + · · · + adλ

d

ad + ad−1λ + ad−2λ2 + · · · + a0λd
, a0, . . . , ad ∈ C, (6.1)

where the numerator and denominator in (6.1) have no zeros in common, and a0 6= 0,

ad 6= 0.

Proof. For the reader’s convenience, we supply a proof. We may clearly as-

sume that numerator, p(λ) and denominator, q(λ) share no common zeros. Let

B(λ) = λs
∏m

i=1
αi−λ
1−αiλ

|αi|
αi

be a Blaschke product containing all the zeros of denom-

inator of r(λ) which lie inside the unit disc (no zero lies on the boundary, because

|p(eiξ)| = |q(eiξ)| implies that every zero on the boundary is removable). Then,

r(λ)B(λ) is a rational function, unimodular on the boundary of a unit disc and

without poles inside unit disc. Hence, it is holomorphic inside the unit disc, and

|r(eiξ)B(eiξ)| = 1. Therefore, also

lim
ρր1

∫ π

−π

| ln |r(ρeiξ)B(ρeiξ)|| dξ = 0.

By [13, Exercise 17.22, p. 353] we obtain that r(λ)B(λ) is a Blaschke product, up to

a unimodular constant. Therefore, r(λ) = µB1(λ)/B(λ) is a quotient of two Blaschke

products, up to unimodular constant µ. Observe that, in Blaschke product, the zeros

of numerator lie inside the unit disc while the zeros of denominator lie outside it.

Hence, numerator and denominator in B1(λ) and in B(λ) share no zeros in common.

Moreover, if numerators of B1(λ) and B(λ) share a common factor, say λ−α, then also

denominators of B1(λ) and B(λ) share a common factor 1 − αλ. We may cancel out

such factors to obtain that r(λ) = µB̃1(λ)/B̃(λ), where B̃1(λ) and B̃(λ) are again

Blaschke products but with no factors in common. So B̃1(λ)/B̃(λ) is irreducible.

Now observe that each Blaschke product may be written as r0(λ)/µmr0(1/µ), µ := λ,

where m is the degree of its numerator. Finally, a0 6= 0, ad 6= 0 can be guaranteed by

adjusting k, if necessary.
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6.2. Inductive step and basis for induction. When dimH < ∞, the opera-

tors are represented by matrices, and we prove Theorem 1.5 for finite dimensional H

by induction on the size n of matrices. The lemma below is the inductive step.

Lemma 6.7. Suppose the first part of Theorem 1.5 holds for every non-scalar

2 × 2 matrix C. Let n ≥ 3. Assume

|Tr(CUAU∗)| = |Tr(CUBU∗)|, ∀ unitary U ∈ C
n×n (6.2)

holds for a fixed non-scalar C ∈ C
n×n, and fixed A,B ∈ C

n×n. Then A and B have

property (P1).

Proof. In view of Theorem 3.1, it suffices to show that for every corank-one

projection P , the compressions PAP and PBP have property (P1).

There exists a unitary similarity UP such that UP PU∗
P = I − E11. We may

assume that already P = I − E11, otherwise we would regard the matrices

(UP PU∗
P ; UP AU∗

P , UP BU∗
P , UP CU∗

P )

in place of (P ;A,B,C). This reduction is possible because of

Tr(UP CU∗
P · U(UP XU∗

P )U∗) = Tr(CU∗
P · U(UP XU∗

P )U∗UP )

= Tr(C · (U∗
P UUP )X(U∗

P UUP )∗)

for every unitary U .

Using Proposition 4.3, we may (and do) assume that both A and B are non-scalar.

It is easy to see that then there exists a unitary U ′ ∈ C
n×n such that writing

U ′A(U ′)∗ =

[
a11 a∗

12

a21 A22

]
, U ′B(U ′)∗ =

[
b11 b∗

12

b21 B22

]

with respect to decomposition C
n = C ⊕ C

n−1, we have that

a12 6= 0, a21 6= 0, b12 6= 0, b21 6= 0. (6.3)

Indeed, by Propositions 2.2 and 2.1(c), we need only show that a12 6= 0, a21 6= 0 for

some unitary U ′. By Lemma 3.4 the proof is reduced to the case of 2× 2 matrices, in

which case elementary calculations (using the assumed hypothesis that A is not scalar)

yield the result. Replacing A and B with U ′A(U ′)∗ and U ′B(U ′)∗, respectively, we

assume in the sequel that

A =

[
a11 a∗

12

a21 A22

]
, B =

[
b11 b∗

12

b21 B22

]
, a12 6= 0, a21 6= 0, b12 6= 0, b21 6= 0. (6.4)
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Denote temporarily

X21(U) := (I − E11)U
∗XUE11, X12(U) := E11U

∗XU(I − E11), X ∈ C
n×n,

and assume, to continue, that for every unitary U , the two matrices

A21(U) and B21(U) (6.5)

are linearly dependent (some or both could also be zero) and that the same holds for

A12(U) and B12(U). (6.6)

Multiplying both matrices in (6.5) on the left with U and on the right with U∗, we

see that this is equivalent to the fact that

(I − xx∗)Axx∗ =
(
Ax − (x∗Ax)x

)
x∗ and (I − xx∗)Bxx∗ =

(
Bx − (x∗Bx)x

)
x∗

are linearly dependent for every unit vector x ∈ Cn. This implies that Ax, Ix, Bx

are linearly dependent for every vector x. By Remark 6.2, either A, I,B are linearly

dependent or else A = λAI + xf∗ and B = λBI + xg∗. In the second case we use

the same arguments on the conjugate transpose of (6.6), to see that A∗, I, B∗ are also

locally linearly dependent. Thus, by the same Remark 6.2, f = µg, µ ∈ C, and so

A,B, I are linearly dependent.

Likewise we argue when A∗
21(V ) and B21(V ) as well as A∗

12(V ) and B12(V ) are

linearly dependent for every unitary V ; in this case, A∗, B, I are linearly dependent.

In the sequel, we can thus assume that there exists unitaries U1 = eiH1 , U2 = eiH1

for some Hermitian H1,H2 so that at least one of the following four conditions hold

(indeed, if all four conditions fail, then we are in the situation taken care of in one of

the two preceding paragraphs):

(α) A21(U1) and B21(U1) are linearly independent, and A∗
21(U2) and B21(U2) are

linearly independent;

(β) A12(U1) and B12(U1) are linearly independent, and A∗
21(U2) and B21(U2) are

linearly independent;

(γ) A12(U1) and B12(U1) are linearly independent, and A∗
12(U2) and B12(U2) are

linearly independent;

(δ) A21(U1) and B21(U1) are linearly independent, and A∗
12(U2) and B12(U2) are

linearly independent.

We will consider only the case (α); other cases can be dealt with similarly. Actually

we may assume that U1 = U2. Namely, since linear independence of two matrices

is equivalent to nonvanishing of at least one of a certain finite collection of 2–by–2

minors, which are polynomials in coefficients of both matrices, we can then find a
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unitary UA = ei(tH1+(1−t)H2) for some t ∈ [0, 1] such that the corresponding minors

do not vanish. Having found UA, we may assume that already

(I − E11)AE11, (I − E11)BE11 are linearly independent, (6.7)

(I − E11)A
∗E11, (I − E11)BE11 are linearly independent, (6.8)

and simultaneously (6.4) holds, otherwise we replace (A,B) by (V ∗AV, V ∗BV ) for

some suitable unitary V .

Now we choose a unitary UC so that UCCU∗
C satisfies the claims in Lemma 6.5.

Since

Tr(UCCU∗
C · UXU∗) = Tr(C(U∗

CU)X(U∗
CU)∗), X ∈ C

n×n,

we can also assume with no loss of generality that already C satisfies the claims of

Lemma 6.5. In particular, with C =

[
c11 c∗12
c21 Ĉ

]
we have that Ĉ is non-scalar with

nonzero trace. Moreover, c12, c21 are nonzero and, if n = 3, they are not orthogonal.

Now we use unitaries U = [eiφ] ⊕ Û to derive that |Tr(CUAU∗)| = |Tr(CUBU∗)| is

equivalent to

∣∣ Tr
(
ĈÛ(A22 + c11a11(Tr Ĉ)−1I)Û∗

)
+ e−iφc∗12Ûa21 + eiφ(Ûa12)

∗c21

∣∣

=
∣∣ Tr

(
ĈÛ

(
B22 + c11b11(Tr Ĉ)−1I

)
Û∗

)
+ e−iφc∗12Ûb21 + eiφ(Ûb12)

∗c21

∣∣.

Multiply both sides with 1 = |eiφ| and rewrite into

∣∣c∗12Ûa21 + eiφ Tr
(
ĈÛ(A22 + c11a11(Tr Ĉ)−1I)Û∗

)
+ e2iφ(Ûa12)

∗c21

∣∣

=
∣∣c∗12Ûb21 + eiφ Tr

(
ĈÛ(B22 + c11b11(Tr Ĉ)−1I)Û∗

)
+ e2iφ(Ûb12)

∗c21

∣∣. (6.9)

Clearly there exists unitary Û with

c∗12Ûa21 6= 0, (Ûa12)
∗c21 6= 0, c∗12Ûb21 6= 0, (Ûb12)

∗c21 6= 0, (6.10)

because all left hand sides in inequalities (6.10) are nonzero real-analytic functions of

Û ∈ Un−1. In the following, we will restrict Û to the open dense (in the real-analytic

manifold Un−1) subset Ω of those unitary Û for which (6.10) holds.

With each fixed Û ∈ Ω, the equality (6.9) takes the form

|pÛ (eiξ)| = |qÛ (eiξ)|, ξ ∈ R, (6.11)

where pÛ (λ) and qÛ (λ) are quadratic and at most quadratic polynomials, respectively,

and pÛ (0) = c∗12Ûa21 6= 0. At each fixed Û ∈ Ω we have three possibilities as regards
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their quotient rÛ (λ) :=
p

Û
(λ)

q
Û

(λ) , namely: (i) rÛ (λ) = µÛ is constant, (ii) rÛ (λ) is a

linear rational function, i.e. pÛ (λ) and qÛ (λ) share a common zero, and (iii) rÛ (λ) is

a quadratic rational function, i.e. pÛ (λ) and qÛ (λ) share no common zero.

By Lemma 6.6, we have under (i) that rÛ (λ) = µÛ , |µÛ | = 1, is constant.

Comparing the coefficients at λ, we get from equation (6.9) that
∣∣ Tr

(
ĈÛ(A22 + c11a11(Tr Ĉ)−1I)Û∗

)∣∣2 =
∣∣ Tr

(
ĈÛ(B22 + c11b11(Tr Ĉ)−1I)Û∗

)∣∣2

(6.12)

By the same Lemma 6.6, under (iii) we have

rÛ (λ) = µÛλk a0 + a1λ + a2λ
2

a2 + a1λ + a0λ2
(|µÛ | = 1),

(clearly, in Lemma 6.6, d ≤ 2, otherwise, rÛ (λ) would have more than two zeros,

counted with multiplicities). Moreover, pÛ (0) 6= 0 implies rÛ (0) 6= 0 which forces

k ≤ 0, and hence d = 2. Actually, k = 0, otherwise rÛ (λ) would have at least three

poles in the complex plane, including the pole at the origin, which is not possible in

view of the form of qÛ (λ). It is easy to see that

pÛ (λ) = α(a0 + a1λ + a2λ
2), qÛ (λ) = β(a2 + a1λ + a0λ

2)

for some (nonzero) constants α and β. Now (6.11) gives |α| = |β|, and we obtain

(6.12) again. Both sides of (6.12) are real-analytic functions of Û (Propositions 2.1

and 2.2), on the real-analytic, pathwise connected manifold Un−1. Thus (Proposition

2.1(c)), the two sides are either equal identically or they differ on an open dense subset

of unitaries. In the first case, and in view of Theorem 3.1(a), we are done by induction

on n. In the second case, possibility (ii) holds on an open dense subset of unitaries

(because (i) and (iii) imply equation (6.12), which presently holds only outside some

open dense subset of the unitaries). We show this contradicts the assumption that C

satisfies Lemma 6.5.

Now, polynomial pÛ (λ) is of degree two, and shares a common zero with qÛ (λ)

if and only if its leading coefficient is nonzero, and the resultant between pÛ (λ) and

qÛ (λ) vanishes. Since the resultant of pÛ (λ) and qÛ (λ) is a polynomial in their coef-

ficients, which themselves are real-analytic functions of Û , we see that the resultant

vanishes identically (otherwise (ii) would not hold on a dense subset). Consequently,

pÛ (λ) is of degree two, does not vanish at λ = 0, and differs from any scalar multiple

of qÛ (λ) but shares a common zero with it for every Û from a dense subset Ω1 of

unitaries. Hence, at fixed Û ∈ Ω1 we can write

pÛ (λ) = (a + λ)(c + bλ), qÛ (λ) = (a + λ)(d + fλ)

for some nonzero scalars a, b, c, d, f which depend on coefficients of the two polyno-

mials. Due to (6.11), we must have

|c + beiφ| = |d + feiφ|, ∀ real φ.
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Since pÛ and qÛ are not scalar multiple of each other, a straightforward computation

shows that (d, f) = µ(b, c) for some unimodular µ = µÛ ∈ C. This gives that

pÛ (λ) = bλ2 + (ab + c)λ + ac, qÛ (λ) = µÛ (cλ2 +
(
b + ac

)
λ + ab).

Comparing the coefficients of λ in pÛ (λ), qÛ (λ), and in (6.9) we get that, for

Û ∈ Ω1,

b = (Ûa12)
∗c21, µÛab = c∗12Ûb21, ac = c∗12Ûa21, µÛc = (Ûb12)

∗c21. (6.13)

Now,

c∗12Ûb21

c∗21(Ûa12)
=

µÛab

b
= µÛa =

a

µÛ

=
ac

µÛc
=

c∗12Ûa21

c∗21(Ûb12)
,

which we rewrite into

(
c∗12Ûb21

)
·
(
c∗21Ûb12

)
=

(
c∗12Ûa21

)
·
(
c∗21Ûa12

)
. (6.14)

By Propositions 2.2 and 2.1(c), the above identity holds for any unitary matrix Û ∈

C
(n−1)×(n−1).

Given a unitary Û such that c∗12Ûa21 = 0 then at least one among c∗12Ûb21 and

c∗21Ûb12 vanishes. By Lemma 6.4, we have two options:

Option 1. c∗12Ûa21 = 0 always implies c∗21Ûb12 = 0. Then, by Lemma 6.3, we

see that there is a unitary V̂ such that c12 ∈ Span{V̂ a21} and c21 ∈ Span{V̂ b12},

and either c12, c21 ∈ C
n−1 must be linearly dependent for n ≥ 4 or, if n = 3, they are

either linearly dependent or orthogonal. The second option (when n = 3) contradicts

Lemma 6.5 for C. The first option implies a21 and b12 are linearly dependent, so

(I−E11)A
∗E11 and (I−E11)BE11 are linearly dependent, a contradiction with (6.8).

Option 2. c∗12Ûa21 = 0 always implies c∗12Ûb21 = 0. As Û runs over all unitaries,

this implies that every vector x, orthogonal to a21, is also orthogonal to b21, and so

a21 and b21 are linearly dependent. Thus, we may divide (6.14) by c∗12Ûa21 on both

sides and deduce by the same arguments that a12 and b12 are also linearly dependent,

contradicting (6.7).

Our last lemma gives the basis of the induction to prove Theorem 1.5 for finite-

dimensional H.

Lemma 6.8. Suppose 2 × 2 matrices A,B,C satisfy (6.2) with C non-scalar.

Then A,B enjoy property (P1).

Proof. Since the case rank C = 1 was already proven in [5], we only need to

consider the option when rankC = 2.
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Case 1. C is diagonalizable. Let γ be an eigenvalue of C. Then, C ′ := C − γI is

of rank-one, and TrC ′ 6= 0. Then,

Tr(CUXU∗) = Tr(C ′UXU∗ + γUXU∗) = Tr
(
C ′U

(
X + ((Tr C ′)−1γ Tr X)I

)
U∗

)
,

for every X ∈ C
2×2. So, from identity (6.2) we derive that for

A′ := A + ((Tr C ′)−1γ TrA)I, B′ := B + ((Tr C ′)−1γ TrB)I,

it holds

|Tr(C ′UA′U∗)| = |Tr(C ′UB′U∗)|, ∀ unitary U ∈ C
2×2.

By [5], A′ and B′ enjoy property (P1), and we are done.

Case 2. C is nondiagonalizable. By multiplying both sides in (6.2) with a suit-

able positive scalar and using unitary similarity on C, we may assume without loss

of generality that C = γI2 + E12 for some nonzero γ. Also, replacing (A,B) by

(µ1A,µ2B) for some suitable unimodular complex numbers µ1 and µ2, we may as-

sume that both γ TrA = 2αγ and γ TrB = 2βγ are nonnegative. Then, any unitary

U ∈ C
2×2 satisfies

|Tr(CUAU∗)| = |2αγ + Tr(E12UAU∗)|.

Note that the off-diagonal entries of UAU∗ and of U(A−αI2)U
∗ are the same. Since

A − αI2 has trace zero, we can find a unitary V such that

V (A − αI2)V
∗ =

[
0 a2e

it

a1 0

]

with a1 ≥ a2 ≥ 0. Clearly, a1, a2 are the singular values of A−αI2. Thus, the maximal

modulus of the (2, 1) entry of UAU∗, i.e. of (UAU∗)21 = (U(A−αI2)U
∗)21 is a1. As

a result,

|Tr(CUAU∗)| ≤ |2αγ| + |Tr(E12UAU∗)| ≤ 2αγ + a1. (6.15)

Since the inequality holds for every unitary U and since the equality in (6.15) is also

possible (say, when U = V ), we have that the right hand side satisfies 2αγ + a1 =

rC(A) with

rC(X) := max{|Tr(CUXU∗)| : U unitary}

the C-numerical radius of X ∈ C
2×2. Moreover, the equality in (6.15) holds only if

|(UAU∗)21| = |(U(A−αI2)U
∗)21| = a1 in which case U(A−αI2)U

∗ has zero diagonal.

Similarly,

|Tr(CUAU∗)| ≤ 2βγ + b1 = rC(B),
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where b1 is the largest singular value of B − βI2, and the equality holds only if

|(UBU∗)21| = |(U(B−βI2)U
∗)21| = b1, in which case U(B−βI2)U

∗ has zero diagonal.

Suppose αγ ≥ βγ ≥ 0. Otherwise, interchange the roles of A and B. Replacing

(A,B) by (V AV ∗, V BV ∗) for a suitable unitary V ∈ C
2×2, we may assume that

A =

[
α α12

a1 α

]
. Then

|Tr(CB)| = |Tr(CA)| = rC(A) = rC(B)

implies that B−βI2 has zero diagonal and, for its (2, 1) entry, |B21| = b1. We assume

in the sequel a1 > 0, else A is scalar and we are done by Proposition 4.3. Now, for

D = diag (1, eiξ),

|2αγ + a1e
iξ| = |Tr(CDAD∗)| = |Tr(CDBD∗)| = |2βγ + B21e

iξ|, ξ ∈ [0, 2π).

This implies one of the three options (taking into account a1 > 0): (1) 2αγ = 2βγ = 0

and a1 = |B21|; (2) 2αγ 6= 2βγ > 0, B21 = 2αγ and a1 = 2βγ; (3) B21 = a1 and

2αγ = 2βγ > 0.

Subcase 1. Assume that αγ = βγ. If β 6= 0, then B21 = a1. If β = 0, then

βγ = αγ = 0, and we may replace B by µ3B for a suitable unimodular complex

number µ3 and assume that B21 = a1 also in this case (note that this transformation

does not change TrB). For U = (cos ξ)I2 +sin ξ(eisE12 − e−isE21) with ξ, s ∈ [0, 2π),

we have

|a1 cos2 ξ − α12e
−i2s sin2 ξ| = |2αγ + a1 cos2 ξ − α12e

−i2s sin2 ξ| = |Tr(CUAU∗)|

= |Tr(CUBU∗)| = |2αγ + a1 cos2 ξ − B12e
−i2s sin2 ξ| = |a1 cos2 ξ − B12e

−i2s sin2 ξ|.

We conclude that α12 = B12.

Subcase 2. Assume that αγ > βγ. Then 2βγ = a1 > 0 and B21 = 2αγ = b1 (the

second equality follows from |B21| = b1). For U = E12 + E21e
is with s ∈ [0, 2π),

|2αγ + α12e
is| = |Tr(CUAU∗)| = |Tr(CUBU∗)| = |2βγ + B12e

is|.

A straightforward calculation using the equality

(2αγ + α12e
is)(2αγ + α12eis) = (2βγ + B12e

is)(2βγ + B12eis), s ∈ [0, 2π),

shows that b1 = 2αγ = µ2B12 and a1 = 2βγ = µ−1
2 α12. Thus, there is ν ∈ [0, 2π)

such that

A = αI2 + 2βγ(E21 + eiνE12) and B = βI2 + 2αγ(E21 + eiνE12).
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Now for the unitary U = cos ξI2 + sin ξ(eisE12 − e−isE21) with ξ, s ∈ [0, 2π), we have

2 |(αγ + βγ cos2 ξ) − βγei(ν−2s) sin2 ξ| = |Tr(CUAU∗)|

= |Tr(CUBU∗)| = 2|(βγ + αγ cos2 ξ) − αγei(ν−2s) sin2 ξ|.

We conclude that α = β, which is a contradiction.

6.3. Proof of Theorem 1.5, assuming C is finite rank. If H is finite-

dimensional, we argue inductively on the dimension. Lemma 6.8 is the basis, while

Lemma 6.7 is the inductive step. If H is infinite-dimensional, we reduce to the finite-

dimensional case as follows. Assume erroneously that A,B do not have property (P1).

Then, already some 2-dimensional compression of A, B does not have property (P1).

Since also rankC < ∞, we can find a unitary operator U such that UCU∗ = C1 ⊕ 0

where C1 acts on finite-dimensional subspace H′ ⊆ H and the compressions of UAU∗

and UBU∗ to H′ do not satisfy property (P1). This contradicts the already proven

result for finite-dimensional H′.

7. A more general class of operators C. The techniques used to prove The-

orem 1.5 allow us to extend the result to a more general class (although less succinctly

defined) of operators C. Namely, assume that a trace-class operator C ∈ L(H) has

an orthogonally reducing invariant subspace M such that the restriction C|M is non-

scalar, either normal or finite rank, and has nonzero trace; if (1.1) holds for two

operators A,B ∈ L(H), then A,B must satisfy A = µB + νI or A = µB∗ + νI for

some µ, ν ∈ C, |µ| = 1. The proof follows the pattern of Subsection 5.1.
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[1] M. Brešar and P. Šemrl. On locally linearly dependent operators and derivations. Trans.

Amer. Math. Soc., 351(3):1257–1275, 1999.

[2] W.-S. Cheung and N.-K. Tsing. The C-numerical range of matrices is star-shaped. Linear

and Multilinear Algebra, 41:245–250, 1996.

[3] C. Glader. Minimal degree rational unimodular interpolation on the unit circle. Electron.

Trans. Numer. Anal., 30:88–106, 2008.

[4] M.S. Jones. A note on the shape of the generalized C-numerical range. Linear and Multilinear

Algebra, 31:81–84, 1992.
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