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DIAGONALIZABLY REALIZABLE IMPLIES UNIVERSALLY REALIZABLE∗

CARLOS MARIJUÁN† AND RICARDO L. SOTO‡

Abstract. A spectrum Λ = {λ1, . . . , λn} of complex numbers is said to be realizable if it is the spectrum of an entrywise

nonnegative matrix A. The spectrum Λ is diagonalizably realizable (DR) if the realizing matrix A is diagonalizable, and Λ is

universally realizable (UR) if it is realizable for each possible Jordan canonical form allowed by Λ. In 1981, Minc proved that

if Λ is the spectrum of a diagonalizable positive matrix, then Λ is universally realizable. One of the main open questions about

the problem of universal realizability of spectra is whether DR implies UR. Here, we prove a surprisingly simple result, which

shows how diagonalizably realizable implies universally realizable.
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1. Introduction. The Nonnegative Inverse Eigenvalue Problem (NIEP) consists of: Given a list Λ =

{λ1, . . . , λn} of complex numbers, find necessary and sufficient conditions for the existence of an entrywise

n-by-n nonnegative matrix A with spectrum Λ. In this case, we say that Λ is realizable and that the matrix

A is a realizing matrix for Λ. If the matrix A is diagonalizable, we have the DNIEP, and we say that Λ

is diagonalizably realizable (DR). If the matrix A is symmetric, we have the SNIEP, and we say that Λ is

symmetrically realizable (SR). The NIEP, DNIEP and SNIEP are equivalent for n smaller than five. The

list Λ is universally realizable (UR) if it is realizable for every Jordan canonical form (JCF) allowed by Λ.

The problem of the universal realizability of spectra is called the universal realizability problem (URP). The

URP contains the NIEP, and both problems remain unsolved for n ≥ 5. Both problems are equivalent if the

prescribed eigenvalues λ1, . . . , λn are distinct. The URP seeks to determine the spectral properties allowed

by a nonnegative matrix, not only regarding the eigenvalues themselves but also from the point of view of

the corresponding JCF.

The first known results on the URP, formerly called nonnegative inverse elementary divisors problem,

are due to Minc [17]. In terms of the URP, Minc proved that if Λ = {λ1, . . . , λn} is the spectrum of a

diagonalizable positive matrix, then Λ is UR. There are spectra, not positively realizable, that are known

to be UR, as for instance, certain spectra in the left half-plane, that is, Λ = {λ1, . . . , λn} with λ1 > 0,

Reλi ≤ 0, i = 2, . . . , n. In particular, the following were progressively shown to be UR: real Sulĕımanova

spectra [19], that is λ1 > 0 > λ2 ≥ · · · ≥ λn; complex Sulĕımanova spectra [20], that is

λ1 > 0, λi ∈ {z ∈ C : Re z ≤ 0, |Re z| ≥ |Im z|} , i = 2, . . . , n;
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and Šmigoc spectra [5],

λ1 > 0, λi ∈
{
z ∈ C : Re z ≤ 0,

∣∣∣√3 Re z
∣∣∣ ≥ |Im z|

}
, i = 2, . . . , n.

These lists are realizable if and only if they are UR, and both hold if and only if
∑n
i=1 λi ≥ 0. The good

behavior of this kind of lists led to the idea that any left half-plane list was UR. Now, we know that this is

not true (see Remark 3.1 in [12]).

Throughout this paper, if Λ = {λ1, . . . , λn} is realizable, then λ1 is the Perron eigenvalue of the realizing

matrix. We denote by CSα the set of all n-by-n real matrices with constant row sums equal to α. It is

clear that any matrix in CSα has the eigenvector e
T

= [1 · · · 1] corresponding to the eigenvalue α. It is

well known (see [8]) that the problem of finding a nonnegative matrix with spectrum Λ = {λ1, . . . , λn} is

equivalent to the problem of finding a nonnegative matrix in CSλ1
with spectrum Λ. We denote by ek the

vector with 1 in the kth position and zeros elsewhere, by Ei,j the matrix with 1 in position (i, j) and zeros

elsewhere and we define the matrix

(1) EK =
∑
i∈K

Ei,i+1, K ⊂ {1, 2, . . . , n}.

Diagonalizability is a necessary condition for a list of complex numbers to be UR. It is also important

because we know how to join Jordan blocks to obtain any coarser JCF in the case of positive realizations.

The question of whether Minc’s result holds for nonnegative realizations has been open for almost 40 years.

Recently, two extensions have been obtained: the first, by Collao et al. [3], shows that if Λ = {λ1, . . . , λn} is

the spectrum of a diagonalizable nonnegative matrix A ∈ CSλ1
with a positive column, then Λ is UR. Note

that if A has a positive row and AT has a positive eigenvector, then Λ is also UR. The second extension,

by Johnson et al. [9], shows that if Λ is realizable by a diagonalizable ODP matrix, that is, a diagonalizable

nonnegative matrix having all its off-diagonal entries being positive (zeros on diagonal are permitted), then

Λ is also UR.

There are still numerous open questions about the URP. One of them, which motivates our interest in

this paper, is under what conditions a DR list of complex numbers is UR. In [11], the authors showed that

the list

(2) Λ = {λ1, λ1, λ2, λ2}, with λ1 > 0 > λ2 ≥ −λ1, λ1 + 2λ2 < 0,

is not UR, although it is DR. Since Λ in (2) has a reducible realization, it is worth asking whether DR
implies UR is valid for irreducible realizations. However, in [12] it was also shown that there exist lists, as

(3) Λ =

{
a,

√
5− 1

4
a,

√
5− 1

4
a,−
√

5 + 1

4
a,−
√

5 + 1

4
a

}
, a > 0

that are irreducibly diagonalizably realizable but not UR

In this paper, we prove a surprisingly simple result, which shows how DR implies UR for general lists

of complex numbers. The paper is organized as follows: In Section 2, we introduce some theorems which

are used to obtain our results. In Section 3, we prove that there is a nonnegative real number λ0 such that

Λµ = {µ, λ2, . . . , λn} is DR (UR) if µ ≥ λ0, and we define, for a list Λ of complex numbers, the indices of
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diagonalizable realizability and of universal realizability. We also define the concepts diagonalizably realizable

extreme and diagonalizably realizable non-extreme. This is a key definition to establish that DR implies

UR under certain conditions. We also introduce in this section the main results, Theorems 3.5 and 3.6,

which show when DR implies UR. Other results, which establish a connection between DR and UR, are

also introduced. In Section 4, we consider the case DR implies UR for lists DR extreme, and we propose

realizations that are DR and consequently UR. Examples are given to illustrate the results.

2. Preliminaries. In this paper, we use the following results: Theorems 2.1 to 2.6 below. Theorem

2.1, due to Brauer [2], is a perturbation result that shows how to change one single eigenvalue of an n-by-n

matrix without changing any of the remaining (n − 1) eigenvalues. Theorem 2.2, by Soto and Ccapa [19],

establishes the JCF of the Brauer perturbation A + eq
T

. Theorem 2.3, by Laffey and Šmigoc [14], gives a

necessary and sufficient condition for the realizability of a left half-plane list of complex numbers. Theorem

2.4, by Šmigoc [18], gives a procedure to obtain, from two matrices A and B, a new matrix C, preserving in

certain way, the corresponding JCFs of A and B. This procedure is called Šmigoc’s glue technique. Theorem

2.5, by Torre et al. [22], solves the NIEP on size 5 with trace zero from the coefficients of the characteristic

polynomial.

Theorem 2.1. [2] Brauer. Let A be an n-by-n matrix with spectrum {λ1, . . . , λn}. Let v
T

= [v1 · · · vn]

be an eigenvector of A associated with the eigenvalue λk and let q be any n-dimensional vector. Then, the

matrix A+ vq
T

has eigenvalues λ1, . . . , λk−1, λk + v
T
q, λk+1, . . . , λn.

Theorem 2.2. [19] Soto and Ccapa. Let q
T

= [q1 · · · qn] be an arbitrary n-dimensional vector. Let

A ∈ CSλ1
with Jordan canonical form

J(A) = S−1AS = diag {J1(λ1), Jn2
(λ2), . . . , Jnk

(λk)} .

If λ1 +
∑n
i=1 qi 6= λi, i = 2, . . . , n, then the matrix A+eq

T
has Jordan canonical form J(A)+(

∑n
i=1 qi)E11.

In particular, if
∑n
i=1 qi = 0 then A and A+ eq

T
are similar.

Theorem 2.3. [14] Laffey and Šmigoc. Let Λ = {λ1, . . . , λn} be a left half-plane list of complex numbers.

Then, Λ is realizable if and only if

s1 =

n∑
i=1

λi ≥ 0; s2 =

n∑
i=1

λ2
i ≥ 0; s2

1 ≤ ns2.

Theorem 2.4. [18] Šmigoc. Suppose B is an m-by-m matrix with a Jordan canonical form that contains

at least one 1-by-1 Jordan block corresponding to the eigenvalue c:

J(B) =

[
c 0

0 I(B)

]
.

Let t and s, respectively, be the left and the right eigenvectors of B associated with the 1-by-1 Jordan block

in the above canonical form. Furthermore, we normalize vectors t and s so that t
T
s = 1. Let J(A) be a

Jordan canonical form for the n-by-n matrix

A =

[
A1 a

bT c

]
,

where A1 is an (n− 1)-by-(n− 1) matrix and a and b are vectors in Cn-1
. Then, the matrix

C =

[
A1 at

T

sb
T

B

]
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has Jordan canonical form

J(C) =

[
J(A) 0

0 I(B)

]
.

Theorem 2.5. [22, Theorem 39 for n = 5 and p = 2] Torre et al. The polynomial P5(x) = x5 +k2x
3 +

k3x
2 + k4x+ k5 is realizable if and only if the coefficients of P5(x) satisfy

k2, k3, k4 − k22
4 ≤ 0, and k5 ≤


k2k3 if k4 ≤ 0,

k3

(
k2
2 −

√
k22
4 − k4

)
if k4 > 0.

In the case k4 ≤ 0, the polynomial P5(x) is realizable by the matrix
0 1 0 0 0

0 0 1 0 0

−k3 0 0 1 0

−k4 0 0 0 1

k2k3 − k5 0 0 −k2 0

 .

Finally, although mentioned in the Introduction (cases ii. to iv.) and proven in [1, 15] (case i.) we recall

here, for the sake of completeness, the following results:

Theorem 2.6. Let Λ = {λ1, λ2, . . . , λn} be a diagonalizably realizable list of complex numbers with a

diagonalizable realizing matrix A, where:

i. A is irreducible with a positive row or column, or

ii. A ∈ CSλ1
has a positive column, or

iii. A has a positive row and AT has a positive eigenvector, or

iv. A is an ODP matrix.

Then, Λ is universally realizable.

3. DR non-extreme implies UR. It is well known (see [8]) that an n-by-n irreducible nonnegative

matrix A is similar, via a positive eigenvector, to an irreducible nonnegative matrix B with constant row

sums. In fact, since A has a positive eigenvector [x1 · · · xn] associated with its spectral radius ρ(A), then

B = D−1AD, where D = diag{x1 · · · xn}, is a nonnegative matrix similar to A and B ∈ CSρ(A). If A

is a reducible nonnegative matrix, then only co-spectrality with a nonnegative matrix B ∈ CSρ(A) can be

assured. In this case, we consider a permutationally similar Frobenius normal form Ã = P−1AP . Thus, if a

list Λ is DR by a diagonalizable nonnegative matrix A, then the matrix Ã is also DR. The matter is that the

transformation of a diagonalizable matrix in a matrix with constant row sums, in general, does not preserve

the diagonalizability. From the Perron Frobenius Theory, we know that, to preserve diagonalizability, it is

necessary and sufficient the existence of a positive eigenvector, as is said in the following result.

Theorem 3.1. (Theorem 6, [6]) Let A be a reducible nonnegative matrix with spectral radius ρ(A).

Then, A has a positive eigenvector [x1 · · · xn] associated with ρ(A) if and only if, in the Frobenius normal

form Ã, all the final components have a spectral radius ρ(A) and the non-final components have a smaller

spectral radius.

In this case, as in the irreducible case, B = D−1AD, where D = diag{x1 · · · xn}, is a nonnegative matrix

similar to A and B ∈ CSρ(A).
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Let Λ = {λ2, . . . , λn} be a self-conjugate list of complex numbers. Guo proved (Theorem 2.1 in [7]) that

there is a minimum nonnegative number gr(Λ) such that Λµ = {µ, λ2, . . . , λn} is realizable for all µ ≥ gr(Λ).

We call gr(Λ) the realizability index of Λ. Analogously, for a list Λ = {λ2, . . . , λn} of real numbers (Theorem

4.1 in [7]), there is a minimum nonnegative number gs(Λ) such that Λµ = {µ, λ2, . . . , λn} is symmetrically

realizable for all µ ≥ gs(Λ). We call gs(Λ) the symmetric realizability index of Λ. The minimality of these

two indexes is a consequence of the property: If Λε = {λ1 + ε, λ2, · · · , λn} is realizable (SR) for all ε > 0,

then Λ = {λ1, λ2, · · · , λn} is realizable (SR).

In a similar way, we obtain an index for diagonalizable realizability.

Theorem 3.2. Let Λ = {λ2, . . . , λn} be a self-conjugate list of complex numbers. Then, there is a

nonnegative number λ0 ≥ gr(Λ) such that Λµ = {µ, λ2, . . . , λn} is diagonalizably realizable for every µ ≥ λ0.

Proof. First, we exhibit a value λ0 ≥ gr(Λ) such that Λλ0
= {λ0, λ2, . . . , λn} is DR. Let A be a realizing

matrix for Λ ∪ {gr(Λ)}. Without loss of generality, we assume that A ∈ CSgr(Λ), that is, Ae = gr(Λ)e. If

A is diagonalizable, we are done (λ0 is gr(Λ)). If not, we take A = SJS−1, where J is the JCF of A and

Se1 = e. Now let J̃ be the same as J, except that any nonzero superdiagonal number is replaced with 0s.

So, J̃ is diagonal or block diagonal with spectrum Λ. Define Ã = SJ̃S−1. If Ã is nonnegative, we are done.

If not, since

Ãe =SJ̃S−1e = gr(Λ)e,

that is, Ã ∈ CSgr(Λ), we apply Brauer’s Theorem 2.1 to produce a nonnegative matrix A′ = Ã+ eq
T

, where

q
T

= [q1 · · · qn] is an appropriate nonnegative vector. From Theorem 2.2, since Ã is diagonalizable, then

A′ is also diagonalizable with spectrum

{
gr(Λ) +

n∑
i=1

qi, λ2, . . . , λn

}
. Let λ0 = gr(Λ) +

n∑
i=1

qi. Thus, we have

established the existence of a value λ0 ≥ gr(Λ) such that Λλ0
= {λ0, λ2, . . . , λn} is DR. Now, from [11,

Theorem 3.1], we have that if Λλ0
is DR, then Λλ0+ε = {λ0 + ε, λ2, . . . , λn}, ε > 0, is also DR. Thus, Λµ is

DR for all µ ≥ λ0.

Note that the set of µs such that Λµ is DR is infinite and bounded below by the realizability index gr(Λ).

Then, there exists the infimum (the greatest lower bound) gd(Λ) that we call the diagonalizable realizability

index of Λ. We have not been able to prove that if Λε = {λ1 + ε, λ2, · · · , λn} is DR for all ε > 0, then

Λ = {λ1, λ2, · · · , λn} is DR. Neither have we found a counterexample, so we do not know if the index gd(Λ)

is or not a minimum.

Now we obtain an index for universal realizability.

Theorem 3.3. Let Λ = {λ1, λ2, . . . , λn} be a diagonalizably realizable list of complex numbers with

a diagonalizable realizing matrix A having a positive eigenvector. Then, there is a nonnegative number

λ0 ≥ gd(Λ/λ1) such that Λµ = {µ, λ2, . . . , λn} is UR for every µ ≥ λ0.

Proof. First we exhibit a value λ0 ≥ λ1 such that Λλ0 = {λ0, λ2, · · · , λn} is UR. Without loss of

generality, we assume that A ∈ CSλ1 . Let S with Se1 = e be such that A = SJAS
−1, where JA =

diag{λ1, λ2, . . . , λn}. If Λ is UR, there is nothing to do (λ0 is λ1). If not, let JA + EK , with EK as defined

in (1) be the desired JCF. Then,

JA + EK = S−1AS + EK = S−1(A+ SEKS
−1)S,

and A + SEKS
−1 has the spectrum Λ and the desired JCF, although it is not necessarily nonnegative.

Note that SEKS
−1 ∈ CS0 and, if 0 < ε < 1, then the absolute value of each entry of εSEKS

−1 is smaller



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 382-395, April 2024.

387 Diagonalizably realizable implies universally realizable

than the absolute value of the corresponding entry of SEKS
−1. Then, we may choose a nonnegative vector

q
T

= [q1 · · · qn] and ε > 0 sufficiently small such that

(4) B = (A+ εSEkS
−1) + eq

T

is nonnegative, with spectrum Λλ0 = {λ0, λ2, · · · , λn} with λ0 = λ1 +

n∑
i=1

qi and, from Theorem 2.2, with the

desired JCF. Now, from [11, Theorem 3.1], if Λλ0 is UR, then Λµ = {µ, λ2, . . . , λn} is UR for every µ ≥ λ0.

As above, there exists the infimum gu(Λ) that we call the universal realizability index of Λ. Later, we

consider the minimality question about this index.

The following definition is key to understand the relation between DR and UR.

Definition 3.4. Let Λ = {λ1, λ2, . . . , λn} be a diagonalizably realizable list of complex numbers. We say

that Λ is diagonalizably realizable extreme if for all ε > 0, Λ−ε = {λ1 − ε, λ2, . . . , λn} is not diagonalizably

realizable. We say that Λ is diagonalizably realizable non-extreme if there is a number ε > 0, such that Λ−ε
is diagonalizably realizable.

Remark 1. From Theorem 3.2, if Λ = {λ1, λ2, . . . , λn} is DR extreme, then gd(Λ/λ1) = λ1 and

gd(Λ/λ1) is a minimum. If Λ is DR, extreme or not, we can only state that gr(Λ/λ1) ≤ gd(Λ/λ1).

The number λ0 in Theorem 3.3 is λ1 if Λ is UR, or strictly greater than λ1 if Λ is not UR. The following

results establish the biggest possible refinement of the result in Theorem 3.3 and clarify the connection

between DR and UR. In particular, they show how DR non-extreme implies UR.

Theorem 3.5. Let Λ = {λ1, λ2, . . . , λn} be a diagonalizably realizable list of complex numbers with a

diagonalizable realizing matrix A having a positive eigenvector. Then , Λε = {λ1+ε, λ2, . . . , λn} is universally

realizable for all ε > 0.

Proof. Note that in the proof of the Theorem 3.3, if Λ is not UR, we can decrease ε in such a way that
n∑
i=1

qi is as small as we want to and, consequently, λ0 converge to λ1.

Theorem 3.6. Let Λ = {λ1, λ2, . . . , λn} be a diagonalizably realizable list of complex numbers. Then

(1) If Λ is non-extreme with Λ−ε = {λ1 − ε, λ2, . . . , λn}, ε > 0, being diagonalizably realizable by a matrix A

with a positive eigenvector, then Λ is universally realizable.

(2) If Λ is extreme, then gu(Λ) = gd(Λ/λ1).

Proof. (1) Let [x1 · · · xn] be a positive eigenvector of A corresponding to λ1 − ε, and let D =

diag{x1 · · · xn}. Then, B = D−1AD ∈ CSλ1−ε is DR with spectrum Λ−ε. Therefore, from Theorem

2.2, B + eqT , where qT = ε
ne

T , is a diagonalizable positive matrix with spectrum Λ. Therefore, Λ is UR.

In this case, DR and UR are equivalent.

(2) If Λ is extreme, from Remark 1, gd(Λ/λ1) = λ1 is a minimum. Since Λε is universally realizable for all

ε > 0, then gu(Λ) = gd(Λ/λ1).

Remark 2. Lists Λ as in (3) are DR extreme, but not UR. However, from Theorem 2.2, the corre-

sponding lists Λε are still DR but non-extreme, and since the realizations of Λ are irreducible, from Theorem

3.5, the lists Λε are UR and gu(Λ) = gd(Λ/λ1) with gu(Λ) not minimum. Then, the statement “If Λε is UR



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 382-395, April 2024.

C. Marijuán and R. L. Soto 388

for all ε > 0, then Λ is UR” is false, and so, in general, the universal realizability index gu(Λ/λ1) is not a

minimum.

Corollary 3.7. From Theorem 3.6, if Λ is DR extreme, then gu(Λ) can be or not a minimum. If Λ

is DR non-extreme, we can only state that gd(Λ/λ1) ≤ gu(Λ).

The following example illustrates the Theorems 3.1 and 3.5:

Example 1. The list Λ = {2, 2, 1,−1,−1,−1,−1} is realizable by the reducible DR matrix A and, by

means of the permutation (7146352), we obtain the Frobenius normal form Ã:

A =



1 1 0 0 1 0 1

0 0 0 0 1 0 1

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 1 0 0 0 0 1

0 0 1 1 0 0 0

0 1 0 0 1 0 0


, Ã =



0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 0 0 0

0 0 0 0 1 1 0

0 0 0 1 0 1 0

0 0 0 1 1 0 0

1 1 1 0 0 0 1


.

The basic components of Ã are just the final components, then by Theorem 3.1, the matrix A has a positive

eigenvector, for instance [3 1 3 3 1 3 1]. Then, with D = diag{3 1 3 3 1 3 1}, we have that

D−1AD =



1 1
3 0 0 1

3 0 1
3

0 0 0 0 1 0 1

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 1 0 0 0 0 1

0 0 1 1 0 0 0

0 1 0 0 1 0 0


∈ CS2

is diagonalizable with spectrum Λ and, for qT = ε
7e
T ,

D−1AD + eqT ,

is diagonalizable positive with spectrum Λε = {2 + ε, 2, 1,−1,−1,−1,−1}. Therefore, Λε is UR for all ε > 0.

The following example illustrates the Theorem 3.6 in the non-extreme case:

Example 2. The list Λ = {7,−1,−1±3i,−1±3i} is DR non-extreme since Λ′ = {6,−1,−1±3i,−1±3i}
is the spectrum of the diagonalizable nonnegative matrix

B =



0 0 6
17

24
17

96
17

384
17

1 0 1
85

4
85

16
85

64
85

0 10 0 0 0 40

0 12 1 0 0 38

0 3 0 1 0 0

0 1 0 0 1 1
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having a positive eigenvector xT = [10 2 10 12 3 1]. Then, for D = diag{10 2 10 12 3 1},

D−1BD =



0 0 6
17

144
85

144
85

192
85

5 0 1
17

24
85

24
85

32
85

0 2 0 0 0 4

0 2 5
6 0 0 19

6

0 2 0 4 0 0

0 2 0 0 3 1


∈ CS6

is diagonalizable with spectrum Λ′ and, for qT = 1
6e
T ,

A = D−1BD + eqT

is diagonalizable positive with spectrum Λ. Therefore Λ is UR.

The following example illustrates the Theorem 3.6 in the extreme case:

Example 3. It is clear that Λ = {3, 3,−2,−2,−2} is not realizable. In [16], it was proved that the

list Λt = {3 + t, 3 − t,−2,−2,−2} is realizable if and only if t ≥
√

16
√

6− 39 = 0.43799 · · · , that is,

with gr(Λ/3) =
√

16
√

6− 39 while in [4] it was proved that Λt is DR if and only if t ≥ 1. Then, Λ1 =

{4, 2,−2,−2,−2} is DR extreme, and gd(Λ1/4) = 4 is the minimum. From Theorem 3.5 in [12], we also

know that gu(Λ1) = 4 is the minimum. Obviously, the list Λ1 is SR and gs(Λ1/4) = gd(Λ1/4) (see Remark

12 in [10]).

Note that if Λ is a left half-plane list, then from Theorem 2.3, we can always compute the exact value

of gr(Λ/λ1).

Example 4. It is easy to see, by applying Šmigoc’s glue technique in Theorem 2.4, that the list

Λ = {11,−2,−1± 3i,−1± 3i,−1± 3i,−1± 3i} is DR.

Is Λ UR? Our procedure, to answer this question, consists of identifying a real number µ, with gr(Λ/λ1) ≤
µ < 11, such that

Λµ = {µ,−2,−1± 3i,−1± 3i,−1± 3i,−1± 3i},

is also DR. From Theorem 2.3, we compute gr(Λ/λ1) = 10. Then, we choose µ = 21
2 . From Šmigoc’s glue

technique, we consider the decomposition of Λµ

Λ1 =

{
21

2
,−1± 3i

}
, Λ2 = {−1± 3i}, Λ3 = {−1± 3i}, Λ4 = {−2,−1± 3i},

with the auxiliary lists

Γ1 =

{
21

2
,−1± 3i

}
, Γ2 =

{
17

2
,−1± 3i

}
,

Γ3 =

{
13

2
,−1± 3i

}
, Γ4 =

{
9

2
,−2,−1± 3i

}
,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 382-395, April 2024.

C. Marijuán and R. L. Soto 390

which are the spectrum of diagonalizable nonnegative companion matrices

A1 =

 0 0 105

1 0 11

0 1 17
2

 , A2 =

 0 0 85

1 0 7

0 1 13
2

 ,

A3 =

 0 0 65

1 0 3

0 1 9
2

 , A4 =


0 0 0 90

1 0 0 43

0 1 0 4

0 0 1 1
2

 ,

respectively. The right and left eigenvectors of A2 are

s =

 10

2

1

 , tT =

[
4

397

34

397

289

397

]
.

Then, with a =

[
105

11

]
and bT =

[
0 1

]
, we have

atT =


420

397

3570

397

30 345

397

44

397

374

397

3179

397

 , sbT =

 0 10

0 2

0 1

 ,

and the Šmigoc’s glue of A1 with A2 is

C2 =


0 0 420

397
3570
397

30 345
397

1 0 44
397

374
397

3179
397

0 10 0 0 85

0 2 1 0 7

0 1 0 1 13
2

 .

Next, the glue of C2 with A3 produces

C3 =



0 0 420
397

3570
397

40 460
34 539

262 990
34 539

1709 435
34 539

1 0 44
397

374
397

12 716
103 617

82 654
103 617

537 251
103 617

0 10 0 0 340
261

2210
261

14 365
261

0 2 1 0 28
261

182
261

1183
261

0 10 0 10 0 0 65

0 2 0 2 1 0 3

0 1 0 1 0 1 9
2


,
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and the glue of C3 with A4 produces

C4 =



0 0 420
397

3570
397

40 460
34 539

262 990
34 539

1051 960
5422 623

1577 940
1807 541

7100 730
1807 541

31 953 285
1807 541

1 0 44
397

374
397

12 716
103 617

82 654
103 617

330 616
16 267 869

165 308
1807 541

743 886
1807 541

3347 487
1807 541

0 10 0 0 340
261

2210
261

8840
40 977

4420
4553

19 890
4553

89 505
4553

0 2 1 0 28
261

182
261

728
40 977

364
4553

1638
4553

7371
4553

0 10 0 10 0 0 40
157

180
157

810
157

3645
157

0 2 0 2 1 0 24
2041

108
2041

486
2041

2187
2041

0 20 0 20 0 20 0 0 0 90

0 14 0 14 0 14 1 0 0 43

0 4 0 4 0 4 0 1 0 4

0 1 0 1 0 1 0 0 1 1
2


,

which is diagonalizable irreducible nonnegative with spectrum Λ and a positive column. Therefore, from

Theorem 2.6, Λ is UR.

Since diagonalizability is a necessary condition for universal realizability, it is an advantage to have

diagonalizable realizing matrices. That is the reason why we recall here some basic properties of circulant

matrices, which are diagonalizable. An n-by-n circulant matrix is a matrix of the form

C =



c0 c1 c2 · · · cn−2 cn−1

cn−1 c0 c1
. . .

. . . cn−2

cn−2 cn−1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . c2

c2
. . .

. . .
. . .

. . . c1
c1 c2 · · · cn−2 cn−1 c0


,

which we denote by C = circ (c0 c1 · · · cn−1) . The matrix C has eigenvalues

λj = c0 + c1ω
j−1 + c2ω

2(j−1) + · · ·+ cn−1ω
(n−1)(j−1),

j = 1, 2, . . . , n, where ω = exp(2πi/n), i2 = −1. If C is a real matrix, then

λn−j+2 = λj , j = 2, 3, . . . ,

[
n+ 1

2

]
,

that is, the vector of eigenvalues of C is a conjugate-even vector.

Let F = (fkj) = [1 | v2 | · · · | vn], where

1T = [1 · · · 1]

vTj =
[
1 ωj−1 ω2(j−1) · · · ω(n−1)(j−1)

]
, j = 2, . . . , n.

Then, fkj = ω(k−1)(j−1), 1 ≤ k, j ≤ n, and FF = FF = nI. Let

λT= [λ1 λ2 · · · λn] and c = [c0 c1 · · · cn−1] .

Then, Fc = λ and c = 1
nFλ.
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Theorem 3.8. Let Λ = {λ1, λ2, . . . , λn} be the spectrum of a circulant nonnegative matrix and let λT−ε =

[λ1 − ε λ2 · · · λn] , ε > 0, λ1 − ε ≥ |λj | , j = 2, . . . , n. If

c =
1

n
Fλ−ε,

is a nonnegative vector, then Λ is universally realizable.

Proof. Since Λ is the spectrum of a circulant nonnegative matrix, then the vectors

λT = [λ1 λ2 · · · λn] and λT−ε = [λ1 − ε λ2 . . . λn]

are conjugate-even vectors. If c = 1
nFλ−ε is a nonnegative vector, then there is a circulant nonnegative

matrix B ∈ CSλ1−ε with spectrum Λ−ε = {λ1 − ε, λ2, . . . , λn}. Thus, A = B + eqT , with q = ε
ne, is a

circulant positive matrix with spectrum Λ. Hence Λ is UR.

Remark 3. Nonnegative circulant matrices circ (c0 c1 · · · cn−1) with c0 < ck, k = 1, 2, . . . , n − 1 are

diagonalizable ODP matrices. Then, from Theorem 2.6, their spectra are UR.

4. DR extreme implies UR. Now we want to discuss DR implies UR for the case of lists diago-

nalizably realizable extreme, which can be of two kinds: DR extreme lists with trace zero or DR extreme

lists with positive trace. In this case, we have Theorem 3.6 and we can apply certain procedures that allow

us to universally realize this type of lists. First, we consider the case trace zero. It is clear that the Minc

realization and the extension in [3] do not work in this case.

In [12], the authors study the UR in low dimension for the cases where the NIEP is solved. In particular,

in dimension five with trace zero they prove the following result.

Corollary 4.1. Let Λ = {λ1, λ2, λ3, λ4, λ5} be a list of complex numbers with zero trace. If Λ is

DR, then it is UR except for the lists of real numbers: {a, a, 0,−a,−a} and the lists in (3).

Note that for nonreal lists (of the form
{
a,−a4 ± ci,−

a
4 ± ci

}
with a, c > 0, or

{
a, b, b,−a2 − b± ci

}
with

a, b, c > 0), DR and UR are equivalent (see Theorems 3.1 and 3.2 in [12] for more details). For real lists,

DR and UR are equivalent, except for the spectra {a, a, 0,−a,−a}, with a > 0, and the spectra in (3) that

are DR but not UR (see Theorems 3.3 to 3.9 in [12] for more details).

In the particular case of left half-plane lists with trace zero, from Theorem 2.3, they are realizable if and

only if s2 ≥ 0. In dimension five we have:

Corollary 4.2. Let Λ = {λ1, λ2, λ3, λ4, λ5} be a left half-plane list of complex numbers with trace zero.

Then DR implies UR.

Proof. If Λ is a real list, and thus of Sulĕımanova type, then realizable, DR, SR, and UR are all

equivalent. If Λ is nonreal, then DR implies UR is a consequence of the previous corollary.

In dimension higher than five, there are a number of procedures to realize a DR extreme list with zero

trace.

Example 5. Consider the list

Λ = {26,−4,−10,−10,−1 + 11i,−1− 11i},

which can be ordered as the conjugate-even vector

λ = [26 − 10 − 1 + 11i − 4 − 1− 11i − 10].
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In [21], it is shown that Λ is the spectrum of a circulant ODP matrix. Therefore, from Theorem 2.6, Λ is

UR.

Example 6. Consider the list Λ = {21,−13,−2± 8i,−2± 8i}. By applying the Šmigoc’s glue, with

Λ1 = {21,−2± 8i} Λ2 = {−13,−2± 8i},

and

Γ1 = {21,−2± 8i}, Γ2 = {17,−13,−2± 8i},

we can show that Λ is DR. In fact, Γ1 and Γ2 are the spectrum of

A =

 0 0 1428

1 0 16

0 1 17

 and B =


0 0 0 15 028

1 0 0 1156

0 1 0 169

0 0 1 0

 ,
respectively. Now, the glue of A with B produces the diagonalizable nonnegative matrix

C1 =



0 0 14
125

238
125

4046
125

68 782
125

1 0 8
6375

8
375

136
375

2312
375

0 884 0 0 0 15 028

0 120 1 0 0 1156

0 17 0 1 0 169

0 1 0 0 1 0


with spectrum Λ. The other non-diagonal JCF is the companion matrix associated with the characteristic

polynomial

p(x) = (x− 21)(x+ 13)((x+ 2)2 + 64)2,

that is

C2 =



0 0 0 0 0 1262 352

1 0 0 0 0 185 504

0 1 0 0 0 41 224

0 0 1 0 0 2856

0 0 0 1 0 185

0 0 0 0 1 0


.

Therefore, Λ is UR.

The DR extreme case with positive trace is more difficult to investigate. Here we introduce the following

examples:

Example 7. Let us consider the nonreal list with positive trace

Λ =

{
4,−1± 5√

3
i

}
.

Note that Λ is not a Šmigoc spectrum since it does not satisfy the condition |
√

3Re z| ≥ |Imz|. However, Λ

is realizable, in fact it is on the border of the realizability region since s1(Λ)2 = ns2(Λ), where sn(Λ) is the

moment of order n of Λ. As the eigenvalues are distinct, then Λ is also DR and UR.
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It is easy to check that Λ is DR extreme because the list

Λ−ε =

{
4− ε, 1± 5√

3
i

}
is not realizable since it does not satisfy the necessary moment condition s1(Λ−ε)

2 ≤ ns2(Λ−ε) in Theorem

2.3.

Example 8. From Theorem 3.1 in [12], we know that the 5-spectra with trace zero
{
a,−a4 ± ci,−

a
4 ± ci

}
are realizable ⇔ c ≤

√
5

4 a and are UR if c ≤ a
2 . Then, we consider the realizable spectrum

Λ = {14,−1±
√

5i,−1±
√

5i},

with gr(Λ/14) = 4 and gd(Λ/14) > 4. To obtain a realizing matrix of Λ, we translate it to trace zero

Λ0 = {12,−3±
√

5i,−3±
√

5i}.

The characteristic polynomial of Λ0 is (x − 12)((x + 3)2 + 5)2 = x5 − 80x3 − 600x2 − 1820x − 2352 =

x5 + k2x
3 + k3x

2 + k4x + k5, with k2k3 − k5 = 50352. From Theorem 2.5, we have the following realizing

matrices for Λ0 and Λ

A0 =


0 1 0 0 0

0 0 1 0 0

600 0 0 1 0

1820 0 0 0 1

50352 0 0 80 0

 , A =


2 1 0 0 0

0 2 1 0 0

600 0 2 1 0

1820 0 0 2 1

50352 0 0 80 2

 .

On the one hand, A is a Hessenberg matrix, and therefore, it has a Jordan canonical form with a maximal

Jordan block. On the other hand, in a similar way to Theorem 3.3 in [13], we obtain that in general

gd({λ2, · · · , λn}) ≤ (n− 1) max
2≤j≤n

|λj | .

In our case, there exists gd(Λ/14) ≤ 4
√

6 = 9.7979... < 14, then Λ is DR and therefore UR.

This kind of examples are also possible in the real case:

Example 9. The list {9, 9,−4,−6,−8} is not realizable, since it does not admit a realizable partition,

but {10, 9,−4,−6,−8} is. Then, there exists a minimum λ1, with 9 < λ1 ≤ 10, such that the list Λ =

{λ1, 9,−4,−6,−8} is realizable. Thus, Λ is DR (distinct eigenvalues) extreme and with positive trace. The

minimum number λ1 is unknown.

Finally, note that the spectrum Λ = {4,
√

5− 1,
√

5− 1,−(
√

5 + 1),−(
√

5 + 1)} is SR, by the matrix
0 2 0 0 2

2 0 2 0 0

0 2 0 2 0

0 0 2 0 2

2 0 0 2 0

 ,
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but not UR (see (3)), and the spectrum Λ = {15, 11,−7,−9,−10} is UR, since it satisfies Theorem 2.5, but

not SR, because it does not satisfy the necessary Spector’s condition λ2 + λ5 ≤ 0. Then,

Theorem 4.3. The SNIEP and the URP are independent.
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