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TRACIAL NUMERICAL RANGES AND LINEAR
DEPENDENCE OF OPERATORS*

B. KUZMAT, C-K. LI}, AND L. RODMANS$

Abstract. Linear dependence of two Hilbert space operators is expressed in terms of equality
in modulus of certain sesquilinear and quadratic forms associated with the operators. The forms are
based on generalized numerical ranges.
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1. Introduction and main result. Let H be a complex Hilbert space with the
inner product (-,-), and let L(H) be the algebra of linear bounded operators on H.
It will be assumed without further notice that dimH > 2. Denote by Tr X the trace
of a trace-class operator X € L(H). We let R and C stand for the real and complex
field, respectively.

Given an operator T' € L(H), to what extent is it determined by its numerical
range W(T') = {(Tz,z) : * € H, ||z|| = 1}7 In some rare situations, the numerical
range alone can be used to classify a special type of operator. For instance, the
W(T) = {p} if and only if T = pl; W(T) C R if and only if T =T*; W(T) C [0, 00)
if and only if T is positive semidefinite. On the other hand, it is a standard result that
an operator on a complex Hilbert space is completely determined with the quadratic
form that defines its numerical range. Based on applications in preserver problems
and elsewhere, we asked in [5] to what extent an operator is determined if only partial
information is known about the quadratic form. More precisely, we showed that, given
a number ¢ € [0, 1], the operators A and B satisfy [(Az,y)| = |(Bz,y)| for every pair
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of normalized vectors x,y € H with (x,y) = qonly if A=puB+vIor A= pB*+ vl
for some scalars p,v with || = 1. In effect, this covers the modulus of quadratic
form of classical numerical range (with ¢ = 1) as well as of its generalization, the
g-numerical range, defined by Wy (T') := {(Tz,y) : ||z|| =1 = |ly||, (z,y) = q}.

There are many more generalizations of classical numerical range which are ex-
tensively studied (see [7] for a survey). Two examples are the k-numerical range
Wi (T) := {Ef:1<Txi, x;) : (x;,x;) = 0;;} and the c-numerical range for a summable
sequence ¢ = (Ci)ieN given by We := {3, c;(Txs, ;) : (x5,25) = d;;}. The common
extension of all these three types of numerical ranges is the C-numerical range, de-
fined for a trace-class operator C' by W¢(T') = {Tr(CUTU*) : UU* =1 = U*U}.
For example, the g-numerical range equals the C-numerical range given by a rank-one
operator C' = q(-,y)y + /1 — ¢?(-, z)y for a fixed orthonormal pair (y, z). In light of
this, our result [5] is about C-numerical ranges for rank-one operators C. Presently,
we study the same kind of problem for general normal trace-class or finite rank C
see Theorem 1.5 below.

The following conjecture was formulated in [5]. It will be convenient to use the
marker Ax =1if Tr X =0; Ax =0 if Tr X # 0; here X is a trace-class operator.

CONJECTURE 1.1.% Suppose C' € L(H) is a non-scalar trace-class operator. Then
two operators A, B € L(H) have the property

| Te(CUTAU)| = | Tx(CU*BU)|, ¥V unitary U € L(H) (1.1)

if and only if one of the following conditions holds:

(1) C and C* are linearly dependent, and either A = uB +vAcl or A = uB* +
vAcl for some p,v € C, |u| = 1;

(2) C and C* are linearly independent, and A = uB + vA¢I for some p,v € C,
lul = 1.

Note that we have dim H > 2 in Conjecture 1.1 because of the hypothesis that C

is non-scalar. The example below shows that this hypothesis is vital.

ExAMPLE 1.2. If dimH < oo and C' = zI, z € C\ {0}, then (1.1) is equivalent
to | Tr A| = | Tr B|. There is not much to say in this situation.

The “if” part of Conjecture 1.1 is clear. Indeed, assume for example that (1)
holds with A = uB* + vAclI, p,v € C, |u| = 1. Then necessarily C = aC* for some

I'We use this opportunity to correct an inaccuracy in the formulation of [5, Conjecture 6.6];
C = C* (resp., C # C*) was used there in place of “C and C* are linearly dependent” (resp., “C
and C* are linearly independent”).
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|a| =1 and moreover vA¢ # 0 only if Tr C = 0. Therefore,

Tr(CU*AU)=pTr(CU*B*U)=pa Tr(C*U*B*U)
=paTr(U*BUC) = uaTr(CU*BU)

for every unitary U € L(H), so (1.1) holds.

Conjecture 1.1 was proven in [5] for the case when C has rank one. However,
the conjecture generally fails if C' has rank larger than one, as the following examples
show.

ExAMPLE 1.3. Assume dim’H < oo, and let the operators A, B,C have the
following properties:

(a) C,C*, I are linearly dependent;

(b) C,C* are linearly independent;

(¢) B,B*,I are linearly independent, and Tr(B) = 0;
(d) A= pB*+ vAcl for some p,v € C, |u| =1.

If Conjecture 1.1 would hold, then we necessarily have C = aC* + 61, |a| =1, € C
(the hypothesis that C' is non-scalar is used here). Since A¢ - (TrC) = 0, we now
obtain
Tr(CU*AU) = Te(CU* (uB* + vAc)U) = pTr(CU*B*U)
= paTr(C*U*B*U) = paTr(CU*BU).
Thus, (1.1) holds, but clearly neither (1) nor (2) holds. The property (c) is used to
preclude the possibility that A = y/'B + A1 for some u/, v € C, || = 1.

Note that if C' is non-scalar of rank-one, then it is easy to see that C,C* I are
linearly dependent only if C',C* are, and the situation of Example 1.3 cannot occur
in this case.

EXAMPLE 1.4. Let dimH = 2 (we identify H with C?), and

—-1-i 0 1 10
A[ 1 z} B[o 1+z’}’ C{o z}

A computation shows that for every unitary U, we have
Tr(CU*AU) = Tr(CU*BU), (1.2)

and so (1.1) holds. Indeed, to prove (1.2) we use the fact that every unitary U € C2*?
has the form

U =

cost esint] [p 0
—e"%gsint  cost

0 ], for some &,t € [0,27), p,q € C, |p|=lq =1.
q
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Then Tr(CU*AU) is computed to be equal to
sin?t — (sin& + cos &) sint cost — i(1 +sin®t + (sin& — cos &) sint cost),
and similarly,
Tr(CU*BU) = sin®t — (sin& +cos ) sint cost 4+ (1 +sin? ¢ + (sin € — cos £) sint cos t).

Note that C,C*,I are linearly dependent, C,C* are linearly independent, B, B*, I
are linearly independent, and A = iB* + (—1 — 2i)I. Note also that A is not of the
form A = uB +vAcl or A= puB* +vAcl for any p,v € C.

We mention in passing that a related problem to characterize pairs of operators
A, B € L(H) for which

Tr(CU*AU) = Tr(CU*BU) YV unitary U € L(H) (1.3)

holds, has been resolved in [5]. Namely, assuming C' is non-scalar trace-class, (1.3)
holds if and only if either (1) TrC # 0 and A = B, or (2) TrC = 0 and A — B is
scalar.

In view of these examples, it is of interest to find out whether or not (1.1) implies
that either A = uB +vI or A = uB* + vI for some p,v € C, |u| = 1. We prove that
this is indeed the case for finite rank operators and for normal trace-class operators.

An operator X € L(H) is said to be essentially selfadjoint if there is v € C such
that X —vI is a scalar multiple of a selfadjoint operator. Elementary calculations show
that X is essentially selfadjoint if and only if either one of the following equivalent
statements holds:

(a) X, X* I are linearly dependent;

(b) X = uX* + vI for some pu,v € C, with || = 1 and Re (vu=1/2) = 0;
(c) X is normal with spectrum on a straight line.

THEOREM 1.5. (1) Assume C' is a non-scalar trace-class operator which is finite
rank or normal. If (1.1) holds for A,B € L(H), then either A = uB +vI or A =
uB* +vI for some p,v € C, |u| = 1.

(2) If in addition C is normal, and B, A, and C are not essentially selfadjoint,
then

A=uB+vAcl or A=uB*+vAcl for some u,veC, |u|=1. (1.4)

It is easy to see (in view of the first part of Theorem 1.5) that under the hypothe-
ses of the theorem, A and B either are both essentially selfadjoint or both are not
essentially selfadjoint.
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Note that
To(V*CV - U*AU) = Te(C - (UV*)* A(UV*))

for all unitary V' € L(H). Thus, we may replace C' by any operator which is unitarily
similar to C' in Conjecture 1.1 and Theorem 1.5. We will use this observation in the
proof of Theorem 1.5.

The following notation will be used throughout: C™*" stands for the vector
space of m X n complex matrices, with C™*! simplified to C™; diag (X1,...,X,) =
X1 @ Xo®- - @ X, is the block diagonal matrix with the diagonal blocks X;,..., X,
(in this order). We denote by E;; the matrix (or operator with respect to a fixed
orthonormal basis) having 1 in the (4, j)th position and zeros elsewhere; e; stands
for the unit coordinate vector with 1 in the jth position and zeros elsewhere. Thus,
Eij = eiej.

Upon completion of our paper, we learned that Professor Fangyan Lu has studied
Conjecture 1.1 independently with a different approach [9].

We conclude the introduction with a short overview of the next sections. Sections
2, 3, and 4 are preparatory for the proof of Theorem 1.5. There, we recall basic prop-
erties of real-analytic functions, study properties of linear dependence of operators on
the whole space vs these properties on subspaces of fixed dimension (these results are
of independent interest), and provide some information on C-numerical ranges. In
Sections 5 and 6, we prove Theorem 1.1 for the cases when C' is normal and when C
is finite rank, respectively. In latter case, the proof is reduced to a finite-dimensional
‘H, and then proceeds by induction on the dimension of H. Finally, in the last short
section, we indicate an extension of Theorem 1.5 to a larger class of operators C.

2. Preliminaries on real-analytic functions. Here, we collect several well-
known facts on real-analytic functions to be used in the sequel.

Let W C R¥ be open subset. A function f = f(x1,...,z%) : W — C is said to be
real-analytic if for each point of W, there is a polydisc contained in W with positive
radii such that f equals its Taylor series on this polydisc. Clearly, f is real-analytic
if and only if the real and imaginary parts of f are real-analytic.

PROPOSITION 2.1.

(a) If f = f(x1,...,21) : W — C is real-analytic, then so are f and |f|> = ff.

(b) The zero set of any real-analytic function with the connected domain of defi-
nition W 1is either equal to W or its complement is dense in W.

(c) A product of two nonzero real-analytic functions is itself nonzero real-analytic.

For part (b), see e.g., [11, I §3 Lemma 3.2]; (¢) obviously follows from (b).
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A subset M C C" is a real-analytic manifold if it has an open cover with charts
(fo(Wa), fa), with W, C R¥ open and f, : W, — f(W,) a homeomorphism onto a
relatively open subset f(W,) C M such that (f3) Lo fo : Wo N f31(fs(Wp)) — RF is
real-analytic. If M is a real-analytic manifold, then a map F': M — C is real-analytic
if Fof,: W, — C is real-analytic for every index « [10, pp. 54].

It is well-known (see e.g., [12]) that the group U,, of unitaries in C"*" is a compact
real-analytic manifold. Moreover, it is pathwise connected with real-analytic paths
(which take the form t — ¢/1+(1=tH2) for appropriate hermitian Hy, Hy).

PROPOSITION 2.2. Given two fized vectors a,b, the map U — a*Ub, U € U,
is real-analytic. Also, given two matrices C and A, the function U — Tr(CUAU™),
U e U, s real-analytic.

It easily follows from Proposition 2.1 that if FF : M — C is a nonzero real-
analytic map on a compact, real-analytic, pathwise connected manifold M, then the
set of points where F' does not vanish is dense in M.

3. Local vs global linear dependence of operators. In this section, we
prove results concerning local (i.e., restricted to proper subspaces) vs global linear
dependence of operators that will be used in the proof of Theorem 1.5, and are
of independent interest. We will consider the following properties of two operators
A, B € L(H) frequently in our subsequent discussion.

(P1) There exist a unimodular number p and some complex number v such that
B=pA+vlIor B=puA*+vl.

(P2) There exist a unimodular number p and some complex number v such that
B=pA+vl.

THEOREM 3.1. Fiz a positive integer k > 1. Suppose dimH > 2 and let A, B €
L(H).

(1) Assume that for every rank-k orthogonal projection P, the compressions A’ =
PAP|imp and B' = PBP|imp of A and B onto Im P have property (P1). Then A
and B have property (P1).

(2) Assume that for every rank-k orthogonal projection P, the compressions A’ =
PAP|imp and B’ = PBP|imp of A and B onto Im P have property (P2). Then A
and B have property (P2).

We indicate an immediate corollary of Theorem 3.1.

COROLLARY 3.2. Fiz cardinalities X', X" such that X + X" coincides with the
dimension (= cardinality of an orthonormal basis) of H and X" > 2.
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(1) Assume that for every orthogonal projection P € L(H) with the image of
dimension X and the kernel of dimension N, the compressions A’ = PAP|im p and
B' = PBP|mmp of A and B onto Im P have property (P1). Then A and B have

property (P1).

(2) Assume that for every orthogonal projection P € L(H) with the image of
dimension X and the kernel of dimension N, the compressions A’ = PAP|im p and
B’ = PBP|mmp of A and B onto Im P have property (P2). Then A and B have

property (P2).

Proof. Indeed, the hypotheses of part (1) of Corollary 3.2 imply that for every
rank-two orthogonal projection @ the compressions of A and B to the range of @
have property (P1). Now apply Theorem 3.1. The proof of part (2) is analogous. O

For the proof of Theorem 3.1, we need a lemma (presented in greater generality
than is needed in this paper.) Denote by Gry (C™) (Grassmannian) the set of all
k-dimensional subspaces of C™ with the standard topology.

LeEMMA 3.3. Let Ay,...,A; € C*". Fig an integer k, 1 < k < n. Then
either PA1P,...,PA,P are linearly dependent (over C) for every rank k orthogonal
projection P, or the set of k-dimensional subspaces M C C™ such that PxqA1Pn, - -,
PypAgPa are linearly independent, where Py € C**™ stands for the orthogonal
projection onto M, is dense in Gry (C™).

Proof. We assume k? > q (if ¢ > k?, then Py(A; Py, .. ., PrmAgPag are always
linearly dependent).

We consider Gry (C™) as a manifold with the standard charts {C;,, .. ;, }, where

T Ty

T2 Ixk Tiz
Ci,.....i, *= ¢ Column space of . ,o; € CF 5 =1,2,...,n, . =1

Tn Liy,
Here, {i1,...,ix} is a selection of indices i1, ...,ix € {1,2,...,n} such that iy < iy <
-+ < 1ig. Then Gry (C") is a real-analytic manifold whose charts are parametrized by
2k(n — k) real variables tq,. .. s tar(n—k) that represent the real and imaginary parts

of the x;’s for j & {i1,..., ik}
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Fix a chart C;, . ;.. Applying the Gram-Schmidt orthogonalization to the co-
lumns of

Tn

we obtain an orthonormal basis in the subspace M spanned by these orthonormal
columns, which we temporarily denote by c1,...,c;. Then, Py = cic] + -+ - + cicj.
Note that the orthonormal basis c1, . .., ¢ is a real-analytic function of 1, . .. , fog(n—)
(as readily follows from the formulas for the Gram-Schmidt orthogonalization), and
same then holds for the projections Pys. So, we have

PymA1Py =By, ..., PyAGPv = By,
where Bj,...,B,; are n x n matrices whose entries are analytic functions of real
variables t1,...,topm—r) (as well as functions of the entries of Ay,..., A, which are

assumed to be fixed). We write the entries of each B; as a n*-component column
vector (in some fixed order of the entries), and collect these column vectors in a
n? x q matrix Z. Clearly, PyAi1 P, ... , PrpAg Py are linearly dependent if and
only if

Re(det Q1) =0, Im (det Q1) =0, ..., Re(detQs) =0, Re(detQs) =0, (3.1)
where Q1,...,Qs are all ¢ X ¢ submatrices of Z. The equations (3.1) are of the form
ity topn—n)) =0, .oy fos(tr, .- s togn—r)) =0, (3.2)

where f1,..., fas are real valued real-analytic functions of t1,. .., fop k). Note that

the solutions of equations (3.2) are exactly the zeros of F' = |f1|> + - - - + | f2s|?, which
is an analytic function of real variables (t1,...,%ox(n—k)). By Proposition 2.1, either
the solution set of (3.2) comprises all of RZ*("=*) or the complement of the solution
set is dense in R2*("=F) In the former case, using the property that intersection of
any two charts is open and non-empty in either one of the two charts, we obtain that
PAP,...,PA,P are linearly dependent for every rank %k orthogonal projection P
(see [11, T §1, Remark 1.20]), and in the latter case analogously we obtain that the
set of subspaces M for which PyiA1 P, ..., PpmAqPa are linearly independent, is
dense in Gry (C™). O

For convenience, we state also the following easily verified fact.
LEMMA 3.4. The following statements are equivalent for A € L(H):

(1) A is scalar;
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(2) Every nonzero x € H is an eigenvector of H;
(3) The compression of A to any 2-dimensional subspace is scalar.

Proof. Obviously, (1) implies (2) and (3). Assume (2) holds. Choose linearly
independent x, y in H, and let Az = Az, Ay = A\yy (Az, Ay € C). Since = + y is
also an eigenvector of A, we easily obtain A, = A,. Thus, all eigenvalues of A are the
same, and (1) holds. If (3) holds, then (2) holds as well, otherwise for some nonzero
x, the compression of A to the 2-dimensional subspace spanned by = and Ax would
not be scalar. O

Proof of Theorem 3.1. Evidently, we need only to prove the case k = 2. It will
be assumed therefore for the rest of the proof that k = 2. We also assume dimH > k
(if dimH = k, the result is trivial).

We dispose first of the easy case when A (or B) is scalar. If A is scalar, then by
Lemma 3.4 (the equivalence of (1) and (3)) it follows that B is scalar as well. Thus,
we assume that neither A nor B are scalar.

Proof of Statement (2). Let x,y be an orthonormal pair in H, and let M =
Span {z,y}. Then (Ay,x) (resp., (By,z)) is the (1,2) entry in the matrix representa-
tion of PaqAPa|tmp o, (resp., PsmBPa|imp ., ) With respect to the basis {x,y}. Since
Py AP imp o, and PagBPu|immp,, satisfy the property (P2), we have

[(Ay, z)| = [(By, z)|.

Since the orthonormal pair {, y} is arbitrary, the result follows from [5, Theorem 2.2].

Proof of Statement (1). Assume first that dimH = n < oc.
We consider several cases.

Case 1. For some rank-2 orthogonal projection P, the compressions of B, A*, I
to the range of P are linearly independent.

Then by Lemma 3.3, the set
Grg := {M € Gra(H) : compressions of B, A*, I to M are linearly independent}
is dense in Gra(H). By the hypotheses of Theorem 3.1, we have
PmiBPup = P APM|Mm + g, VM € Gry, (3.3)

where the unimodular number p = p(M) and ¢ = gy € C depend on M. If
M € Gra(H) \ Gryg, then select a sequence {M,,}5°_; such that M,, € Gry and
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lim,,— 00 My, = M (equivalently, lim,, oo Ppr,, = Pam), and upon selecting a con-
vergent subsequence of {u(M,)}5°_,, it is easy to see that (3.3) holds also for M.
Thus, A and B have property (P2) in view of Statement (2), and the proof is com-
pleted in Case 1.

Case 2. For some rank-2 orthogonal projection P, the compressions of B, A, I to
the range of P are linearly independent.

Then we argue as in the Case 1, replacing B with B*.

Case 3. For all rank-2 orthogonal projections P, the compressions of B, A, I to
the range of P are linearly dependent, and the compressions of B, A*, I to the range
of P are linearly dependent.

Since A and B are not scalar, by Lemma 3.4, there exist M’, M" € Gry (H) such
that the compressions of A and I to M’, as well as the compressions of B and I to
M are linearly independent. By a slight adaptation of the proof of Lemma 3.3, the
set

Gry := {M € Gra(H) : compressions of A, I to M are linearly independent,
as well as those of B, I}

is dense in Gra(H). Pick My € Gry, and denote by B’, A’, I’ the compressions of
B, A, I, respectively, to M. We then have, in view of the hypotheses of Case 3 and
selection of My,

B' =aA" +bI', B =cA*+dI', a,bcdcC,
where a # 0, ¢ # 0. Then
A" = (c/a)A™* + ((d—b)/a)I'. (3.4)

Taking adjoints, we have

A" = (c/a)A" + ((d = b)/a) T,

or, solving for A,

A= (ajc)A™ — ((d—1b)/c)I'.

Comparing with (3.4), it follows from linear independence of A" and I’ that |a| = |¢|.
On the other hand, since A’ and B’ satisfy the property (P1), at least one of the
numbers a and ¢ is unimodular, hence both are. Thus, for every My € Gry, the
compressions of A and B to My satisfy the property (P2). Now argue as in the
proof of Case 1 to obtain that the compressions of A and B to any 2-dimensional
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subspace of H have property (P2), and application of Statement (2) of Theorem 3.1
completes the proof of Case 3.

This completes the proof of Statement (1) for finite-dimensional H.

Now assume H is infinite-dimensional. By replacing, if necessary, A with A*
we easily deduce, from the above considerations, that all the compressions of A
and B onto any 2-dimensional subspace of H simultaneously have property (P2).
Indeed, otherwise, there would be rank-two projections P, such that the com-
pressed triples (A’,I',B") = (PAP|imp, Plimp, PBP|imp) and ((A")*,I",B") =
(RA*Qlim gy Qlim @, @BQ|im @) are linearly independent. Consider the compressions
A" and B" to the finite-dimensional subspace H”" = Im P +Im Q. Clearly, they still
satisfy the assumption (1) of Theorem 3.1, with k¥ = 2. Hence, by the above ar-
gument, either A" and B’ enjoy property (P2) or else (A”)* = (A*)"”" and B"
enjoy property (P2). Either case contradicts the erroneous assumption that A’ =
PA///P‘ImP’[I7B/ — PB//IP|th and (A//)* — Q(AH/)*thQ’IN,B” — QB///Q‘ImQ
are two linearly independent triples. The result now follows from the already proven
Statement (2). O

4. C-numerical range. In what follows, we will use the concept of the C-
numerical range of an operator X € L(H) defined as follows:

We(X) :={Tr(CU*XU) : U is unitary}.

LEMMA 4.1. If C € L(H) is trace-class, then the closure cl W (X) of W (X) is
star-shaped for every X € L(H); moreover, if Tr C' = 0, then zero is a star-center of
cl We(X).

Proof. In the case H is finite-dimensional, the result is proved in [2]. Now assume
H is infinite-dimensional. Let {C,,}5°_; be a sequence of finite rank operators such
that lim,, ., C,, = C in the trace norm, denoted | - |1, and TrC,, = Tr C for all
m = 1,2,... By a result of Jones [4], clW¢, (X) is star-shaped with a star-center
at (Tr C')zg, where zg is any element in the essential numerical range of X. Arguing
by contradiction, assume (Tr C')zg is not a star-center of cl We(X), and let d > 0 be
the distance from some point yo := a(Tr C')zp + (1 — a)y, where y € cl W (X) and
0 < a < 1, to the closure of W¢(X). Using the standard norm inequalities

| Te(CU*XU) — Te(CouU* XU)| < ||CuU* XU — CU*XU |,
< C = CIL|U*XU| = |Co — 11X, ¥ unitary U, (4.1)

we see that there is a sequence {y,, }2°_; such that y,, € cl W, (X) and lim,, 00 Ym
=y. By [4], a(Tr C)zo + (1 — @)ym, € clWe,, (X), and obviously

lim (a(TrC)zo + (1 — @)ym) = yo-

m—00
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So, there exists a sequence of unitary operators {U,,}>°_; such that

lim (Tr(C U XUm)) = yo-

m—00

Now, using (4.1) again, we have

lim | Tr(CUZXU,,) — Tr(Con U, XUp)| = 0,

m— 00

a contradiction with the choice of yy. O
LEMMA 4.2. Assume C € L(H) is a trace-class operator. Then:

(a) We(X) is a nondegenerate line segment, with or without one or both end-
points, if and only if both C' and X are essentially selfadjoint non-scalar
operators.

(b) We(X) is a singleton if and only if C or X is a scalar operator.

Proof. Part (b) follows from [5, Theorem 6.1]. For the case of finite-dimensional
H, part (a) is stated in [7, property (7.3.a)]; a proof (again in finite dimensions) is
found in [6].

Consider now part (a) for the case of infinite-dimensional H. By the definition of
essentially selfadjoint operators, as well as part (b), the “if” statement is easily veri-
fied. We prove the “only if” statement. Thus, assume that W (X) is a nondegenerate
line segment. By (b), we know that C' and X are non-scalars.

Suppose first that C has finite rank. Recall that the operator X is essentially
selfadjoint if and only if X, X*, I are linearly dependent, which, by using (2) of Corol-
lary 3.2 on (A, B) = (X*, X), is equivalent to the fact that all the compressions of
X to k-dimensional subspaces of H are essentially selfadjoint; here £ > 2 is a fixed
integer. Assume erroneously that some finite-dimensional compression of X is not
essentially selfadjoint. Since the rank of C' is finite, we can then find a suitable choice
of orthonormal basis in H so that C' and X have operator matrices C = C; @& 0 and
X = [ X X ] with C1, X11 € CF¥F where k > 2 is fixed, and X, is not es-

Xo1 Xoo
sentially selfadjoint. Now, We(X) = We, (X11) and by [7, property (7.3.a)] we know
that X7; must be essentially selfadjoint, a desired contradiction. Suppose now C has
infinite rank. Then let V' € L(H) be a unitary such that V*CV — C is of finite rank
and non-scalar (choose V' so that V' — I is of finite rank). We have

Tr((V*CV — C)U*XU) = Te(C - (VU)X (UV*)) — Te(CU*XU)

for every unitary U € L(H). Therefore, Wy«cv_c(X) is contained in a line, and is
in fact a nondegenerate line segment (because V*CV — C and X are non-scalars). By
the already proved case of part (a), we obtain that X is again essentially selfadjoint.
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To prove that C' is essentially selfadjoint, we repeat the arguments in the preceding
paragraph with the roles of X and C' interchanged. O

Using Lemma 4.1 we can prove another (easy) case of Conjecture 1.1:

PROPOSITION 4.3. Assume C € L(H) is non-scalar trace-class, and (1.1) holds
for A,;B € L(H). If one of A and B is scalar, then Conjecture 1.1 holds true for A
and B.

Proof. Say, B = al, a € C. Then W¢(A) is contained in the circle of radius
|a Tr C| centered at the origin. Since the closure of W (A) is star-shaped by Lemma
4.1, we must have that W (A) is a singleton. But then A is scalar by Lemma 4.2(b).
Thus A = BI, where § € C satisfies |3 Tr C| = |a Tr C|. Obviously, at least one of the
two conditions (1), (2) in Conjecture 1.1 holds. O

5. Proof of Theorem 1.5, the case of normal C. Throughout this section,
it will be assumed that C' € L(H) is a non-scalar trace class normal operator (not
necessarily of finite rank).

5.1. Proof of the first part of Theorem 1.5. We divide the proof into two
cases: one for finite-dimensional H and the other for infinite-dimensional. We start
with the finite-dimensional case.

LEMMA 5.1. Let n > 2 be an integer. If (1.1) holds for matrices A, B € C"*",
then A= uB + vl or A= uB* +vI for some p,v € C, |u| = 1.

Proof. Induction on rank of C. For rank C' = 1, this was proven in [5]. Assume
the lemma holds for every normal non-scalar C' of rank at most k. If k = n, then
there is nothing to prove. If k < n, pick any normal non-scalar C' € C"*" with rank
k+1 < n. Assume first n = 2. Then, C has two distinct eigenvalues and we may
clearly pick one, name it v such that C’ := C — ~[ is normal, with rank C’ < k, and
moreover Tr C” # 0. Then,

Tr(CUXU*) = Te(C'UXU* +yUXU*) = Tr(C'U (X + (Tr C') 'y Tr X)) U*),

for every X € C™*™ and for every unitary U € C"*™. So, from identity (1.1), we
derive that for A’ = A+ ((Tr C")~'yTr A)I and B’ = B+ ((Tr C") "1~ Tr B), it holds

| Tr(C'UA'U*)| = | Te(C'UB'UY)|, V unitary U € C™"*".
By induction, A’ and B’ enjoy property (P1).

Assume now n > 2. Let ¢q,...,cxy1 be all nonzero eigenvalues of C' counted with
multiplicities. Arguing by contradiction, it is easy to see that there is at least one
index j such that ¢y +--- 4+ ¢j—1 + ¢j41 + - + cky1 # 0. Fix a unimodular vector
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x € C". By applying unitary similarity to C' we may assume Cx = ¢;x, where ¢; is
chosen so that ¢y + -+ 4+ ¢j—1 + ¢j41 + -+ + cp41 # 0. Now suppose A, B € C"*"
are such that | Tr(CU*AU)| = | Tr(CU*BU)| for all unitary U. With respect to the
orthogonal decomposition C" = Span {x} @ (Span {x})*

cz[% 0]; A:[<Ax,x> } B:{<BX’X> ]

, Write

0o ¢ * A * B’

We may assume that C’ is not scalar (otherwise rank (C—~JI) =1 and Tr(C'—~I) # 0
for some v € C, and we can repeat the arguments of the case n = 2). We take the
unitaries U in the block diagonal form

1 0

U = -~
0 U

b

here U is any unitary on (Span {x})*. Now

Tr(CU*AU) = ¢; (A%, X) 4+ Te(C'U*A'U) = Tr(C'U* (A’ + ¢;(Ax, x)(Tr ") 1)U),
and similarly for B. Thus,

| Te(C'U* (A + ¢;(Ax, x)(Tr )" 1)U)| = | Te(C'U*(B' + ¢;(Bx,x)(Tr C") ' 1)U|.

Since this holds for all unitaries (7, by the induction hypothesis the operators A’ and
B’ have property (P1). In view of the arbitrariness of x, by Theorem 3.1, A and B
have property (P1) as well, and we are done.

It remains to consider infinite-dimensional H. We consider two cases separately.

Case 1. C has distinct eigenvalues c1,ca such that ¢; + co # 0. Let z1, 249 be any
orthonormal pair of vectors in H. Applying a suitable unitary similarity to C, we
may assume that x;, xo are eigenvectors of C' corresponding to the eigenvalues ¢, ca,
respectively. Write operators as 2 x 2 block matrices with respect to the orthogonal
decomposition H = (Span {1, z2})" @ (Span {z1, 22}):

701 O 7141 *_ 7Bl *
=y e A= i o]

. B’} ;. C' = diag (c1,c2).
We restrict ourselves to consider unitaries U having the block diagonal form

I 0

U = ~
0 U

)

here U is any unitary on Span {z1,x2}. Note that our hypothesis guarantees that C’
is not a scalar operator. Now

Tr(CU*AU) = Tr(C1 Ay) + Te(C'U*A'U) = Te(C'U* (A’ + Tr(CL A (Tr C') 11U,
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and similarly for B. Then, the assumptions of the theorem give
| Te(C'U* (A" + Tr(CL A (Te €)' 0)| = | Te(C'U* (B’ + Tr(C1B1 ) (Tr €)1 1) D).

Since this holds for all unitaries (A], by Lemma 5.1, the operators A’ and B’ have
property (P1). In view of the arbitrariness of z1,z2, all compressions of A and B
to 2-dimensional subspaces have property (P1), and by Corollary 3.2, A and B have
property (P1).

Case 2. There is no pair of distinct eigenvalues of C' that sum up to a nonzero
number. It is easy to see that C' must have exactly two distinct eigenvalues a and —a
(the case when C has all eigenvalues equal is excluded by the hypothesis that C is
non-scalar). Because C is of trace-class, both a and —a # a have finite multiplicities.
Then Ker C' = 0 implies dim ‘H < oo, and Lemma 5.1 applies. O

5.2. Proof of the second part of Theorem 1.5. Here, we prove (1.4) under
additional hypotheses that C,C*,I are linearly independent and A and B are not
essentially selfadjoint. It will be convenient to have a lemma first.

LEMMA 5.2. Let B,C € L(H) be such that C is a trace-class normal operator
and B and C are not essentially selfadjoint. If v € C is such that | Tr(CU*BU)+~| =
| Te(CU*B*U)| for all unitary operators U € L(H), then v = 0.

Proof. We necessarily have dim’H > 3 as every normal operator in L(C?) is
essentially selfadjoint.

With respect to a suitable orthogonal decomposition of H, we may assume that
C = (1 ® (5 is such that

Cy = diag(c1,¢c2), Co = diag(c3, C3),

where ¢1,co,c3 € C and ¢; —co = r # 0. We also assume that ¢; —cy = 1. Otherwise,
replace (C,~) by (C/r,~v/r). Also, we assume that

Co—Ca—c3+C3 #0; (5.1)

this choice of c3 is possible in view of non-essential selfadjointness of C'. By Corollary
3.2 (indeed, the pair of operators B*, B does not have property (P2), therefore there
exists a 2-dimensional compression of B*, B that does not have property (P2)), we
may replace B by V*BV for a suitable unitary V € L(H) and assume that B =
B
[ *1 ; ] so that By € C?*2 is not essentially selfadjoint. Then the trace condition
2
of the lemma implies that

|Tr(CU e )BU & 1)) ++| = |Te(CU" & 1)B*(U & 1))|
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for any unitary U € C2%2. Let Fj; be the rank-one operator with 1 in the top left
corner and zeros elsewhere (with respect to the same orthogonal decomposition of H).
It follows that

[(er — e2) Te(E1 U B1U) + ¢ Tr By + Tr(CoBs) + 7

= |Tr(CU*BU) + |

= | Tr(CLU*BU) 4+ Tr(Cy B3|

= |(01 —Cg)TI‘(EllU*BIU)—i-CQT‘TBik +T‘I‘(CQB§)| (52)
Let

¢ Tr By + Tr(CoBa) = f +ig, ¢ Tr By +Tr(CoB3) = f' +ig’, and vy =a+if,

where f,g,f',¢,a, 8 are real. If Tr(E11U*BU) = x + iy, then Tr(E U*BiU) =
x — iy. Together with the assumption that ¢; — co = 1, equality (5.2) becomes

(@ +iy) + (f +ig) + (a +if)| = |(z —iy) + (f +ig)];
or equivalently,
@+f+a)+y+g+0* =@+ )+ -y (5.3)

Since By is not essentially selfadjoint, the set of numbers x + iy = Tr(E1;U*B1U)
is just the numerical range W (Bj) of By, which has non-empty interior. Thus, (5.3)
holds for infinitely many x + iy for a fixed yo and infinitely many zg 4 iy for a fixed
o. Thus, comparing the coefficients of x and y, we have

(f+0¢,g—|—ﬁ):(f,7—g/). (54)
We can assume that

*

B [ (bij)*f',j:l - }

and Bj is in triangular form. Since Bj is not essentially selfadjoint, we see that By =
[ bi1 b2
with sufficiently small modulus, there is U; € C2*2 such that B = (U & )B(U, & 1)
has diagonal entries by1 + €1, bag — £1 with bog — &1 # b3z. Then we can find a unitary
Us € C?%2 such that

} and bya # 0. Thus, by, is an interior point of W (Bj). For any nonzero ¢,

B=(lleU;®)B(1]®Us & I)

has its first three diagonal entries equal to by + €1, bas — €2, b3z — £3 with nonzero
€2, €3 satisfying €2 + €3 = €1. Thus, we can choose nonzero €; for j = 1,2, 3 such that
El *

* Bg

for B = the following hold:
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(a) the matrix By € C2*2 is still not essentially selfadjoint;
(b) if

f—|— Zg = Ir El + Tr(02§2) = cTr By + TI‘(CQBQ) + 02(61 — 52) — C3E3
= f+ig+ca(er —ea) — c3e3, (5.5)

and
f’ +ig = coTr gl* + Tr(C’gég) = ¢ Tr B] + Tr(C2Bj) + c2(1 — €2) — 383
= f'+ig + co(7 — &) — c3E3, (5.6)

where f,3, f',§ are real, then adding o + i to (5.5) and subtracting the
complex conjugate of (5.6) yields (in view of (5.4))

(f +9) + (a+iB) = (f' = i§') = (c2 = @)(e1 — £2) — (c3 — Ta)es

= (cg—Cz —c3+7C3)ez #0.

((a) is possible because the set of non-essentially selfadjoint matrices is open, and (b)
is possible in view of (5.1).) Consequently,

(F+a.g+p)#(F.~g). (5.7)
Now, similar to the derivation of equalities (5.2), (5.3), (5.4), if Tr(EyU*BU) =
x + iy € W(B1), then Tr(EU*BiU) = = — iy, and
(2 + i) + ( +i9) + (o +iB)| = |(x — iy) + (F +ig)].
Thus, we have (f—I— a, g+ f6) = (f’, —7’), contradicting (5.7). O

Proof of part 2 of Theorem 1.5. By the first part of the theorem, we assume that
(1.1) holds, and in addition A = uB+vI or A = uB*+vI for some u,v € C, |u| =1,
and Tr(C) # 0. We consider two cases separately:

(1) A= B+ vI holds;
(2) A= uB* + vI holds.

Case (1). Under the hypotheses of Case (1), we have
el =z, ¥ zeWe(B), (5.8)

where z = vu~! TrC. Arguing by contradiction, suppose z # 0. Then the set of
complex numbers ', = {z : |z + z| = |z|} is aline and W (B) C T',. But B is assumed
to be not essentially selfadjoint, a contradiction with Lemma 4.2(a). Therefore, z =
0=vand A = uB.
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Case (2). We have
Tr(CU*AU) = pTr(CU*B*U) + v Tr(C),
and therefore by (1.1),
| Te(CU*B*U) + vp~* Tr(C)| = | Te(CU*BU))|
for every unitary U. By Lemma 5.2, we must have v = 0, as required. O

6. Proof of Theorem 1.5, the case of finite rank C.

6.1. Preliminary results. In this subsection, we present several lemmas needed
for the proof.

The following was proven by Bresar and Semrl [1, Theorem 2.4].

LEMMA 6.1. Let U and V be vector spaces over an infinite field F', charF # 2,
andlet R, : U —V i =1,2,3, be linear operators. Then the following two statements
are equivalent:

(i) The vectors Ryu, Rou, and Rzu are linearly dependent for every u € U.
(ii) One of (a)-(d) holds:

(a) Ry, Ro, Rs are linearly dependent;

(b) there exist v,w € V such that R;U € Span{v,w}, i =1,2,3;

(c) there exist linearly independent vectors vi,ve,v3 € V, 3 x 3 invertible
matrices Q1 and Qs, a linear mapping R from U into the space of all
3x 3 skew-symmetric matrices such that R; : u — Zizl [Q1(Ru)Q2]kivk,
i =1,2,3, where [Q1(Ru)Q2]k; stands for the (k,i) entry of the matriz
Q1(Ru)Q2;

(d) there exists an idempotent P :V — V of rank one such that

dim Span{(Iyv — P)R1,(Iv — P)Rs, Iy — P)Rs} = 1.
Here, Iy denotes the identity operator on V.

REMARK 6.2. Lemma 6.1 will be applied on at least 3-dimensional V = U = C",
and operators Ry = A, Ry = B, R3 = I, the identity operator. Then options (b), (¢)
are not possible because both (b) and (¢) imply that rank R; < 2. The conclusion
is that either A, B, T are linearly dependent or, under (d), A = AaI + xf* and B =
Al + xg* for some vectors x, f, g € C™ and scalars A, Ap.

LEMMA 6.3. Let n > 2 and let the nonzero vectors a,cy,cq, b € C™ be such that
ciUa = 0 implies c5Ub = 0 for every unitary U € C"*™. Then, there exists a unitary
V such that c; € Span{Va} and ce € Span{Vb}. Moreover, if n = 2 then c1 and cz
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are linearly dependent or orthogonal, and if n > 3 then ci and co are always linearly
dependent.

Proof. There exist unitary Wy, W such that Wic; = Ae; and Wha = pe; for some
nonzero scalars A, u, where e; belongs to the standard basis of C". We may assume the
two vectors ¢; and a are already collinear with e, otherwise we would regard unitary
W{UWs, in place of U, and thus replace (c1,a;co, b) with (Wicy, Waa; Wice, Wab).
Using unitary matrices that fix e;, we may further assume b = [ie; + f2e2 and
co = 7v1€1 + Y2e2 + 3e3 for some scalars [3;,7y; where we agreed upon that vz is
0 1

it 0} @ I,_o for t € R. Clearly,

absent when n = 2. Use the unitaries U; := [
ciU;a = Aue'tefey = 0 for every t, hence also

0 = c3Usb = 72e" By + 712
for every t. This is possible only if

7251 =0= 7152-

If n = 2, we have from b # 0 # c5 that either 51 =0 = ~; or 75 = 0 = (5. In each
case, b is a scalar multiple of cg, and both are either orthogonal to ¢; (equivalently,
to a) or are collinear with a.

If n > 3, we also use unitaries

0 0 1
U =10 et 0| &I, 3, t € R,
1 0 0

to derive additionally 7331 + e"#733; = 0 for every ¢ € R, which further gives

Y361 = 0 = 7255.

Combined with the previously obtained identities gives either (i) 8; = 0 which forces
v1 =0 = 59, or (ii) B2 = 0 which forces 73 = 0 = 2. The second option gives that
b and cy are both collinear with a and c;. The first option is contradictory, because
then, a unitary

0 01
U=1|1 0 0| ®Il,-3
0 1 0

would satisfy cjUa = 0 # c5Ub. Clearly, the unitary matrix V := W} W, finishes
the proof. O
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LEMMA 6.4. Letn > 2 and suppose X,y,X2,y2,X3,y3 € C" are nonzero vectors.
If x*Uy = 0 implies (x5Uy2) - (x3Uy3) = 0 for every unitary U € C"*"™, then there
exists an index i € {2,3} such that already x*Uy = 0 implies x;Uy; = 0 for all
unitary U.

Proof. Without loss of generality, we can assume that x,y are both collinear with
e, otherwise we replace U by V*UW for suitably chosen unitaries V, W. Assume
erroneously that there is no such index. Then, there would exist unitary Uy, Us such
that x*Uyy = 0 = x*Uszy and (x5U1y2) - (x3U2y3) # 0.

We will show that there exists a real-analytic path f : [0,1] — U,,, which connects
U; with U in the set of those unitaries that satisfy x*Uy = 0. Once we verify this,
the assumptions of the Lemma would imply (x5f(t)y2) - (x5f(t)ys) = 0 for every
0 <t < 1. This would contradict Proposition 2.1(c).

To verify the existence of the path with the above properties, we start by choosing
fi(t) = (1 = t)U; + te*®U, where  : [0,1] — R is any real-analytic function such
that a(1) = 0 and ¢**(1/2) ¢ Sp (—~U; *Uy). Then, fi(t), 0 <t < 1 is never singular
because otherwise,

ia(t) 1—¢ .
: — U i) = Tela(t)I+U1_1U2

%em“) would be an eigenvalue of a unitary 7U1_1U2.

As the eigenvalues of unitary matrix are unimodular, this would imply that ¢t = 1/2,
a contradiction. Hence, fi(t) is invertible matrix for 0 < ¢ < 1. Then, the Gram-

would be singular and hence

Schmidt orthogonalization performed on columns of fi(t) gives a real-analytic function
f(t) that connects Uy and Us in the set of unitaries. Due to

x*f(t)y € Ce* fi(t)er = C(1 — t)etUre; + te " Weilze; =0+ 0 =0,
the constructed path has all the desired properties. O

LEMMA 6.5. Let n > 3 and let C € C™*™ be a non-scalar matriz. Then there
exists a unitary U € C"*™ such that for UCU* := [011 (%21 the following hold:
C21

o Column vectors cia,co1 € C* 1 are both nonzero.
e When n =3, c12 and co1 are not orthogonal.
e C is a non-scalar matriz with Tr C # 0.

Proof. Let us first find U such that ci3, co; are nonzero. Since C' is non-scalar,
there exists a normalized vector x such that x and Cx are linearly independent.
Write Cx = ax + By where normalized y is orthogonal to x, and enlarge it to an or-
thonormal basis (z1 = x,22 = y,23,...,2,). Clearly, z5Cz; = § # 0. Consequently,
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there exists a unitary V;, which maps (z1,...,2,) onto the standard basis, and for
which e5(V1CV*)e; # 0. Considering orthonormal basis (z2, 21,23, . ..,2,) in place
of (z1,...,2,) we further see that for some unitary Vs, we have e} (VaCV5)ey # 0.

There exists hermitian Hj such that Vj, = ef* k = 1,2. Note that
t—elexp(i(tHy + (1 —t)Hg)) - C - exp(—i(tHy + (1 — t)Hz))es
and
t—esexp(i(tHy + (1 —t)Hs)) - C - exp(—i(tHy + (1 — t)Hs))eq

are two real-analytic nonzero functions of ¢ € [0,1]. By Proposition 2.1(c) we can
find some ¢t = tg € [0, 1] such that both functions are nonzero. Consequently, the
unitary Vi = e/(toHit0-t0)H2) forces (esV30Virer) - (eiV30Vifes) # 0. Clearly, we
can assume V3 = [ for the rest of the proof.

We next achieve that also Tr C # 0. Since C is non-scalar, its numerical range
is not a singleton. So, there exists a unitary V, such that ejV4CVje; # TrC. With
this V4, we have

TI‘(C) = TI‘(V4CV4*) = e’fV4C’V4*e1 + TI‘((I — Ell)‘/ALU‘/:(I — Ell)),

so that TrC # 0. Again, writing Vi = es and Vj = e'H4 for hermitian Hy = 0, Hy,
and forming a real-analytic function

[t exp(i(tHs + (1 —t)Hy))C exp(—i(tHs + (1 — t)Hy))

we find that the two functions ¢t — (e} f(t)e1) - (eff(t)e2), and ¢ — Tr(I — E11)f(t),
which are both nonzero real-analytic functions of ¢, are simultaneously nonzero at
some ¢ = tg € [0,1]. Hence, with the unitary Vs := exp(i(toHs + (1 —to)H4)) we have
C12,C21 # 0 and Tr C # 0. Again we can assume V5 = I. Since C is non-scalar, there
exists a permutation matrix Vg such that the lower-right (n — 1) x (n — 1) block of
VeC'Vg" is non-scalar. Again, the real-analytic path that connects Vs with Vi in the
set of unitaries must contain a unitary V7 such that V;CV; satisfies all the claims,
with the sole exception that, when n = 3, ¢12, co; might be orthogonal.

So, suppose n = 3. If ci9,¢c91 € C? are not orthogonal then we are done. If
they are orthogonal, we can use unitary Vg = [1] @ Vi € C @ C2%2 such that the two
off-diagonal blocks of C’ := VzC'Vg* equal 012V8 = Xej # 0 and VgCgl = pey # 0,
respectively. We then use a unitary of the form

cost €®sint
vy = [

—sint e cost

Jom.  roer
to achieve that the corresponding off-diagonal vectors ¢}, and cb; of

C/ (C/ )*
‘/QCIV* = [ 11 12 :|
? c O
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are not orthogonal vectors. In fact, if the entries of C’ at positions (2,3) and (3,2)
are both nonzero we can set t = 7, and if either of the entries (2,3) or (3,2) is zero,
we use ¢ = 7 and appropriate ¢ € R. Having found a unitary V1o = VoVg such
that the two side blocks of VioCV7j are not orthogonal, we connect VioCVyj with a
real-analytic path to VzCV* and complete the proof as before. O

We will also need a well known result (see e.g., [3]) on rational functions that
take unimodular values on the unit circle:

LEMMA 6.6. If a rational function r(\) = %, where p(A) and g(\) are polyno-

A)
mials, satisfies |r(e®)| = 1 for every & € R, then there exists a unimodular number p
and integers d > 0 and k such that

a0+a1)\+a2)\2—|—-~-—|—ad)\d
A) = pAF C 6.1
T( ) w ad+ad71)\+ad72)\2+"'+60)\d’ ao, ,aq € L, ( )

where the numerator and denominator in (6.1) have no zeros in common, and ag # 0,
ad 7& 0.

Proof. For the reader’s convenience, we supply a proof. We may clearly as-
sume that numerator, p(A) and denominator, ¢(A) share no common zeros. Let
B(X\) = X[, 1aja;i)\>\ |z—l‘ be a Blaschke product containing all the zeros of denom-
inator of r(A) which lie inside the unit disc (no zero lies on the boundary, because
Ip(e®)] = |q(e®®)| implies that every zero on the boundary is removable). Then,

r(A)B()) is a rational function, unimodular on the boundary of a unit disc and
without poles inside unit disc. Hence, it is holomorphic inside the unit disc, and
[r(e?€) B(e%)| = 1. Therefore, also

1im/ | In |r(pe™®) B(pe®®)|| d¢ = 0.
p/ 1) _ o

By [13, Exercise 17.22, p. 353] we obtain that r(A)B()) is a Blaschke product, up to
a unimodular constant. Therefore, r(A) = pB1(\)/B()) is a quotient of two Blaschke
products, up to unimodular constant p. Observe that, in Blaschke product, the zeros
of numerator lie inside the unit disc while the zeros of denominator lie outside it.
Hence, numerator and denominator in B;(A) and in B(\) share no zeros in common.
Moreover, if numerators of B;(A) and B()\) share a common factor, say A—c, then also
denominators of By (\) and B(A) share a common factor 1 — @A. We may cancel out
such factors to obtain that () = pB;(A)/B()), where B;(\) and B()\) are again
Blaschke products but with no factors in common. So Bj(\)/B()) is irreducible.
Now observe that each Blaschke product may be written as ro(\)/u™ro(1/u), p == X,
where m is the degree of its numerator. Finally, ag # 0, ag # 0 can be guaranteed by
adjusting k, if necessary. O
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6.2. Inductive step and basis for induction. When dim H < oo, the opera-
tors are represented by matrices, and we prove Theorem 1.5 for finite dimensional H
by induction on the size n of matrices. The lemma below is the inductive step.

LEMMA 6.7. Suppose the first part of Theorem 1.5 holds for every mon-scalar
2 x 2 matriz C. Let n > 3. Assume

| Tr(CUAU™)| = | Tx(CUBU™)], V unitary U € C™" (6.2)

holds for a fixred non-scalar C € C"*", and fized A, B € C"*™. Then A and B have
property (P1).

Proof. In view of Theorem 3.1, it suffices to show that for every corank-one
projection P, the compressions PAP and PBP have property (P1).

There exists a unitary similarity Up such that UpPUp = I — Ey;. We may
assume that already P = I — E7;, otherwise we would regard the matrices

(UpPUp; UpAUp, UpBUp, UpCUp)
in place of (P; A, B,C). This reduction is possible because of
Te(UpCUR - U(UpXUp)U*) = Tr(CUp - U(UpXUpR)U*Up)
=Tr(C - (UpUUp)X(UpUUP)")
for every unitary U.

Using Proposition 4.3, we may (and do) assume that both A and B are non-scalar.
It is easy to see that then there exists a unitary U’ € C"*™ such that writing

U’A U/ * |:a11 3.12:| 7 U’B U/ * [ 11 12:|
) ag;  Ag @) by B

with respect to decomposition C* = C @ C*~!, we have that

al 7é 0, agy 75 0, b12 7& O7 b21 75 0. (63)

Indeed, by Propositions 2.2 and 2.1(c), we need only show that ajs # 0, ag; # 0 for
some unitary U’. By Lemma 3.4 the proof is reduced to the case of 2 X 2 matrices, in
which case elementary calculations (using the assumed hypothesis that A is not scalar)
yield the result. Replacing A and B with U’ A(U’)* and U’'B(U’)*, respectively, we
assume in the sequel that

_ [011 afz} B = [bu b7,
as; Ao’ by B

} , aip#0, asn #0, bia#0, by #0. (6.4)
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Denote temporarily
X1 (U):= (I — En)U*XUE;, X12(U):=EnU*XU(I — Eyp), X €C™",
and assume, to continue, that for every unitary U, the two matrices
A2 (U) and By (U) (6.5)
are linearly dependent (some or both could also be zero) and that the same holds for
A12(U) and Bia(U). (6.6)

Multiplying both matrices in (6.5) on the left with U and on the right with U*, we
see that this is equivalent to the fact that

(I —xx")Axx* = (Ax — (x*"Ax)x)x* and (I —xx*)Bxx* = (Bx — (x*Bx)x)x"

are linearly dependent for every unit vector x € C™. This implies that Ax, Ix, Bx
are linearly dependent for every vector x. By Remark 6.2, either A, I, B are linearly
dependent or else A = Aal + xf* and B = Al 4+ xg*. In the second case we use
the same arguments on the conjugate transpose of (6.6), to see that A*, I, B* are also
locally linearly dependent. Thus, by the same Remark 6.2, f = ug, p € C, and so
A, B, I are linearly dependent.

Likewise we argue when A%, (V) and Ba; (V) as well as A7,(V) and Bi2(V) are
linearly dependent for every unitary V; in this case, A*, B, I are linearly dependent.

In the sequel, we can thus assume that there exists unitaries U; = et Uy = 1

for some Hermitian H;, Hs so that at least one of the following four conditions hold
(indeed, if all four conditions fail, then we are in the situation taken care of in one of
the two preceding paragraphs):

() A21(Ur) and Bay (Uy) are linearly independent, and A3, (Us) and Bgy (Us) are
linearly independent;

(8) A12(Uy) and Bi2(Uy) are linearly independent, and A%, (Uz) and Ba (Us) are
linearly independent;

(v) A12(U1) and By2(Uy) are linearly independent, and A}, (Us) and Bi2(Uz) are
linearly independent;

(6) A21(Uy) and Bay(Uy) are linearly independent, and Af,(Us) and Bi2(Us) are
linearly independent.

We will consider only the case («); other cases can be dealt with similarly. Actually
we may assume that U; = Us. Namely, since linear independence of two matrices
is equivalent to nonvanishing of at least one of a certain finite collection of 2-by—2
minors, which are polynomials in coefficients of both matrices, we can then find a



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 22, pp. 22-52, January 2011

46 B. Kuzma, C.-K. Li, and L. Rodman

unitary Uy = e/+0-0H2) for some t € [0,1] such that the corresponding minors
do not vanish. Having found U4, we may assume that already

(I — E11)AEy1, (I — Eq11)BE;; are linearly independent, (6.7)

(I — E11)A"Ey;, (I — Ey11)BEj;  are linearly independent, (6.8)

and simultaneously (6.4) holds, otherwise we replace (A, B) by (V*AV, V*BV) for
some suitable unitary V.

Now we choose a unitary Uc so that UcCU( satisfies the claims in Lemma 6.5.
Since

Tr(UcCUE - UXU*) = Te(C(USU) X (USU)*), X € T,

we can also assume with no loss of generality that already C satisfies the claims of

"
€11 Cjyg

Lemma 6.5. In particular, with C' = 0 we have that C is non-scalar with

C21
nonzero trace. Moreover, c12, Ca1 are nonzero and, if n = 3, they are not orthogonal.
Now we use unitaries U = [e!?] @ U to derive that | Tr(CUAU*)| = | Tr(CUBU*)| is
equivalent to

‘ Tr(aﬁ(A22 + Cllall(TI‘ 6>_1I)[7*) + €_i¢C>{2(7321 + ei(b(ﬁalg)*CQl’
= ’ Tr(aﬁ(Bgz + Cllbll(TI‘ 6)71[) ﬁ*) + 671‘4)0;26]321 + €i¢(ﬁb12)*021 |
Multiply both sides with 1 = |¢??| and rewrite into

|C>{26321 + et? Tr(aﬁ(Agz + cr1a11(Tr 6)71[)6*) + 62i¢(ﬁa12)*021|
= |et,Ubar + € T (CU (Bas + c11b11 (Tr C) 1) U*) + €2 (Ubya) con|.  (6.9)

Clearly there exists unitary U with
CTQﬁagl 7é O, (ﬁalg)*C21 7é 0, Cizﬁbgl 7é 0, (ﬁblz)*Cm 7£ 0, (610)

because all left hand sides in inequalities (6.10) are nonzero real-analytic functions of
U € Uy,—1. In the following, we will restrict U to the open dense (in the real-analytic
manifold U,_1) subset  of those unitary U for which (6.10) holds.

With each fixed U € €2, the equality (6.9) takes the form
Py () =lag(e®)l,  E€R, (6.11)

where p; (A) and g5 (M) are quadratic and at most quadratic polynomials, respectively,
and pp (0) = cjyUas; # 0. At each fixed U € Q we have three possibilities as regards
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; : R . pg(N) LN o N .
their quotient rz()\) = FEOVE namely: (i) 75(A\) = pp is constant, (ii) rz()) is a
linear rational function, i.e. p;(A) and g () share a common zero, and (iii) r5 () is

a quadratic rational function, i.e. p;(X) and g7 (A) share no common zero.
By Lemma 6.6, we have under (i) that r5(\) = up, [ug| = 1, is constant.
Comparing the coefficients at A, we get from equation (6.9) that

| T (CU(Azz + cnnan (Tr O) DT [* = | Te(CT (Bas + e11buy (Tr €)1 1)T*)
(6.12)

2

By the same Lemma 6.6, under (iii) we have

ag + a1\ + ag)\?
o) = N S (gl = 1)
(clearly, in Lemma 6.6, d < 2, otherwise, 75 () would have more than two zeros,
counted with multiplicities). Moreover, p;(0) # 0 implies 75(0) # 0 which forces
k <0, and hence d = 2. Actually, & = 0, otherwise r;(\) would have at least three
poles in the complex plane, including the pole at the origin, which is not possible in
view of the form of g (A). It is easy to see that

pav()\) = a(ao —+ a1>\ + 042>\2)7 Qﬁ(A) = 6(62 +61)\ +60>\2)

for some (nonzero) constants a and 5. Now (6.11) gives |a| = |8|, and we obtain
(6.12) again. Both sides of (6.12) are real-analytic functions of U (Propositions 2.1
and 2.2), on the real-analytic, pathwise connected manifold U,,_1. Thus (Proposition
2.1(c)), the two sides are either equal identically or they differ on an open dense subset
of unitaries. In the first case, and in view of Theorem 3.1(a), we are done by induction
on n. In the second case, possibility (ii) holds on an open dense subset of unitaries
(because (i) and (iii) imply equation (6.12), which presently holds only outside some
open dense subset of the unitaries). We show this contradicts the assumption that C
satisfies Lemma 6.5.

Now, polynomial p;()) is of degree two, and shares a common zero with gz (\)
if and only if its leading coefficient is nonzero, and the resultant between pg () and
¢ () vanishes. Since the resultant of p; () and g5 () is a polynomial in their coef-
ficients, which themselves are real-analytic functions of U, we see that the resultant
vanishes identically (otherwise (ii) would not hold on a dense subset). Consequently,
pp(A) is of degree two, does not vanish at A = 0, and differs from any scalar multiple
of g5(A) but shares a common zero with it for every U from a dense subset {2; of
unitaries. Hence, at fixed U € 0 we can write

pg(N) =(a+N)(c+bA),  qz(A) =(a+A)(d+ fA)

for some nonzero scalars a, b, ¢,d, f which depend on coefficients of the two polyno-
mials. Due to (6.11), we must have

lc4be'®| = |d+ fe'®|, ¥V real ¢.
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Since p; and g are not scalar multiple of each other, a straightforward computation
shows that (d, f) = pu(b,¢) for some unimodular y = pg; € C. This gives that

py(A) =A%+ (ab+ )X +ac, qz(N) = pg(EA° + (b+ ae) A+ ab).
Comparing the coefficients of A in ps(A), ¢5(A), and in (6.9) we get that, for
U S Ql,
b= (fjalg)*C217 ,uﬁag = CTQﬁbgl, ac = c’lk2(7a21, pgC = (ﬁblg)*cm. (6.13)

Now

)

CTQﬁbgl _Mﬁab a ac N Cﬁfjagl
3 (Uaiz) b Bg Mgt ek (Ubyy)

which we rewrite into
(CTQUvbgl) . (C;lﬁblg) = (CTQUagl) . (C;lﬁalg). (614)

By Propositions 2.2 and 2.1(c), the above identity holds for any unitary matrix Ue
(C(nfl)x(nfl).

Given a unitary U such that c*l‘Qﬁagl = 0 then at least one among c’{Qﬁbm and
c5,Ubjo vanishes. By Lemma 6.4, we have two options:

Option 1. C12U<':121 =0 always implies c21Ub12 = 0. Then, by Lemma 6.3, we
see that there is a unitary V such that Cio € Span{Vagl} and co1 € Span{Vblg}
and either c1,co; € C"~! must be linearly dependent for n > 4 or, if n = 3, they are
either linearly dependent or orthogonal. The second option (when n = 3) contradicts
Lemma 6.5 for C. The first option implies as; and bjs are linearly dependent, so
(I — E11)A*Eq; and (I — F11)BE; are linearly dependent, a contradiction with (6.8).

Option 2. c’{2(7a21 = 0 always implies c’{2[7b21 = 0. As U runs over all unitaries,
this implies that every vector x, orthogonal to as;, is also orthogonal to by, and so
ag; and bap are linearly dependent. Thus, we may divide (6.14) by cf2[7a21 on both
sides and deduce by the same arguments that a;o and bys are also linearly dependent,
contradicting (6.7). O

Our last lemma gives the basis of the induction to prove Theorem 1.5 for finite-
dimensional H.

LEMMA 6.8. Suppose 2 x 2 matrices A, B,C satisfy (6.2) with C non-scalar.
Then A, B enjoy property (P1).

Proof. Since the case rank C' = 1 was already proven in [5], we only need to
consider the option when rank C' = 2.
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Case 1. C is diagonalizable. Let « be an eigenvalue of C. Then, C' := C —~I is
of rank-one, and TrC” # 0. Then,

Tr(CUXU*) = Te(C'UXU* +yUXU*) = Tr(C'U(X + (e C) 'y Tr X)) U*),
for every X € C?*2. So, from identity (6.2) we derive that for
A=A+ (TrO) Iy Tr A, B':=B+ ((Tr")"*yTr B)I,
it holds
| Te(C'UA'U)| = | Te(C'UB'U*)|, ¥V unitary U € C**2,
By [5], A’ and B’ enjoy property (P1), and we are done.

Case 2. C is nondiagonalizable. By multiplying both sides in (6.2) with a suit-
able positive scalar and using unitary similarity on C, we may assume without loss
of generality that C = Iy + E15 for some nonzero . Also, replacing (4, B) by
(11 A, ueB) for some suitable unimodular complex numbers p; and po, we may as-
sume that both vTr A = 2ay and v Tr B = 23~ are nonnegative. Then, any unitary
U € C?*2 gatisfies

| Tr(CUAU™)| = 2ay + Tr(E1UAU™)).
Note that the off-diagonal entries of UAU* and of U(A — aly)U* are the same. Since

A — «al; has trace zero, we can find a unitary V such that

it
V(A—alL)V* = [0 a2¢ }

al 0
with a; > ap > 0. Clearly, ay, a5 are the singular values of A—als. Thus, the maximal

modulus of the (2,1) entry of UAU*, i.e. of (UAU*)21 = (U(A— ala)U*)g; is a;. As
a result,

| TH(CUAU®)| < |209] + | Te(E1UAU®)| < 20y + ay. (6.15)

Since the inequality holds for every unitary U and since the equality in (6.15) is also
possible (say, when U = V), we have that the right hand side satisfies 2ay 4+ a; =
rC (A) with

ro(X) = max{| Te(CUXU™)| : U unitary}

the C-numerical radius of X € C?*2. Moreover, the equality in (6.15) holds only if
[((UAU*)21| = |(U(A—al3)U*)21| = a; in which case U(A—alz)U™ has zero diagonal.
Similarly,

| Tr(CUAU™)| < 287 + by = r¢(B),
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where by is the largest singular value of B — (I3, and the equality holds only if
[(UBU*)a1| = [(U(B—12)U*)21| = by, in which case U(B—(13)U* has zero diagonal.

Suppose ay > By > 0. Otherwise, interchange the roles of A and B. Replacing
A, B) by (VAV*,VBV*) for a suitable unitary V € C?*2) we may assume that

A= {a 0412]. Then
ai (0%

| Tr(CB)| = | Te(CA)| = rc(A) = ro(B)

implies that B — 3], has zero diagonal and, for its (2, 1) entry, |B21| = b;. We assume
in the sequel a; > 0, else A is scalar and we are done by Proposition 4.3. Now, for
D = diag (1, €%),

|20y 4+ a1€¢| = | Te(CDAD*)| = | Te(CDBD*)| = [287 + Ba1e®|, € €[0,27).

This implies one of the three options (taking into account a; > 0): (1) 2ay =28y =0
and a; = |Boa1|; (2) 2ay # 20y > 0, By = 2y and a; = 20v; (3) Ba; = a1 and
200y = 28~ > 0.

Subcase 1. Assume that ay = Gy. If B # 0, then By = a;. If § = 0, then
By = ay = 0, and we may replace B by u3B for a suitable unimodular complex
number u3 and assume that By; = a; also in this case (note that this transformation
does not change Tr B). For U = (cos &) Iz +sin (e E1o — e~ Fyp) with £, s € [0, 2),
we have

la; cos? € — appe” 2 sin? €| = |2y + ay cos® € — age” ¥ sin® & = | Tr(CUAU™)|

= | Tr(CUBU™)| = |2ary + a1 cos? € — Bige 2% sin? €| = |a; cos® € — Bige 2% sin® €|
We conclude that a0 = Bis.

Subcase 2. Assume that ay > (. Then 28y = a; > 0 and Ba; = 2ay = by (the
second equality follows from |Bg;| = by). For U = E15 + Ea1e® with s € [0,27),

1207 + a12€™| = | Te(CUAU*)| = | Te(CUBU™)| = |28y + Biae™|.
A straightforward calculation using the equality
(207 + a12€™) 20y + a12€) = (287 + B12€") (267 + B12€¢%), s € [0,2m),

shows that by = 20y = po B and a3 = 28y = py 'age. Thus, there is v € [0,27)
such that

A=aly +206Y(Fo +€¥Eyy) and B = B + 2ay(Fa + ¢ E1).
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Now for the unitary U = cos&l, +sin (e Eyp — e ¥ Eyy) with £, s € [0,27), we have

2|(ay + Bycos® §) — Bye’ ) sin® €| = | Tr(CUAU™)|

= | Te(CUBU™)| = 2|(8y + aycos? €) — aye =29 sin? ¢|.
We conclude that o = 3, which is a contradiction. O

6.3. Proof of Theorem 1.5, assuming C' is finite rank. If H is finite-
dimensional, we argue inductively on the dimension. Lemma 6.8 is the basis, while
Lemma 6.7 is the inductive step. If H is infinite-dimensional, we reduce to the finite-
dimensional case as follows. Assume erroneously that A, B do not have property (P1).
Then, already some 2-dimensional compression of A, B does not have property (P1).
Since also rank C' < oo, we can find a unitary operator U such that UCU* = C; 0
where C acts on finite-dimensional subspace H’' C H and the compressions of U AU*
and UBU* to H' do not satisfy property (P1). This contradicts the already proven
result for finite-dimensional H’. O

7. A more general class of operators C'. The techniques used to prove The-
orem 1.5 allow us to extend the result to a more general class (although less succinctly
defined) of operators C. Namely, assume that a trace-class operator C € L(H) has
an orthogonally reducing invariant subspace M such that the restriction C|aq is non-
scalar, either normal or finite rank, and has nonzero trace; if (1.1) holds for two
operators A, B € L(H), then A, B must satisfy A = uB + vI or A = uB* + vI for
some p,v € C, |u| = 1. The proof follows the pattern of Subsection 5.1.
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