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Abstract. An improvement of a bound of Yankosky (2003) is presented in this paper, thanks

to a restriction which has been recently obtained by the authors on the Schur multiplier M(L) of

a finite dimensional nilpotent Lie algebra L. It is also described the structure of all nilpotent Lie

algebras such that the bound is attained. An important role is played by the presence of a derived

subalgebra of maximal dimension. This allows precision on the size of M(L). Among other results,

applications to the non-abelian tensor square L ⊗ L are illustrated.
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1. Introduction and terminology. The classification of a finite dimensional

Lie algebra L via its Schur multiplier M(L) is a new field of interest in literature.

On one hand, several authors investigated the deep connections among L and the

structure of a finite p–group G (p a prime) with respect to its Schur multiplier M(G).

For instance, [7, Chapters 3 and 4] is a classic reference, which describes the aspects

of the commutator calculus on Lie algebras and the influence on the classification of

finite p–groups. On the other hand, a direction of research, in a certain sense opposite,

was introduced by Batten et al., who illustrated in [1, Theorem 5] that a bound for

M(G) can be translated in terms of a bound for the dimension dim(L) = n ≥ 1 of L.

Assigned t(L) = 1
2n(n−1)−dim(M(L)), [1, Theorem 3] shows that t(L) = 1 if and

only if L ∼= H(1), where H(1) is the Heisenberg algebra of dimension 3. We recall that

L is called Heisenberg provided that L2 = Z(L) and dim(L2) = 1. Such algebras

are odd dimensional with basis v1, . . . , v2m, v and the only non-zero multiplication

between basis elements is [v2i−1, v2i] = −[v2i, v2i−1] = v for i = 1, 2, . . . ,m. The

symbol H(m) denotes the Heisenberg algebra of dimension 2m + 1. Moreover, [1,

Theorem 5] shows that t(L) = 2 if and only if L ∼= H(1) ⊕ A(1), where A(1) is an
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abelian algebra of dim(A(1)) = 1. More generally, we denote with the symbol A(n)

an abelian algebra of dim(A(n)) = n.

[1, Theorem 3] was subject to a series of successive generalizations in [1, 2, 5, 8,

13, 18], which are devoted to detect the structure of L, when values of t(L) higher

than 2 are considered. On another hand, [1, 2, 5, 8, 13, 18] deal with bounds on

dim(M(L)) and sometimes it is possible to adapt these bounds in order to study other

important constructions of topology and K–theory, investigated in [4, 11, 12, 16],

where restrictions on the second homology group are involved.

The main strategies in [1, 2, 5, 8, 18] are summarized in [1, Section 1], where it

is illustrated that the origin of the investigations goes back to the p–groups classified

by Zhou in [19]. A similar parallel is possible, when we compare [9, Main Theorem]

with [13, Theorem 3.1]. Therefore, we get to the subject of the present paper: we

improve [13, Theorem 3.1], overlapping a situation for p–groups with large derived

subgroup, recently investigated in [10]. We will see that significant restrictions on

dim(M(L)) can be obtained, in presence of a derived subalgebra of maximal dimension

and will note that Yankosky described a special case of this situation almost seven

years ago. We will show that it is possible to obtain his bound [18, Corollary 3.7]

in a wider perspective and in a short way, when we involve different techniques.

These are our main contributions, which are placed in Section 3, after we recall some

fundamental tools in Section 2. Finally, an application is shown in Section 4, where

the constructions in [4, 11, 12, 16] are analyzed in virtue of the results in Section 3.

2. Preliminaries. We list the classifications, which are necessary to our aims.

In the case of groups, we have the following result.

Proposition 2.1 (See [9], Main Theorem). A p–group G of order pn with

the abelianization Gab = G/G′ of order pd has |M(G)| ≤ p
1

2
(2n−d−2)(d−1)+1, where

d ≤ n− 1. In particular, |M(G)| ≤ p
1

2
(n−1)(n−2)+1 and the equality holds in this last

bound if and only if G = H ×Z, where H is extra special of order p3 and exponent p

and Z is an elementary abelian p–group.

In the case of Lie algebras, we proceeded by analogy and found the following

classification with different techniques and arguments.

Theorem 2.2 (See [13], Theorem 3.1). For an n–dimensional non-abelian nilpo-

tent Lie algebra L such that dim(L/L2) = d, we have

dim(M(L)) ≤
1

2
(2n− d− 2) (d− 1) + 1.

Moreover, if d = n− 1, then the equality holds if and only if L ∼= H(1) ⊕A(n− 3).

The next contribution, recently obtained in [10], will allow us to shed light on a
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special situation of Theorem 2.2, related to [18, Corollary 3.7].

Proposition 2.3 (See [10], Theorem 2.1). Assume that a p–group G of order

|G| = pn (n ≥ 4) has |G′| = pn−2. Then |M(G)| ≤ pn−2, if p 6= 2, and |M(G)| ≤

pn−3, if p=2.

For the special case of filiform Lie algebras and p–groups of maximal class, similar

results have been shown by Bosko in [3], where a special case has been treated. In fact,

the reader may compare Proposition 2.3 and Theorem 3.1 below with [3, Theorems

10 and 12]. Now some general considerations are recalled from [13].

Remark 2.4. The Schur multiplier of the direct product of two finite groups is

equal to the direct product of the Schur multipliers of the two factors plus the tensor

product of the abelianization of the two groups (see [6, Theorem 2.2.10]). This fact

comes from basic homology and is known as the Künneth Formula (see [15]): it is

true also for two finite dimensional Lie algebras H and K. The Künneth Formula

was originally obtained by Schur in 1904 (see [17]). We recall that ⊗Z denotes the

usual tensor product of abelian Lie algebras and ⊕ their direct sum. Then we have

M(H ⊕K) = M(H) ⊕M(K) ⊕ (H/H2 ⊗Z K/K
2).

In particular we may deduce the following two facts.

Proposition 2.5 (See [13], Theorem 2.2). Let A and B be two finite dimensional

Lie algebras. Then

dim(M(A⊕B)) = dim(M(A)) + dim(M(B)) + dim(A/A2 ⊗Z B/B
2).

Corollary 2.6 (See [13], Corollary 2.3). Let L be a finite dimensional Lie

algebra, K be a central ideal of L and H = L/K. Then

dim(M(L)) + dim(L2 ∩K) ≤ dim(M(H)) + dim(M(K)) + dim(H/H2 ⊗Z K).

3. Main theorems. The following result was motivated by the presence of a

derived subalgebra of maximal dimension and originated from the situation in Propo-

sition 2.3.

Theorem 3.1. An n–dimensional nilpotent Lie algebra L with dim(L2) = n− 2

and n ≥ 4 has dim(M(L)) ≤ dim(L2).

Proof. We perform induction on n. Assume n = 4. Then Theorem 2.2 allows us

to conclude that dim(M(L)) ≤ 3. From [5, Theorem 1] there is no Lie algebra L with
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dim(L2) = 2, when dim(M(L)) = 3. Therefore, dim(M(L)) ≤ 2 and so the result is

true for n = 4.

From Corollary 2.6 we have, for a central ideal of dimension 1 in L2,

1 + dim(M(L)) ≤ dim(M(L/K)) + dim(M(K)) + dim
( L/K

(L/K)2
⊗Z K

)

≤ dim(L2/K) + 2,

by the induction hypothesis. Hence,

dim(M(L)) ≤ 1 + dim(L2/K) = dim(L2)

and the result follows.

We note that the above bound improves that of Yankosky, quoted below.

Lemma 3.2 (See [18], Corollaries 3.7, 3.8). An n–dimensional nilpotent Lie

algebra L with dim(L2) = n − 2 has dim(M(L)) ≤ dim(L2) + 1. Furthermore, if

dim(L/L2) = d, then

dim(M(L)) ≤
d− d2 + 2dn− 2n

2
.

The inequality in Theorem 2.2 is, in general, better than the inequality in Lemma

3.2, unless that L ∼= H(1). This case is described with details by the next result.

Lemma 3.3. The bound in Theorem 2.2 is less than the bound in Lemma 3.2

unless d = 2.

Proof. We have

1

2
(2n− d− 2) (d− 1) + 1 <

1

2
(d− d2 + 2nd− 2n)

and short calculations show that the quantity which appears in the left side of the

above inequality is less than the quantity which appears in the right side if and only

if d > 2. The result follows.

Corollary 3.4. Let L be an n–dimensional nilpotent Lie algebra. Then the

bound in Theorem 2.2 is less than the bound in Lemma 3.2 for all n ≥ 4. For n = 3

the bounds are equal and L ≃ H(1).

Proof. It is obvious that the bounds are equal for n = 3. In this case L ≃ H(1).

Thus, we assume n ≥ 4. Lemma 3.3 shows that the two bounds are equal when d = 2.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1-9, January 2011



ELA

A Restriction on the Schur Multiplier of Nilpotent Lie Algebras 5

Thus Theorem 2.2 allows us to conclude that L 6≃ H(1)⊕A(n−3), since dim(L2) ≥ 2.

Still Theorem 2.2 implies dim(M(L)) ≤ 1
2 (2n− d− 2)(d− 1) and this is less than the

value in Lemma 3.2.

The above arguments allow us to have a short proof of Yankosky’s Theorem, that

is, of Lemma 3.2, and to characterize the structure of all Lie algebras which achieve

that bound.

Theorem 3.5. An n–dimensional nilpotent Lie algebra L such that dim(L/L2) =

d has

dim(M(L)) ≤
d− d2 + 2dn− 2n

2

and the equality holds if and only if L ≃ A(n) or L ≃ H(1).

Proof. First assume that L is an abelian Lie algebra. From [1, Lemma 3], we

deduce that L ≃ A(n). Hence, we may assume that L is non-abelian. In the case

d > 2 the result follows from Theorem 2.2 and Corollary 3.4. In the case d = 2 the

result follows from Lemma 3.3.

In Theorems 3.1 and 3.5 we proved some upper bounds for dim(M(L)) by looking

only at dim(L/L2) = d and dim(L) = n. Now we involve also dim(Z(L)) = t ≥ 1 and

dim(Z(L) ∩ L2) = s ≥ 1.

Theorem 3.6. An n–dimensional nilpotent Lie algebra L such that dim(L/L2) =

d, dim(Z(L)) = t and dim(Z(L) ∩ L2) = s has

dim(M(L)) ≤
d− d2 + 2dn− 2n

2
− (n− d)(t− s).

In particular, Theorem 3.5 is obtained for s = t.

Proof. First we assume that L is abelian. Hence, d = n and the result follows

from [1, Lemma 3]. Then we assume that L is non-abelian. Still [1, Lemma 3] allows

us to conclude that the abelian Lie algebra L/L2 should satisfy the relation

dim(M(L/L2)) =
1

2
d(d− 1).

By invoking [18, Corollary 3.3],

dim(M(L)) ≤ dim(M(L/L2)) + dim(L2)
(

dim
( L

Z(L) + L2

)

− 1
)

and then we may proceed as follows

=
1

2
d(d− 1) + (n− d)

(

n− (t+ n− d− s)− 1
)

=
d− d2 + 2dn− 2n

2
− (n− d)(t− s).

The remaining part s = t of the proof is straightforward.
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4. Applications to non-abelian tensor squares. In this section, we recall

some constructions from [4, 11, 12, 16] and illustrate the consequences of Theorems

3.1, 3.5 and 3.6 in a different context.

Let F be a fixed field, L,K be two Lie algebras (not necessarily of finite dimen-

sion), c ∈ F , l, l′ ∈ L, k, k′ ∈ K and [·, ·] be the usual Lie bracket. By an action of L

on K, we mean an F–bilinear map

(l, k) ∈ L×K 7→ lk ∈ K

satisfying

[l,l′]k = l( l
′

k) − l′( lk),

l[k, k′] = [ lk, k′] + [k, lk′].

Clearly, if L is a subalgebra of some Lie algebra P and K is an ideal in P , then

the Lie multiplication in P induces an action of L on K. In fact, l acts on k by
lk = [l, k]. Let L and K be Lie algebras acting on each other, and on themselves by

Lie multiplications. Then these actions are said to be compatible if
klk′ = k′( lk)

and
lkl′ = l′( kl). It is obvious that if L and K are both ideals of some Lie algebra,

then the Lie multiplication gives rise to compatible actions. For each Lie algebra Q,

we call a bilinear function ϕ : K × L→ Q a Lie pairing if

ϕ([l, l′], k) = ϕ(l, l
′

k) − ϕ(l′, lk),

ϕ(l, [k, k′]) = ϕ( k
′

l, k) − ϕ( kl, k′),

ϕ( kl, l
′

k′) = −[ϕ(l, k), ϕ(l′, k′)].

The non-abelian tensor product L ⊗ K of L and K is the Lie algebra generated by

the symbols l ⊗ k with defining relations

c(l ⊗ k) = cl ⊗ k = l ⊗ ck,

(l + l′) ⊗ k = l ⊗ k + l′ ⊗ k,

l ⊗ (k + k′) = l ⊗ k + l ⊗ k′,

ll′ ⊗ k = l ⊗ l′k − l′ ⊗ lk,
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l ⊗ kk′ = k′ l ⊗ k − kl ⊗ k′,

[l ⊗ k, l′ ⊗ k′] = − kl ⊗ l′k′.

In the case L = K and all actions are given by Lie multiplication, L ⊗ L is called

non-abelian tensor square of L. It is opportune to note that we find the usual abelian

tensor product L ⊗Z K, when L and K are abelian and the actions are compatible

and trivial.

Following the terminology in [4, Section 2], L�L = 〈l⊗ l | l ∈ L〉 is a submodule

of L⊗ L and lies in the center Z(L⊗ L) of L⊗ L. In particular, L�L is an ideal of

L⊗ L and we may consider the Lie algebra quotient

L ∧ L =
L⊗ L

L�L
= 〈l ⊗ l′ + (L�L) | l, l′ ∈ L〉 = 〈l ∧ l′ | l, l′ ∈ L〉,

which is called exterior product of L. From [4, 11, 12], we may deduce that the following

diagram (with Lie algebras and Lie homomorphisms) is commutative and has exact

rows and central extensions as columns:

0 0




y





y

Γ(L/L2)
ψ

−−−−→ J2(L)
ǫ

−−−−→ H2(L) −−−−→ 0
∥

∥

∥

ι





y ι′





y

Γ(L/L2)
ψ

−−−−→ L⊗ L
ǫ′

−−−−→ L ∧ L −−−−→ 0 .

κ





y κ′





y

L2 L2





y





y

0 0

Here κ is defined by l ⊗ l′ ∈ L ⊗ L 7→ [l, l′] ∈ L2, J2(L) = kerκ and contains L�L,

ι is the embedding of J2(L) into L ⊗ L, ǫ is the natural homomorphism of J2(L)

onto H2(L), κ′ is defined by l ∧ l′ ∈ L ∧ L 7→ [l, l′] ∈ L2, H2(L) = kerκ′ is the

second homology Lie algebra of L, ι′ is the embedding of H2(L) into L ∧ L, ǫ′ is the

natural homomorphism of L⊗L onto L∧L, Γ is the Whitehead’s universal quadratic

functor in [4] and ψ the Whitehead’s universal quadratic homomorphism in [4]. It is

interesting to note that there exists a Lie isomorphism in the sense of [4, Theorem

36] among the Lie algebras H2(L) and M(L) (see also [11, Section 1]).
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Some recent contributions on the structure of L�L have been shown in [11, 12]

and are recalled below.

Lemma 4.1 (See [11], Lemma 2.1). Let L be a nilpotent n–dimensional Lie

algebra. Then L�L ≃ L/L2
�L/L2.

This allows us to conclude the next result.

Theorem 4.2. An n–dimensional nilpotent Lie algebra L with dim(L/L2) = d

has dim(L⊗ L) ≤ nd and the equality holds if and only if L ≃ H(1) or L ≃ A(n).

Proof. From the diagram above, we deduce that

dim(L⊗ L) = dim(M(L)) + dim(L�L) + dim(L2)

and from Theorem 3.5 and Lemma 4.1 we may continue as follows

≤
d− d2 + 2dn− 2n

2
+
d(d+ 1)

2
+ (n− d) = nd.

In the case that L is abelian, the result holds. Otherwise, L is non-abelian and the

result follows by Lemma 3.2 and Theorem 3.1.

Remark 4.3. We note that the inequality in Theorem 4.2 can be found in [14]

in the case of groups and has been recently adapted to Lie algebras in [16, Corollary

3.4]. Here, we are using a different argument in the proof and are able to characterize

all those nilpotent Lie algebras which achieve the bound.

We conclude with an improvement of Theorem 4.2.

Corollary 4.4. An n–dimensional nilpotent Lie algebra L with dim(L/L2) = d,

dim(Z(L)) = t and dim(Z(L) ∩ L2) = s has

d2 ≤ dim(L⊗ L) ≤ nd− (n− d)(t− s).

Proof. The upper bound follows by looking at the proof of Theorem 4.2.

The lower bound is obtained from d2 = dim(L/L2 ⊗Z L/L
2) ≤ dim(L⊗ L).
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