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THE NUMERICAL RANGE OF MATRIX PRODUCTS∗

STEPHEN DRURY†

Abstract. We discuss what can be said about the numerical range of the matrix product A1A2 when the numerical ranges

of A1 and A2 are known. If two compact convex subsets K1,K2 of the complex plane are given, we discuss the issue of finding

a compact convex subset K such that whenever Aj (j = 1, 2) are either unrestricted matrices or normal matrices of the same

shape with W (Aj) ⊆ Kj , it follows that W (A1A2) ⊆ K. We do this by defining specific deviation quantities for both the

unrestricted case and the normal case.

Key words. Numerical range, Matrix product.

AMS subject classifications. 47A12.

1. Introduction. For a n× n complex matrix A, the numerical range W (A) of A is defined by:

W (A) = {ξ∗Aξ; ξ ∈ Cn, ‖ξ‖ = 1}.

The numerical range is useful tool in the study of matrices. It is known that W (A) is a compact convex

subset of the complex field C. If A is a normal matrix, then W (A) is the convex hull of the set of eigenvalues

of A. For more details on numerical ranges, the reader may consult [7, 8, 11].

Let A1 and A2 be n× n complex matrices with known numerical ranges W (A1) and W (A2). What can

be said about the numerical range W (A1A2) of the product matrix A1A2? There is some literature on this

topic [1, 3, 4, 6, 9].

A key observation in this direction is that the question is inherently two-dimensional.

Lemma 1. Let A1 and A2 be n × n complex matrices and let z ∈ W (A1A2). Then there exist 2 × 2

matrices Bj for j = 1, 2 such that W (Bj) ⊆W (Aj) and z ∈W (B1B2).

Proof. Since z ∈W (A1A2), we may write z = ξ∗A1A2ξ for some unit vector ξ. Let K be the linear span

of ξ and A2ξ, let J be the inclusion from K into Cn and J∗ the orthogonal projection from Cn to K. Then

z = ξ∗J∗A1JJ
∗A2Jξ since Jξ = ξ and JJ∗A2ξ = A2ξ. It suffices to let Bj = J∗AjJ for j = 1, 2. Then Bj

is a linear transformation on K, and it is easy to see that W (Bj) ⊆W (Aj). If K is 2-dimensional, the proof

is complete. We leave the case that K is 1-dimensional to the reader.

2. The normal case. For normal matrices, we have the following result [5, Theorems 3 and 4]. Let

Σn denote the simplex of nonnegative n-tuples (tj)
n
j=1 summing to unity.

Theorem 2. Let z, a1, a2, . . . , an, b1, b2, . . . , bn ∈ C be given. Then the following are equivalent:

• There exist normal n×n matrices A and B with eigenvalues a1, a2, . . . , an and b1, b2, . . . , bn respec-

tively such that z ∈W (AB).
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• There exist s, t ∈ Σn such that

z =

 n∑
j=1

sjaj

 n∑
j=1

tjbj

+ w,(2.1)

and

|w| ≤

√√√√ n∑
j=1

sj

∣∣∣∣∣aj −
n∑
k=1

skak

∣∣∣∣∣
2
√√√√ n∑

j=1

tj

∣∣∣∣∣bj −
n∑
k=1

tkbk

∣∣∣∣∣
2

(2.2)

=

√ ∑
1≤j<k≤n

sjsk|aj − ak|2
√ ∑

1≤j<k≤n

tjtk|bj − bk|2.

We observe that
∑n
k=1 skak can be viewed as an expectation of the eigenvalues and the corresponding

standard deviation is
√∑n

j=1 sj |aj −
∑n
k=1 skak|

2
.

3. The deviation bound and the normal deviation bound. Using the normal case as motivation,

we define the deviation bound in the general case.

Definition 3. Let K be a compact convex subset of C and let λ ∈ K. The deviation bound σ(λ,K) is

given by σ(λ,K) = sup |η∗Aξ| where the sup is taken over all 2× 2 complex matrices A with W (A) ⊆ K, all

unit vectors ξ ∈ C2 such that ξ∗Aξ = λ and all unit vectors η ∈ C2 such that η ⊥ ξ.

We may make a similar definition for normal matrices.

Definition 4. Let K be a compact convex subset of C and let λ ∈ K. The normal deviation bound

ν(λ,K) is given by ν(λ,K) = sup |η∗Aξ| where the sup is taken over all positive integers n, all n×n normal

complex matrices A with W (A) ⊆ K and all unit vectors ξ ∈ Cn such that ξ∗Aξ = λ and all unit vectors

η ∈ Cn such that η ⊥ ξ.

Definition 5. By an elliptical disk (in the complex plane) we mean, a singleton, a line segment, or a

set of the form:

{z = x+ iy;x, y ∈ R, ax2 + 2bxy + cy2 + dx+ ey ≤ 1},

for suitable real constants a, b, c, d, e with a, c, ac− b2 > 0.

Definition 6. By a triangle (in the complex plane), we mean a singleton, a line segment, or the convex

hull of a three element set.

Proposition 7. We establish some basic properties of σ(λ,K). Respectively, similar properties hold for

ν(λ,K) where ‘matrix’ is replaced by ‘normal matrix’ throughout.

(i) σ(λ,K) ≤ σ(λ, L) for λ ∈ K ⊆ L.

(ii) |η∗Bξ| ≤ σ(ξ∗Bξ,W (B)) for every n×n matrix B and every orthogonal pair of unit vectors ξ, η in

Cn.

(iii) σ(λ,K) = σ(λ,K) where K = {z; z ∈ K}.
(iv) σ(λ+ z,K + z) = σ(λ,K) for all z ∈ C.

(v) σ(zλ, zK) = |z|σ(λ,K) for all z ∈ C.

(vi) σ(λ,K) = sup
√
‖Aξ‖2 − |λ|2 where the sup is taken over all n×n complex matrices A with W (A) ⊆

K and all unit vectors ξ ∈ Cn such that ξ∗Aξ = λ.
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(vii) ν(λ,K) ≤ σ(λ,K).

Proof. (i) follows since W (A) ⊆ K implies W (A) ⊆ L.

(ii) For ν(·), this follows directly from Definition 4. Let K be the linear span of ξ and η, let J be the

inclusion from K into Cn and J∗ the orthogonal projection from Cn to K. Then A = J∗BJ is effectively

two-dimensional, hence |η∗Aξ| ≤ σ(ξ∗Aξ,W (A)) ≤ σ(ξ∗Aξ,W (B)) since W (A) ⊆ W (B) and by (i). But

ξ∗Bξ = ξ∗Aξ and η∗Bξ = η∗Aξ. Hence, the result.

(iii), (iv), and (v) are routine, but we detail (iv). Let A be a n× n matrix with W (A) ⊆ K, ξ and η

n-vectors figuring in the sup defining σ(λ,K). Then, A+zI, ξ and η figure in the sup defining σ(λ+z,K+z).

This is because W (A + zI) = W (A) + z, ξ∗(A + zI)ξ = ξ∗Aξ + z and η∗(A + zI)ξ = η∗Aξ since η∗ξ = 0.

This shows that σ(λ,K) ≤ σ(λ+ z,K + z) and the reverse inequality follows from replacing z by −z.

(vi) sup
‖η‖≤1
η⊥ξ

|η∗Aξ| is the norm of the projection of Aξ on ξ⊥, namely ‖Aξ−(ξ∗Aξ)ξ‖ =
√
‖Aξ‖2 − |ξ∗Aξ|2.

(vii) follows from (ii).

Remark 1. In case A is a normal n × n matrix with eigenvalues a1, . . . , an and corresponding eigen-

vectors e1, . . . , en, K is the convex hull of {a1, . . . , an} and λ = ξ∗Aξ for ξ =
∑n
k=1 ckek a unit vector then

we find

√
‖Aξ‖2 − |λ|2 =

√√√√ n∑
k=1

sk|ak|2 −

∣∣∣∣∣
n∑
k=1

skak

∣∣∣∣∣
2

,(3.3)

=

√ ∑
1≤j<k≤n

sjsk|aj − ak|2 =

√√√√ n∑
j=1

sj

∣∣∣∣∣aj −
n∑
k=1

skak

∣∣∣∣∣
2

,(3.4)

where sk = |ck|2, the quantity on the right of (3.4) occurring in (2.2).

We now have the main result of this article.

Theorem 8. Let A1 and A2 be n× n complex matrices with numerical ranges W (A1) and W (A2). Let

z ∈W (A1A2). Then, we may write z = λ1λ2 + µ1µ2 where λj ∈W (Aj) and

(i) |µj | ≤ σ(λj ,W (Aj)) for j = 1, 2.

(ii) |µ1| ≤ ν(λ1,W (A1)) and |µ2| ≤ σ(λ2,W (A2)) if A1 is normal.

(iii) |µ1| ≤ σ(λ1,W (A1)) and |µ2| ≤ ν(λ2,W (A2)) if A2 is normal.

(iv) |µj | ≤ ν(λj ,W (Aj)) for j = 1, 2 if both A1 and A2 are normal.

Proof. We give the proof for (i). The other cases are similar.

Let z = ξ∗A1A2ξ for some unit vector ξ. Then,

|z − (ξ∗A1ξ)(ξ
∗A2ξ)| = |ξ∗A1(I − ξξ∗)A2ξ| = |ξ∗A1(I − ξξ∗)2A2ξ| ≤ ‖(I − ξξ∗)A∗1ξ‖‖(I − ξξ∗)A2ξ‖.

But now

‖(I − ξξ∗)A2ξ‖2 = ξ∗A∗2(I − ξξ∗)2A2ξ = ξ∗A∗2(I − ξξ∗)A2ξ = ‖A2ξ‖2 − |ξ∗A2ξ|2,

and similarly

‖(I − ξξ∗)A∗1ξ‖2 = ‖A∗1ξ‖2 − |ξ∗A∗1ξ|2.
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We set λj = ξ∗Ajξ for j = 1, 2. Thus, ‖(I−ξξ∗)A2ξ‖ ≤ σ(λ2,W (A2)) and ‖(I−ξξ∗)A∗1ξ‖ ≤ σ(λ1,W (A∗1)) =

σ(λ1,W (A1)). Hence, the result.

4. The deviation bound for elliptical disks.

Proposition 9. Let K be a compact convex subset of C. Then, we have σ(λ,K) = sup{σ(λ,E)}, where

the sup is taken over all elliptical disks E contained in K with λ ∈ E.

Proof. By Proposition 7(i) σ(λ,K) ≥ supE{σ(λ,E)}. Now suppose that

σ(λ,K) > sup
E
{σ(λ,E)}.(4.5)

We will show that this leads to a contradiction. There exists A a 2 × 2 matrix with W (A) ⊆ K, ξ, and η

unit 2-vectors such that ξ∗Aξ = λ, η∗ξ = 0, and |η∗Aξ| exceeds the right-hand side of (4.5). Then, W (A) is

a elliptical disk, λ = ξ∗Aξ ∈ W (A) and σ(λ,W (A)) ≥ |η∗Aξ|. Taking E = W (A) in the right-hand side of

(4.5) leads to a contradiction.

Because of Proposition 9, it is important to be able to calculate σ(λ,E) for an elliptical disk E.

We take the standard elliptical disk E(a) to have major axis [−1, 1] in the complex plane with foci at

±a where 0 ≤ a ≤ 1. The ends of the minor axis are ±ib where b =
√

1− a2. Indeed

E(a) = {x+ iy;x, y ∈ R, x2 + b−2y2 ≤ 1}.

If a = 0, E(0) is the unit disk {z ∈ C; |z| ≤ 1}. If a = 1, then we interpret E(1) as the interval [−1, 1] in the

real axis.

Lemma 10. Let 0 ≤ a ≤ 1, A be a 2 × 2 matrix with W (A) = E(a) and ξ a unit vector in C2 with

ξ∗Aξ = x+ iy. Then,

sup |η∗Aξ| =
√

2− a2 − x2 − y2 + 2
√

(1− a2)(1− x2)− y2,(4.6)

where the sup is taken over all unit vectors η ∈ C2 such that η ⊥ ξ.

Proof. It is well known that after replacing A with a unitary similarity, we may take

A =

(
−a 2

√
1− a2

0 a

)
.(4.7)

Without loss of generality, we may take

ξ =

(
p+ qi

r

)
and η =

(
r

−p+ qi

)
,

where p, q, and r are real and p2 + q2 + r2 = 1. Thus, ξ and η are effectively generic unit vectors such that

η∗ξ = 0. Two further equations come from ξ∗Aξ = x+ iy and the solutions are

p =
−ω1(a2x+ aω2

√
(b2 − b2x2 − y2)− x)

b
√

(2 + 2ax+ 2ω2

√
b2 − b2x2 − y2)

,

q =
−ω1y

b
√

2 + 2ax+ 2ω2

√
b2 − b2x2 − y2

,

r =
1

2
ω1

√
2 + 2ax+ 2ω2

√
b2 − b2x2 − y2,
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for ω1, ω2 = ±1. Substituting these solutions into |η∗Aξ|2 yields two values:

2− a2 − x2 − y2 ± 2
√

(1− a2)(1− x2)− y2,

and we take the larger of these values in (4.6).

We will denote by D(ζ, r) = {z ∈ C; |z − ζ| ≤ r}, the disk in the complex plane with center ζ and

radius r.

Proposition 11. For 0 ≤ a ≤ 1, x, y ∈ R with (1− a2)(1− x2)− y2 ≥ 0, we have

σ(x+ iy, E(a)) =

√
2− a2 − x2 − y2 + 2

√
(1− a2)(1− x2)− y2.

In particular,

(i) σ(λ, [−1, 1]) =
√

1− λ2,

(ii) σ(λ,D(0, 1)) = 1 +
√

1− |λ|2.

(iii) If L is a line segment then ν(λ, L) = σ(λ, L).

(iv) ν(λ, [−1, 1]) =
√

1− λ2.

Proof. The proof follows from Lemma 10 and consideration of the cases a = 1 and a = 0. If W (A) ⊆ L
a line segment, then A is normal. Hence, (iii) and (iv).

Combining Propositions 9 and 11, one may in theory compute σ(λ,K) for any compact convex set K

and any λ ∈ K, although, in practice, the calculations may be very difficult.

We denote by L(z1, z2) the line segment joining z1, z2 ∈ C.

Corollary 12. Let λ ∈ L(z1, z2). Then, ν(λ, L(z1, z2)) =
√
t1|z1|2 + t2|z2|2 − |λ|2, where tj =

|λ−z3−j |
|z1−z2|

for j = 1, 2.

Lemma 13. Let K be a compact convex subset of C and suppose that λ ∈ ∂K.

• If λ is an extreme point of K, then σ(λ,K) = 0.

• If λ is a non-extreme boundary point of K, then σ(λ,K) = σ(λ, L) where the line segment L is the

intersection of the supporting line to K at λ with K.

Proof. If λ is an extreme point of K and E is a elliptical disk and λ ∈ E ⊆ K, then E is a singleton.

If λ is a non-extreme boundary point of K and λ ∈ E ⊆ K with E a elliptical disk, then E ⊆ L. It follows

that σ(λ,K) = σ(λ, L) by Propositions 7(i) and 9.

5. The normal deviation bound and triangles.

Theorem 14. Let z1, z2, z3 ∈ C lie on the unit circle. Then, if W (A) ⊆ co{z1, z2, z3} there exist positive

semidefinite operators Aj (j = 1, 2, 3) such that A = z1A1 + z2A2 + z3A3 and A1 +A2 +A3 = I.

The proof can be found in [2, Problem 1.6.17]. The following related theorem is due to Mirman [10].

Theorem 15. If W (A) is contained in a triangle with vertices z1, z2, z3, then ‖A‖ ≤ max
j=1,2,3

|zj |1.

1Mirman’s theorem does not require the points z1, z2, z3 to have equal absolute values but can be deduced from that special

case. For example if |z2|, |z3| ≤ |z1|, then for each j = 2, 3 there exist a point z′j colinear with z1 and zj such that |z′j | = |z1|
and W (A) ⊆ co{z1, z2, z3} ⊆ co{z1, z′2, z′3}.
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Lemma 16. Let T be a triangle with its vertices z1, z2, z3 and let λ ∈ T . Then,

σ(λ, T ) ≤

√√√√ 3∑
j=1

tj |zj |2 − |λ|2,

where t ∈ Σ3 is given uniquely by λ =
∑3
j=1 tjzj.

Proof. First, note that

3∑
j=1

tj |a+ bzj |2 − |a+ bλ|2 = |b|2
 3∑
j=1

tj |zj |2 − |λ|2
 ,

for a, b ∈ C and t ∈ Σ3. By translation and scale invariance Proposition 7(iv),(v), we may assume without loss

of generality that z1, z2, z3 lie in the unit circle. Then if W (A) ⊆ T , we may write A = z1A1+z2A2+z3A3 and

A1+A2+A3 = I as in Theorem 14. If λ ∈W (A), there is a unit vector ξ such that λ = ξ∗Aξ =
∑3
j=1 zjξ

∗Ajξ.

We define tj = ξ∗Ajξ so that t ∈ Σ3. Then,

‖Aξ‖2 − |λ|2 ≤ 1− |λ|2 =

3∑
j=1

tj |zj |2 − |λ|2,

by Theorem 15.

Lemma 17. Let T be a triangle with its vertices z1, z2, z3 and let λ ∈ T . Then

ν(λ, T ) ≥

√√√√ 3∑
j=1

tj |zj |2 − |λ|2,

where t ∈ Σ3 is given uniquely by λ =
∑3
j=1 tjzj.

Proof. Consider A = diag(z1, z2, z3), ξ =
(√
t1
√
t2
√
t3
)′

. Then A is normal, W (A) ⊆ T , ξ∗Aξ = λ

and ‖Aξ‖2 =
∑3
j=1 tj |zj |2. The conclusion follows.

An immediate consequence of Proposition 7(vii), Lemmas 16 and 17 is the following.

Theorem 18. Let T be a triangle with its vertices z1, z2, z3 and let λ ∈ T . Then

ν(λ, T ) =

√√√√ 3∑
j=1

tj |zj |2 − |λ|2 = σ(λ, T ),

where t ∈ Σ3 is given uniquely by λ =
∑3
j=1 tjzj.

Lemma 19. Let z1, . . . , zn be complex numbers such that no four of the zk (k = 1, . . . , n) lie on a straight

line or circle. Then the maximal value of f =
∑n
k=1 tk|zk|2 subject to the constraints tk ≥ 0 (k = 1, . . . , n),∑n

k=1 tk = 1 and
∑n
k=1 tkzk = 0 occurs when all but at most three of the (tk) vanish.

Proof. Let zk = xk + iyk with xk and yk real. Let tk = u2k and

h =

n∑
k=1

u2k(x2k + y2k − p− qxk − ryk).
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Then, using p, q, r as Lagrange multipliers, we see that the maximum of f occurs when

∂h

∂uk
= 2uk(x2k + y2k − p− qxk − ryk) = 0.(5.8)

Equivalently

diag(u1, . . . , un)

1 x1 y1 x21 + y21
...

...
...

...

1 xn yn x2n + y2n



−p
−q
−r
1

 =

0
...

0

 .(5.9)

By hypothesis, every 4 × 4 minor of the second matrix in (5.9) is nonsingular. Hence, every quartet in the

solution set {u1, . . . , un} contains a zero.

Theorem 20. Let K be a compact convex subset of C and let λ ∈ K. We have

ν(λ,K) = sup ν(λ, T ),

where the sup is taken over all triangles T with λ ∈ T ⊆ K.

Proof. It is sufficient to show that ν(λ,K) ≤ sup ν(λ, T ). If λ is a boundary point of K, then let T be

the intersection of a supporting line to K at λ with K. Then ν(λ, T ) = σ(λ, T ) by Proposition 11(iii). Thus,

ν(λ,K) ≤ σ(λ,K) = sup ν(λ, T ) by Lemma 13.

Hence, we may assume that λ is an interior point of K and in particular that the interior of K is

nonempty. From this it follows using the convexity of K that the interior of K is dense in K. After making

a translation, we may also assume without loss of generality that λ = 0.

It will suffice to show that sup |η∗Aξ| ≤ sup ν(λ, T ) where the first sup is taken over a dense set of n×n
normal complex matrices A with W (A) ⊆ K, all unit vectors ξ ∈ Cn such that ξ∗Aξ = λ and all unit vectors

η ∈ Cn such that η ⊥ ξ. We select A so that no four of its eigenvalues µ1, . . . , µn lies on a straight line

or circle. But sup |η∗Aξ|2 is equivalent to sup
∑n
k=1 |ξk|2|µk|2 with the sup taken over

∑n
k=1 |ξk|2 = 1 and∑n

k=1 |ξk|2µk = 0. The result follows from Lemma 19.

Theorem 21. Let K be a compact convex subset of C and let λ ∈ K. We have

ν(λ,K) = sup ν(λ, T ),

where the sup is taken over all triangles T with vertices in the extreme points of K and λ ∈ T .

Proof. If λ is a boundary point of K, then the result follows as in the proof of Theorem 20. So we can

assume that λ is an interior point of K and then moving the vertices of the triangle away from λ will yield a

larger triangle. Thus, we only need consider triangles with vertices in ∂K. Let the vertices of T to be z1, z2,

and z3 with z2 and z3 fixed and z1 varying over a line segment in ∂K.

We take the triangle to have vertices zj = xj + iyj , (j = 1, 2, 3) with the xj and yj real. Further assume

that the zj are arranged on the boundary of K in anticlockwise order. We take λ = 0 without loss of

generality and rotate K so that the straight line segment is given by y = y1 and y1 > y2, y3. We parametrize

the line segment by x1 7→ x1 + iy1. Then, we solve the equations t1 + t2 + t3 = 1, t1z1 + t2z2 + t3z3 = 0, and

substitute the solution into f =
∑3
k=1 tk|zk|2. We obtain

∂2f

∂x21
= 2

(y1 − y3)(y1 − y2)(x2y3 − y2x3)|z2 − z3|2

det(M)3
,
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where

M =

 1 1 1

x1 x2 x3
y1 y2 y3

 .

In fact, det(M) > 0 is the area of the triangle T . With the zj configured so that 0 ∈ co{zj ; j = 1, 2, 3}, we

find that ∂2f
∂x2

1
≥ 0 since x2y3 − y2x3 the signed area of the triangle with vertices λ, z2, z3 is also positive.

Thus, f attains its maximum value at an end point of the line segment, that is, at an extreme point of

K. Applying this argument in turn for each vertex of the triangle shows that the sup is taken when all the

vertices are extreme points of K.

Corollary 22. Let Tk for k = 1, 2 be triangles with circumcentre at the origin and circumradius 1. Let

A1 and A2 be n× n matrices with W (Aj) ⊆ Tj for j = 1, 2. Then W (A1A2) ⊆ D(0, 1).

Proof. Let λj ∈ Tj for j = 1, 2. Then by Theorem 16 σ(λj , Tj) ≤
√

1− |λj |2. Let z ∈ W (A1A2). Then

by Theorem 8, there exist λj ∈ Tj and µj for j = 1, 2 such that z = λ1λ2 + µ1µ2 and |µj | ≤ σ(λj , Tj) ≤√
1− |λj |2. The Cauchy–Schwarz inequality yields |z| ≤ 1.

Conversely, we have the following.

Proposition 23. Let T1 and T2 be triangles without obtuse angle and with circumcentre at the origin

and circumradius 1. Let |z| ≤ 1. Then there exist 3× 3 normal matrices A1 and A2 with W (A1) ⊆ T1 and

W (A2) ⊆ T2 such that z ∈W (A1A2).

Proof. Since the triangles are acute or right-angled, the circumcentres lie in the triangles. Hence, we

may find s, t ∈ Σ3 such that
∑n
j=1 sjaj = 0 and

∑n
j=1 tjbj = 0 where a1, a2, a3 are the vertices of T1 and

b1, b2, b3 are the vertices of T2. Then, (2.1) and (2.2) become z = w and |w| ≤ 1, respectively. By applying

Theorem 2 or [5, Theorem 4], we have the result.

Proposition 24. For 0 ≤ a < 1, x, y ∈ R with x+ iy ∈ E(a) equivalently (1− a2)(1− x2)− y2 ≥ 0, we

have

ν(x+ iy, E(a)) =

√
1− x2 − y2

1− a2
.

Proof. Let b =
√

1− a2. Consider the line segment L through x + iy parallel to the major axis of

E(a) with end points in ∂E(a). Then ν(x + iy, L) =
√

1− x2 − b−2y2. By Proposition 7(i), we have

ν(x+ iy, E(a)) ≥
√

1− x2 − b−2y2.

By Theorem 20, ν(z, E(a)) = sup ν(z, T ) where the sup is taken over all triangles with vertices z1, z2, z3
in ∂E(a). We parametrize ∂E(a) by z(s) = 1−s2

1+s2 + i 2bs
1+s2 for s ∈ R̃ the one point compactification of the

real line. For such a triangle T , we have

ν(x+ iy, T ) = sup

√√√√ 3∑
k=1

tk|x+ iy − zk|2,

where the sup is taken over t1 + t2 + t3 = 1, zk = z(sk) for k = 1, 2, 3 and x+ iy = t1z1 + t2z2 + t3z3. Thus,

we need to show that

1− x2 − y2

b2
−

3∑
k=1

tk|x+ iy − zk|2 ≥ 0.(5.10)
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The equations above can be solved for x and y. After substituting the solutions, (5.10) can be written in

the form:

p(s, t) + q(s, t)b2∏3
k=1(1 + s2k)

,(5.11)

where p and q are polynomials with integer coefficients in t ∈ Σ3 and s ∈ R3. But (5.11) is nonnegative for

both b = 0 and b = 1 by estimates already made (Lemmas 16 and 17). Hence, it is nonnegative for all b

with 0 ≤ b ≤ 1.

Proposition 25. Let a > 0 and define the rectangle R(a) = {z ∈ C; |<z| ≤ 1, |=z| ≤ a}. Then

ν(x+ iy, R(a)) =
√

1 + a2 − x2 − y2 and σ(x+ iy, R(a)) =
√

1− x2 +
√
a2 − y2.

for z = x+ iy ∈ R(a).

Proof. By Theorem 21, we have ν(z,R(a)) = maxk=1,...,4 ν(z, Tk) where Tk is the kth triangle formed

using 3 corners of R(a). Hence if z ∈ Tk, we have ν(z, Tk) =
√

1 + a2 − |z|2 by Theorem 18 the first assertion

follows.

For the second assertion, let W (A) ⊆ S and write A = B + iC with B and C hermitian. Then ‖B‖ ≤ 1

and ‖C‖ ≤ a. Let ξ be a unit vector with ξ∗Aξ = ξ∗Bξ + iξ∗Cξ = x+ iy with x, y real. Then for η a unit

vector orthogonal to ξ, we have |η∗Bξ|2 ≤ ‖Bξ‖2 − |ξ∗Bξ|2 ≤ 1− x2 and similarly |η∗Cξ|2 ≤ a2 − y2. Then

we have |η∗Aξ| ≤
√

1− x2 +
√
a2 − y2. This estimate is sharp. Given suitable x and y, we take

ξ =

(
1

0

)
, η =

(
0

1

)
, B =

(
x

√
1− x2√

1− x2 −x

)
, C =

(
y i

√
a2 − y2

−i
√
a2 − y2 −y

)
, A = B + iC.

Then B and C are hermitian with eigenvalues ±1 and ±a, respectively, so that W (A) ⊆ R(a) and η∗Aξ =√
1− x2 +

√
a2 − y2.

6. Methodology. The strategy for finding a containment region for W (A1A2) is first to find for φ ∈ R
an upper bound f(φ) for

<(e−iφλ1λ2) + σ(λ1,W (A1))σ(λ2,W (A2)),

as λj run over W (Aj) for j = 1, 2. In case A1 or A2 is normal, we replace σ(λj ,W (Aj)) by ν(λj ,W (Aj)).

Then if z ∈ W (A1A2) it follows that <(e−iφz) ≤ f(φ). Indeed, if z = x + iy with x and y real, we have

x cos(φ) + y sin(φ) ≤ f(φ). The issue is how to obtain a more informative description of the containment

region. We expect the line with equation:

x cos(φ) + y sin(φ) = f(φ),(6.12)

to be a tangent to the boundary. It may be that for a range of values of φ the line (6.12) passes through a

fixed point P . In that case, P will be an exposed point of the containment region.

Using t = dy
dx = − cot(φ) and u = dx

dy = − tan(φ), we may describe the boundary of the containment

region with equations of the form:

g
(dy
dx

)
+ x

dy

dx
− y = 0 and h

(dx
dy

)
+ y

dx

dy
− x = 0.

where g(t) = f
sin(φ) and h(u) = f

cos(φ) .
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These are Clairaut-type differential equations and they are solved by differentiating with respect to x

and y respectively, obtaining

d2y

dx2

(
g′
(dy
dx

)
+ x

)
= 0 and

d2x

dy2

(
h′
(dx
dy

)
+ y

)
= 0.

Thus, one obtains straight line solutions and the equations:

g′
(dy
dx

)
+ x = 0 and h′

(dx
dy

)
+ y = 0,(6.13)

for the envelope. If either of these equations can be solved and if suitable initial conditions are known, one

has the equation of the envelope.

Alternatively, one may put t = dy
dx and hope to reduce (6.13) to two polynomial equations α(x, t) = 0

and β(y, t) = 0. One would then obtain the equation of the envelope as the resultant of α and β with respect

to t. Unfortunately since t is a cotangent, the quantity
√
t2 + 1 is likely to appear. We may be able to

get rid of it by introducing spurious solutions, for example, one might have to replace an equation of the

form p(x, t) − q(x, t)
√
t2 + 1 = 0 with p and q polynomials by p(x, t)2 − (t2 + 1)q(x, t)2 = 0 in order to get

a polynomial equation. One may be able to write the resultant as a product of factors, some of which are

spurious and others may give a locus which contains a piece of the boundary of the envelope. Generally,

considerable work is still necessary to understand the result. One advantage of this approach is that no

initial conditions are necessary. There is no guarantee that a containment region obtained in this way is

minimal.

7. Illustrative examples.

Example 1. If w(A1), w(A2) ≤ 1 then according to Theorem 8, we have W (A1A2) ⊆ D(0, r) where

r = sup
r1≤1,r2≤1

{r1r2 +

(
1 +

√
1− r21

)(
1 +

√
1− r22

)
= 4.

The sup is taken when r1 = r2 = 0. Taking

A1 =

(
0 2

0 0

)
, A2 =

(
0 0

2 0

)
, A1A2 =

(
4 0

0 0

)
,

we see that the containment region D(0, r) is minimal.

Example 2. If w(A1) ≤ 1 and W (A2) ⊆ [−1, 1] so that A2 is normal (in fact hermitian), then according

to Theorem 8 we have W (A1A2) ⊆ D(0, r) where

r = sup
0≤r1,r2≤1

{r1r2 +

(
1 +

√
1− r21

)√
1− r22 = 2.

The sup is taken when r1 = r2 = 0. Taking

A1 =

(
0 2

0 0

)
, A2 =

(
0 i

−i 0

)
, A1A2 =

(
−2i 0

0 0

)
,

we see that the containment region is minimal.
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Example 3. If W (A1),W (A2) ⊆ [−1, 1] so that A1 and A2 are both hermitian, then according to The-

orem 8 we have W (A1A2) ⊆ D(0, 1) and in fact, D(0, 1) is minimal with this property. If W (A1),W (A2) ⊆
D(0, 1) and A1 and A2 are both normal, then we have the same conclusion.

Example 4. If W (A1),W (A2) ⊆ R(1), then W (A1A2) ⊆ D(0, r) where

r = sup
|x1|,|y1|,|x2|,|y2|≤1

(√
x21 + y21

√
x22 + y22 +

(√
1− x21 +

√
1− y21

)(√
1− x22 +

√
1− y22

))
= 4.

Comparing with Example 1 we see that replacing the unit disk with a larger square does not require a larger

containment region.

Example 5. If W (A1),W (A2) ⊆ R(1) and A2 is normal, then W (A1A2) ⊆ D(0, r) where

r = sup
|x1|,|y1|,|x2|,|y2|≤1

(√
x21 + y21

√
x22 + y22 +

(√
1− x21 +

√
1− y21

)√
2− x22 − y22

)
= 2
√

2.

Indeed, since L(1 + i,−1− i) ⊆ R(1) we see that D(0, 2
√

2) cannot be replaced by a smaller set.

Example 6. If W (A1),W (A2) ⊆ R(1) and both A1 and A2 are normal, then W (A1A2) ⊆ D(0, r) where

r = sup
|x1|,|y1|,|x2|,|y2|≤1

(√
x21 + y21

√
x22 + y22 +

√
2− x21 − y21

√
2− x22 − y22

)
= 2.

Indeed, since L(1 + i,−1− i) ⊆ R(1) we see that D(0, 2) cannot be replaced by a smaller set.

Example 7. If W (A1) ⊆ D(0, 1) and W (A2) ⊆ D(1, 1), then W (A1A2) ⊆ D(0, r) where

r = sup
0≤s,t≤1

s(t+ 1) + (1 +
√

1− s2)(1 +
√

1− t2) ≈ 4.300975996.

taken for s ≈ 0.5491393984 and t ≈ 0.2865913723.

Example 8. Let W (A1),W (A2) ⊆ L where L is the line segment from cos(β)−i sin(β) to cos(β)+i sin(β)

for 0 < β < π
2 . Since for −1 ≤ s, t ≤ 1

<(cos(β) + is sin(β))(cos(β) + it sin(β))−
√

1− s2
√

1− t2 sin(β)2

= cos(β)2 − st sin(β)2 −
√

1− s2
√

1− t2 sin(β)2 ≥ cos(β)2 − sin(β)2 = cos(2β),

and

|(cos(β) + is sin(β))(cos(β) + it sin(β))|+
√

1− s2
√

1− t2 sin(β)2

=
√

cos(β)2 + s2 sin(β)2
√

cos(β)2 + t2 sin(β)2 +
√

sin(β)2 − s2 sin(β)2
√

sin(β)2 − t2 sin(β)2 ≤ 1,

both by the Cauchy–Schwarz inequality we have W (A1A2) ⊆ K where

K = {z ∈ C;<z ≥ cos(2β), |z| ≤ 1}.(7.14)

Next we observe that e±2iβ can occur in W (A1A2) and hence the line segment joining e−2iβ to e2iβcannot

be excluded from W (A1A2).

Now define

Uj =

(
cos(β) + i sin(β) cos(αj) − sin(β) sin(αj)

sin(β) sin(αj) cos(β)− i sin(β) cos(αj)

)
,
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for αj real and j = 1, 2. Then Uj are unitary hermitian matrices with eigenvalues e±iβ ∈ L. So the product

U1U2 is unitary with eigenvalues p± iq where p and q are real, satisfying p2 + q2 = 1 and where

q2 = sin(β)2(sin(α1 − α2)2 + cos(β)2(1 + cos(α1 − α2))2),

is seen to run from 0 to sin(2β) as α1 and α2 vary. Hence, the values eiθ can occur in W (A1A2) for all θ

with θ ∈ [−2β, 2β]. We conclude that (7.14) is a minimal containment region with exposed points e±2iβ.

Example 9. W (A1),W (A2) ⊆ E(a) for some a with 0 ≤ a ≤ 1 with A1 and A2 unrestricted. Let

z ∈W (A1A2). Then

|z| ≤ |λ1||λ2|+ σ(λ1, E(a))σ(λ2, E(a)) ≤
√
|λ1|2 + σ(λ1, E(a))2

√
|λ2|2 + σ(λ2, E(a))2.

But

|λ|2 + σ(λ,E(a))2 = x2 + y2 + 2− a2 − x2 − y2 + 2
√

(1− a2)(1− x2)− y2

≤ 2− a2 + 2
√

1− a2.

Hence, W (A1A2) ⊆ D(0, 2− a2 + 2
√

1− a2).

If either A1 or A2 is normal, then a similar argument gives W (A1A2) ⊆ D(0,
√

2− a2 + 2
√

1− a2) and

if both A1 and A2 are normal then W (A1A2) ⊆ D(0, 1).

Example 10. W (A1) ⊆ D(0, 1) with A1 unrestricted and W (A2) ⊆ [0, 2], A2 necessarily normal and

z ∈W (A1A2). We have

|z| ≤ sup
0≤r≤1
0≤t≤2

(
rt+

(
1 +

√
1− r2

)√
1− (t− 1)2

)
.

The maximum is taken at r =
√
3
2 , t = 3

2 with maximum value 3
√
3

2 . We have W (A1A2) ⊆ D(0, 3
√
3

2 ). Taking

A1 = ω

(
0 2

0 0

)
, A2 =

(
1
2 − 1

2

√
3

1
2

√
3 3

2

)
, A1A2 = ω

(√
3 3

0 0

)
,

with ω ∈ C and |ω| = 1, we see that W (A1A2) is an ellipse with major axis L(−
√
3
2 ω,

3
√
3

2 ω). Thus, the

containment region D(0, 3
√
3

2 ) is minimal.

Example 11. W (A1),W (A2) ⊆ [0, 2]. If z ∈W (A1A2), we have

<e−iφz ≤
(
<(e−iφλ1λ2)

)
+
√

1− (λ1 − 1)2
√

1− (λ2 − 1)2,

with λ1, λ2 ∈ [0, 2]. Choosing the optimal λ1 and λ2 (λ1 = λ2 = cot
(
φ
2

)
), we get

<e−iφz ≤ 1

1− cos(φ)
= f(φ),

for π
3 ≤ φ ≤ 5π

3 . We expect the line x cos(φ) + y sin(φ) = f(φ) to be tangent to the boundary of the

containment region. This leads to the Clairaut differential equation:

y2 − 1 + 2y(1− x)
dy

dx
+ (x2 − 2x− 2)

(
dy

dx

)2

+ 2y

(
dy

dx

)3

− (2x+ 1)

(
dy

dx

)4

= 0,
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and solving for the envelope using the initial condition φ = π, y = 0, x = − 1
2 based on symmetry about the

x-axis we get

y = ± (4− x)
√

2x+ 1

3
√

3
.

So, a containment region is given by 27y2 ≤ 16 + 24x− 15x2 + 2x3.

Note that an equivalent situation where A1, A2 are positive semidefinite contractions has been studied

by a number of authors cf.[6, page 2]. With this normalization, a containment region is 27y2 − 1 − 6x +

15x2 − 8x3 ≤ 0.

Example 12. W (A1),W (A2) ⊆ T = co{0, 32 +
√
3
2 i,

3
2 −

√
3
2 i}. If z ∈W (A1A2), we have

<e−iφz ≤ f =
(
<(e−iφλ1λ2)

)
+
√

1− |λ1 − 1|2
√

1− |λ2 − 1|2,

with λ1, λ2 ∈ T . It is clear from symmetry that any containment region would be symmetric about the x-axis

so we restrict attention to 0 ≤ φ ≤ π.

We find f has maximum value

3 for 0 ≤ φ ≤ π

3
, from λ1 = λ2 =

3

2

(
1 + i tan(φ2 )

)
,

3

2
cos(φ) +

3
√

3

2
sin(φ) for

π

3
≤ φ ≤ 2π

3
, from λ1 = λ2 =

3

2
+

√
3

2
i,

3

4− 2 cos(φ)− 2
√

3 sin(φ)
for

2π

3
≤ φ ≤ π, from λ1 = λ2 =

3 +
√

3i

4− 2 cos(φ)− 2
√

3 sin(φ)
.

In the second range, the tangent passes through the point 3
2 + 3

√
3

2 i. Difficult calculations show that

z = x + iy lies in the region {x + iy;− 1
2 ≤ x ≤ 3, |y| ≤ Y (x)} where Y (x) =

√
9− x2 if 3

2 ≤ x ≤ 3 and

y = Y (x) is the solution of the equation:

x3 + 3
√

3x2y − 72x2 + 9xy2 + 18
√

3xy + 27x+ 3
√

3y3 − 54y2 + 27y
√

3 + 27 = 0,

with 1
2
√
3
≤ Y (x) ≤ 3

√
3

2 if − 1
2 ≤ x ≤

3
2 . Note that the line segment L(− 1

2 −
1

2
√
3
i,− 1

2 + 1
2
√
3
i) is part of the

boundary.

Example 13. Let K1 = 1 + i + R(1), K2 = 1 − i − R(1), A1, A2 normal. (Alternatively, we would get

the same result if K1 = K2 is the square of side 1 with diagonal on [0,
√

2] in the real axis.) Then we take

λ1 = 1 + x1 + i(1 + y1) and λ2 = 1 + x2 − i(1 + y2). We need to bound from above

f =
(
<e−iφλ1λ2

)
+
√

2− x21 − y21
√

2− x22 − y22 ,

which simplifies to

cos(φ)
(

(1+x1)(1+x2)+(1+y1)(1+y2)
)

+sin(φ)
(
y1−y2−x1+x2+x2y1−x1y2

)
+
√

(2− x21 − y21)(2− x22 − y22)

with x1, x2, y1, y2 running over [−1, 1]. It is clear from symmetry that any containment region would be

symmetric about the x-axis, so we restrict attention to 0 ≤ φ ≤ π.
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Let α = arctan
(√

7−1√
7+1

)
. Then f has maximum value

8 cos(φ) for 0 ≤ φ ≤ α, from x1 = x2 = y1 = y2 = 1,

5 + 4 sin(φ) + 4 cos(φ)

1 + sin(φ)
for α ≤ φ ≤ 2π

3
, from x2, y1 = 1, y2 = x1 =

2 cos(φ)− sin(φ)

1 + sin(φ)
,

4 sin(φ) for
2π

3
≤ φ ≤ 5π

6
, from x2, y1 = 1, y2 = x1 = −1,

1

1− sin(φ)
for

5π

6
≤ φ ≤ π, from y2 = x1 = −1, y1 = x2 =

sin(φ)

1− sin(φ)
.

In the first range, the tangent passes through the point z = 8. In the third range, the tangent passes

through the point 4i. Let z ∈ W (A1A2). Difficult calculations show that z = x + iy lies in the region

{x+ iy;−1 ≤ x ≤ 8, |y| ≤ Y (x)} where y = Y (x) is the solution of 27x2 − 2y3 + 15y2 − 24y − 16 = 0 in the

range 1 ≤ y ≤ 4 for −1 ≤ x ≤ 0 and is the solution of 27x4−368x3+816x2+7168+72x3y−472x2y+2304x+

50x2y2− 432y2x+ 2608y2 + 2y3x2 + 72y3x− 472y3− 6656y+ 23y4 + 2y5 = 0 in the range 4− 1
2x ≤ y ≤ 5 for

0 ≤ x ≤ 8. Note that the line segment L(−1− i,−1 + i) is part of the boundary of this containment region.
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Figure 1. The containment regions found for Examples 12 and 13.

8. Question. In view of Lemma 1, we ask the following.

Question 1. Let A1 and A2 be n × n complex normal matrices and let z ∈ W (A1A2). Do there

necessarily exist 3× 3 normal matrices Bj for j = 1, 2 such that W (Bj) ⊆W (Aj) and z ∈W (B1B2)?
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