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Abstract. We use unified algebraic methods to investigate the properties of polynomial Be-

zoutians with respect to a general basis. Not only can three known results be easily verified, but

also some new properties of polynomial Bezoutians are obtained. Nonsymmetric Lyapunov-type

equations of polynomial Bezoutians are also discussed. It turns out that most properties of classical

Bezoutians can be analogously generalized to the case of polynomial Bezoutians in the framework of

algebraic methods.
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1. Introduction. We denote by Cn[x] the linear space of complex polynomials

with degree at most n−1. Let π(x) = (1, x, . . . , xn−1) and Q(x) = (Q0(x), Q1(x), . . . ,

Qn−1(x)) with deg Qk(x) = k be vectors of the standard power basis and the general

polynomial basis of Cn[x], respectively. Given a pair of polynomials p(x) and q(x)

with deg p(x) = n, deg q(x) ≤ n, we call matrices B(p, q) = (bij) and BQ(p, q) = (cij)

determined by the bilinear form

R(x, y) =
p(x)q(y) − p(y)q(x)

x− y
=

n−1∑

i=0

n−1∑

j=0

bijx
iyj =

n−1∑

i=0

n−1∑

j=0

cijQi(x)Qj(y)(1.1)

the (classical) Bezoutian and the polynomial Bezoutian of p(x) and q(x) with respect

to π(x) and Q(x), respectively. It is easily seen that the sequence Q(x) includes the

standard power basis, Chebyshev polynomials, Newton polynomials and polynomial

sequences of interpolatory type [17] as its special cases. These special polynomials

appear frequently in approximation theory and interpolation problems.

The study of Bezoutians has a long history and has been an active field of research.

Such matrices occur in a large variety of areas in pure and applied mathematics. For
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example, they often have connections with some structured matrices, such as Hankel,

Toeplitz, and Vandermonde matrices, etc., and therefore have a lot of significant char-

acteristic properties. A more detailed expansion can be found in the books of Heinig

and Rost [9] and Lancaster and Tismenetsky [11]. On the other hand, Bezoutians

have many applications in the theory of equations, system and control theory, etc.,

we refer the reader to the survey article of Helmke and Fuhrmann [10] and the book

of Barnett [1] and the references therein. Recently the (classical) Bezoutian has been

generalized to some other forms, in which the polynomial Bezoutian is an important

direction of the research (e.g., see [3, 4, 7, 12, 13, 14, 18, 19]). At the same time we

have observed that in the recent work of Helmke and Fuhrmann [10], Fuhrmann and

Datta [6], Mani and Hartwig [13], and Yang [18], etc., some properties of Bezoutians

and their relation to system theoretic problems were derived by using operator ap-

proach and viewing the Bezoutian as a matrix representation of a certain operator in

the dual bases. While in the book of Heinig and Rost [9], a comprehensive discus-

sion for the properties of classical Bezoutians was presented by using the methods of

generating function and matrix algebra.

From definition (1.1), it is easy to see that polynomial Bezoutian preserves some

elementary properties of classical Bezoutian, such as BQ(p, q) is symmetric, bilinear in

p and q and satisfies BQ(p, q) = −BQ(q, p). To present more properties of polynomial

Bezoutians in this note we restrict ourselves to the methods of generating functions

and matrix algebras. In the framework of unified algebraic methods, we can carry

out an in-depth study for polynomial Bezoutians.

Let’s first introduce some notation associated with polynomial Bezoutians. Note

that (1.1) may be written simply in matrix form, i.e.,

R(x, y) = π(x)B(p, q)π(y)t = Q(x)BQ(p, q)Q(y)t,(1.2)

where superscript t denotes the transpose of a vector or a matrix throughout the

paper. In particular, for q(x) = 1 and any polynomial p(x) of degree n:

p(x) =
n∑

k=0

pkx
k =

n∑

k=0

θkQk(x),(1.3)

we have the difference quotient form

Dp(x, y) =
p(x) − p(y)

x− y
= π(x)B(p, 1)π(y)t = Q(x)BQ(p, 1)Q(y)t,

where

S(p) = B(p, 1) =




p1 p2 · · · · · · pn
p2 p3 . . . pn 0
...

...
...

pn 0 . . . . . . 0


(1.4)
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and

SQ(p) = BQ(p, 1)(1.5)

are called the symmetrizer [11] and the generalized symmetrizer [18] of p(x) with

respect to π(x) and Q(x), respectively. It can be seen that SQ(p) is (left) upper tri-

angular and is congruent to S(p) (see Lemma 2.2 below). In the case of Q(x) = π(x),

(1.5) degenerates to (1.4), thus, SQ(p) is a generalization of S(p). The symmetrizer

has some connections with the Barnett factorization and the triangular factorization

of Bezoutians.

For a sequence of polynomials Q0(x), Q1(x), . . . , Qn(x) with deg Qk(x) = k, we

can assume that they satisfy the following relations

Q0(x) = α0, Qk(x) = αkxQk−1(x) −

k∑

i=1

ak−i,kQk−i(x), k = 1, 2, . . . , n,(1.6)

where αk, ak−i,k (i = 1, . . . , k, k = 1, . . . , n) are uniquely determined by Q0(x), Q1(x),

. . . , Qn(x) and αk are not zeros. For polynomial p(x), its (second) companion matrix

C(p) with respect to π(x) and confederate matrix CQ(p) with respect to Q(x) are

defined as follows

C(p) =




0 0 · · · 0 −p0/pn
1 0 . . . 0 −p1/pn

0 1
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 1 −pn−1/pn




,(1.7)

CQ(p) =




a01/α1 a02/α2 a03/α3 · · · 1
αn

(a0n − θ0/θn)

1/α1 a12/α2 a13/α3 · · · 1
αn

(a1n − θ1/θn)

0 1/α2 a23/α3 · · · 1
αn

(a2n − θ2/θn)
...

. . .
. . .

. . .
...

0 · · · 0 1/αn−1
1
αn

(an−1,n − θn−1/θn)




.(1.8)

The companion (confederate) matrix has intertwining relations with the classical

(polynomial) Bezoutian and Hankel (generalized Hankel) matrix (see [5],[14]). We

note that the matrix in (1.8) is in Hessenberg form.

Among the properties of classical Bezoutians there exist three well-known and

important results. They are the Barnett factorization formula (see [2, 8] ):

B(p, q) = S(p)q(C(p)t),(1.9)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 21, pp. 154-171, October 2010



ELA

More on Polynomial Bezoutians with Respect to a General Basis 157

the intertwining relation with the companion matrix C(p) (see [5]):

B(p, q)C(p)t = C(p)B(p, q),(1.10)

and the Bezoutian reduction via the confluent Vandermonde matrix (see [16]):

V (p)tB(p, q)V (p) = diag
[
Rni

pi(Jxi
)q(Jxi

)
]r
i=1

,(1.11)

where pi(x) = p(x)/(x − xi)
ni (1 ≤ i ≤ r) and

V (p)t = col[V (xi)]
r
i=1, V (xi) = col

[ 1
j!
π(j)(xi)

]ni−1

j=0
,(1.12)

in which xi are the zeros of p(x) with multiplicities ni(i = 1, . . . , r, n1+ · · ·+nr = n),

and

Rni
=




0 · · · 0 1

0 · · · 1 0
...

...
...

1 · · · 0 0


 , Jxi

=




xi 1 0 · · · 0

0 xi 1
. . .

...
...

. . .
. . .

. . . 1

0 · · · · · · 0 xi




(1.13)

stand for the reflection matrix and the Jordan block of order ni × ni corresponding

to xi, respectively. In particular, if p(x) has only simple zeros x1, . . . , xn, then (1.11)

degenerates to

V (p)tB(p, q)V (p) = diag
[
p′(xi)q(xi)

]n
i=1

,

where V (p) = (xi−1
j )ni,j=1 is the classical Vandermonde matrix corresponding to p(x).

Equations (1.9) and (1.10) have theoretical meanings, while (1.11) is often used in

root localization problems.

The outline of this note is as follows. In Section 2 we use the pure algebraic

methods to re-derive three main results in [18] for polynomial Bezoutians; in contrast

to operator approaches, are proofs are simpler and easier. Section 3 is devoted to

investigation of some other properties of polynomial Bezoutians, they are mainly

the generalizations of some results in [9]. In Section 4 we consider nonsymmetric

Lyapunov-type equations of polynomial Bezoutians, which extend some results of

Pták [15]. From the point of view of the theory of displacement structures, such

equations can be seen as the displacement structures of the polynomial Bezoutians.

2. New proofs of three known results. Henceforth, let T = [tij ]
n
i,j=1 be the

transformation matrix from the standard power basis π(x) to the general polynomial

basis Q(x), i.e.,

Q(x) = π(x)T.(2.1)
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The matrix T in (2.1) is indeed a basis transformation matrix. Here we want to use

it to give an in-depth characterization of polynomial Bezoutians by (2.1).

We begin by establishing a similarity relation between C(p) and CQ(p) and a

congruence relation between Bezoutians B(p, q) and BQ(p, q).

Lemma 2.1. Let polynomial p(x) =
∑n

k=0 pkx
k =

∑n

k=0 θkQk(x) be of degree n.

Then the companion matrix C(p) and the confederate matrix CQ(p) are related by the

similarity equation

CQ(p) = T−1C(p)T.(2.2)

Proof. In terms of (1.6) and (1.8), it is easy to verify the equality

xQ(x) −Q(x)CQ(p) = p(x)[0, . . . , 0, 1/(αnθn)].

Thus

xQ(x) = Q(x)CQ(p) mod p(x).

By means of Q(x) = π(x)T , we deduce xπ(x) = π(x)TCQ(p)T
−1 mod p(x). Thereby

π(x)C(p) = π(x)TCQ(p)T
−1 mod p(x).

The last equation is equivalent to C(p) = TCQ(p)T
−1, or CQ(p) = T−1C(p)T .

Lemma 2.2. The Bezoutians B(p, q) and BQ(p, q) are related by the congruence

relation

TBQ(p, q)T
t = B(p, q).(2.3)

In particular,

TSQ(p)T
t = S(p).(2.4)

Proof. Substituting Q(x) = π(x)T into (1.2), we have

π(x)B(p, q)π(y)t = π(x)TBQ(p, q)T
tπ(y)t.

Since π(x) is a basis, thus (2.3) is deduced. If q(x) = 1, (2.4) is derived.

Remark 2.3. The congruence relationship in Lemma 2.2 implies that BQ(p, q)

has the same inertia or signature as B(p, q). Therefore the classical Hermite-Fujiwara

and Routh-Hurwitz inertia and stability criteria can be generalized to the case of
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polynomial Bezoutians. For example, for the case of the polynomial Bezoutian of

interpolatory type, we refer to [19].

It is well known that Bezoutian B(p, q) is invertible if and only if p and q are

coprime. On the other hand, from Lemma 2.2 we know that B(p, q) is invertible if

and only if BQ(p, q) is invertible. Therefore we deduce immediately the following

result.

Corollary 2.4. The polynomial Bezoutian BQ(p, q) is invertible if and only if

p and q are coprime.

To this end we pure use algebraic methods to derive afresh three main results in

[18] obtained by the third author. These results are the generalized Barnett formula,

the intertwining relation between polynomial Bezoutian and confederate matrix, and

the generalized Bezoutian reduction via polynomial Vandermonde matrix. Comparing

with operator approach used there the algebraic methods are easier.

Proposition 2.5. ([18]) Assume that the matrices BQ(p, q), SQ(p), CQ(p) are

defined as before. Then the generalized Barnett formula is satisfied:

BQ(p, q) = SQ(p)q
(
CQ(p)

t
)
,

where q(A) denotes the matrix polynomial q in matrix A.

Proof. In terms of Lemma 2.2, (1.8), the symmetry of Bezoutians B(p, q) and

BQ(p, q), and Lemma 2.1 successively, we have

BQ(p, q) = T−1B(p, q)(T−1)t = T−1S(p)q(C(p)t)(T−1)t

= T−1S(p)(T t)−1T tq(C(p)t)(T−1)t = SQ(p)q
(
T tC(p)t(T−1)t

)

= SQ(p)q
(
T−1C(p)T

)t
= SQ(p)q

(
CQ(p)

t
)
,

which finishes the proof.

Proposition 2.6. ([18]) The polynomial Bezoutian matrix BQ(p, q) and the

confederate matrix CQ(p) satisfy the following intertwining relation:

BQ(p, q)CQ(p)
t = CQ(p)BQ(p, q).

Proof. In terms of Lemmas 2.2 and 2.1 and (1.10), we have

BQ(p, q)CQ(p)
t = T−1B(p, q)(T−1)tT tC(p)t(T−1)t

= T−1B(p, q)C(p)t(T−1)t = T−1C(p)B(p, q)(T−1)t

= T−1TCQ(p)T
−1TBQ(p, q)T

t(T−1)t

= CQ(p)BQ(p, q),
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which completes the proof.

Proposition 2.7. ([18]) Let VQ(p) defined by

VQ(p)
t = col[VQ(xi)]

r
i=1, VQ(xi) = col

[ 1
j!
Q(j)(xi)

]ni−1

j=0
(2.5)

be the polynomial Vandermonde matrix corresponding to p(x) =
∏r

i=1(x − xi)
ni and

the polynomial basis Q(x). Then BQ(p, q) can be reduced by VQ(p):

VQ(p)
tBQ(p, q)VQ(p) = diag

[
Rni

pi(Jxi
)q(Jxi

)
]r
i=1

,(2.6)

where pi(x) = p(x)/(x− xi)
ni and Rni

and Jxi
are defined as in (1.13).

Proof. By taking jth derivatives at xi and dividing by j! on both sides of (2.1)

(i = 1, . . . , r, j = 0, 1, . . . , ni − 1), and combining all together in matrix form, we

obtain

VQ(p)
t = V (p)tT,(2.7)

where VQ(p) and V (p) are defined by (2.5) and (1.11), respectively. By substitution

of (2.7) and (2.3) into the left side of (1.11), (2.6) is immediately deduced.

With the help of (2.7), we note that the well known formula

C(p)tV (p) = V (p)J,

where J = diag(Jxi
)ri=1 is the Jordan matrix, can be extended to the general polyno-

mial case:

CQ(p)
tVQ(p) = VQ(p)J.(2.8)

Indeed, post-multiply both sides of the equation V (p)tC(p) = J tV (p)t by T , and

rewrite it as the form

V (p)tTT−1C(p)T = J tV (p)tT.

In terms of (2.7) and (2.3), we conclude VQ(p)
tCQ(p) = J tVQ(p)

t, which is equivalent

to (2.8).

3. Some new properties. In this section we mainly investigate some other

properties of polynomial Bezoutians, which could be viewed as the generalizations of

some results in [9] and [10]. It turns out that polynomial Bezoutians preserve most

properties of classical Bezoutians.

First, the generalized Barnett’s formula implies the following two results which

are the generalizations of Propositions 2.10 and 2.11 in [9], respectively.
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Proposition 3.1. Suppose that polynomials p, f, g satisfy deg fg ≤ deg p = n.

Then

BQ(p, fg) = BQ(p, f)SQ(p)
−1BQ(p, g).

Proof. In view of Proposition 2.5, we deduce that

BQ(p, fg) = SQ(p)f [CQ(p)
t]SQ(p)

−1SQ(p)g[CQ(p)
t] = BQ(p, f)SQ(p)

−1BQ(p, g).

This completes the proof.

For convenience, with the help of reflection matrix Rn, we introduce the so-called

generalized reflection matrix RQ with respect to Q(x), which is defined by

RQ := T tRnT.(3.1)

Since Rn is a symmetric matrix, then Rt
Q = RQ.

We have a further consequence of Proposition 2.5 as follows.

Proposition 3.2. Assume that p(x) an q(x) are polynomials of degree n. Then

BQ(p, q) = [CQ(p)
n − CQ(q)

n]N,

where N = SQ(p)RQSQ(q) = SQ(q)RQSQ(p).

Proof. We check this directly instead of using the generalized Barnett’s formula.

In view of Prop. 2.11 in [9] we have

B(p, q) = [C(p)n − C(q)n]M,

where M = S(p)RnS(q) = S(q)RnS(p). Using Lemmas 2.2 and 2.1, we get

TBQ(p, q)T
t = T [CQ(p)

n − CQ(q)
n]T−1TSQ(p)T

tRnTSQ(q)T
t.

Eliminating T and T t in both sides in the last equality and using (3.1), the assertion

is deduced.

Bezoutians have some interesting triangular factorizations, where are summed up

by Helmke and Fuhrmann in [10]. Now we extend these factorizations for polynomial

Bezoutians. In the sequel let

â(x) = xna(x−1)

denote the reciprocal polynomial of a(x) and S
Q̂
(â) stand for the generalized sym-

metrizer of â with respect to the polynomial sequence Q̂(x) := π(x)(T t)−1. In terms

of (2.4), we can write

S
Q̂
(â) = [(T t)−1]−1S(â)(T−1)−1 = T tS(â)T.(3.2)
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Now we give a generalization of Proposition 5.1 in [10], see also [11, Chap.13].

Proposition 3.3. Assume that p(x) and q(x) are polynomials of degree n. Then

BQ(p, q) has the following representations:

BQ(p, q) = [SQ(p)SQ̂
(q̂)− SQ(q)SQ̂

(p̂)]R−1
Q

= −R−1
Q [S

Q̂
(p̂)SQ(q)− S

Q̂
(q̂)SQ(p)].

(3.3)

Proof. We only verify the first equality in (3.3), the second is similarly derived.

From Theorem 5.1 in [10] and Rn = R−1
n , we have

B(p, q) = S(p)S(q̂)R−1
n − S(q)S(p̂)Rn.(3.4)

Multiplying on the left side and the right side in (3.4) by T−1 and (T t)−1, respectively,

and using Lemma 2.2, one can obtain

BQ(p, q) = T−1S(p)(T t)−1T tS(q̂)TT−1R−1
n (T t)−1

− T−1S(q)(T t)−1T tS(p̂)TT−1Rn(T
t)−1.

In view of Lemma 2.2 and equations (3.2) and (3.1), the last equality is equivalent to

the first equality in (3.3).

A class of matrices close to the Bezoutians is the class of resultant matrices. The

resultant matrices have many applications in describing the kernel of Bezoutians and

the connections between the inertias of Bezoutians and polynomials. Heinig and Rost

described some connections between these two classes in [9]. To this end we will

generalize such relations to the general polynomial case.

Assume that a(x) =
∑n

k=0 akx
k and b(x) =

∑m

k=0 bkx
k are of degree n and m,

respectively. The resultant matrix of a(x) and b(x) is of the form

Res(a, b) =




a0 a1 · · · an
. . .

. . .
. . .

a0 a1 · · · an
b0 b1 · · · bm

. . .
. . .

. . .

b0 b1 · · · bm




m+n

.(3.5)

Now we introduce the so-called generalized resultant matrix. For the sake of simplicity,

in the sequel, we assume that polynomials a(x) and b(x) are all of degree n. Since

Rn = R−1
n , then the resultant matrix Res(a, b) can be written in the form

Res(a, b) =

(
S(â)R−1

n RnS(a)

S (̂b)R−1
n RnS(b)

)

2n

,(3.6)
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where S(a) and S(â) denote the symmtrizers of a(x) and â(x) = xna(x−1), respec-

tively. We call the matrix defined by

ResQ(a, b) :=

(
T t 0

0 T t

)
Res(a, b)

(
(T t)−1 0

0 (T t)−1

)

=

(
T tS(â)TT−1R−1

n (T t)−1 T tRnTT
−1S(a)(T t)−1

T tS (̂b)TT−1R−1
n (T t)−1 T tRnTT

−1S(b)(T t)−1

)

=

(
S
Q̂
(â)R−1

Q RQSQ(a)

S
Q̂
(̂b)R−1

Q RQSQ(b)

)
(3.7)

the generalized resultant matrix of a(x) and b(x) with respect to Q(x).

For the sake of such definition, we mainly have two considerations. One is, (3.7)

has the same form as (3.5) and in the case of Q(x) = π(x), ResQ(a, b) degenerates

to Res(a, b). The other, which we want to emphasize, is the representation (3.7) has

many advantages and applications.

The following two results establish the connections between the generalized re-

sultant matrix and the polynomial Bezoutian. They are the generalizations of Propo-

sitions 2.12 and 2.13 in [9] (see also [10, Th.5.2]).

Proposition 3.4. Assume that a(x) =
∑n

k=0 akx
k and b(x) =

∑n

k=0 bkx
k are

all of degree n. Then the following holds:

ResQ(a, b) = Ll

[
BQ(a, b) 0

0 In

]
Lr,(3.8)

where

Ll =

[
0 In

SQ(a)
−1 RQSQ(b)SQ(a)

−1R−1
Q

]
,

Lr =

[
In 0

−RQSQ(a)CQ̂
(a)n RQSQ(a)

]
,

and C
Q̂
(a) := T tC(a)(T t)−1 is the confederate matrix of a(x) with respect to Q̂(x).

Proof. In terms of Prop. 2.12 in [9], we have

Res(a, b) = P

[
B(a, b) 0

0 In

]
Q,(3.9)

where

P =

[
0 In

S(a)−1 RnS(b)S(a)
−1R−1

n

]
, Q =

[
In 0

−RnS(a)C(a)n RnS(a)

]
.
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Multiplying on the left side by diag(T t, T t) and the right side by diag((T t)−1, (T t)−1)

of (3.9), respectively, and writing the middle block matrix in (3.9) as

[
B(a, b) 0

0 In

]
=

[
T 0

0 (T t)−1

] [
BQ(a, b) 0

0 In

] [
T t 0

0 T t

]
,

after elementary computation, we get

ResQ(a, b) =

[
0 In

SQ(a)
−1 RQSQ(b)SQ(a)

−1R−1
Q

]
×

[
BQ(a, b) 0

0 In

] [
In 0

−RQSQ(a)CQ̂
(a)n RQSQ(a)

]
,

which is equal to (3.8). This completes the proof.

Proposition 3.5. With notation defined as above, we have

ResQ(a, b)
t

[
0 R−1

Q

R−1
Q 0

]
ResQ(a, b) =

[
0 BQ(a, b)

BQ(a, b) 0

]
.(3.10)

Proof. By (2.24) in Prop. 2.14 in [9], we have

Res(a, b)t
[

0 Rn

Rn 0

]
Res(a, b) =

[
0 B(a, b)

B(a, b) 0

]
.

In view of Rn = R−1
n and (2.3), the last equality is equivalent to

Res(a, b)t
[

0 R−1
n

R−1
n 0

]
Res(a, b)

=

[
T 0

0 T

] [
0 BQ(a, b)

BQ(a, b) 0

] [
T t 0

0 T t

]
.

(3.11)

By (3.7) this implies htat

ResQ(a, b)
t

[
T−1 0

0 T−1

] [
0 R−1

n

R−1
n 0

] [
(T t)−1 0

0 (T t)−1

]
ResQ(a, b)

equals

[
0 BQ(a, b)

BQ(a, b) 0

]
.

Using (3.1), we immediately deduce the assertion (3.10), and the proof is complete.
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Remark 3.6. Comparing Propositions 3.5 and 3.3 with Propositions 2.14 in [9]

and 5.1 in [10], respectively, we think that the following another representations of

similar results on classical Bezoutians might be more natural and suitable. That is,

Res(a, b)t
[

0 R−1
n

R−1
n 0

]
Res(a, b) =

[
0 B(a, b)

B(a, b) 0

]

and

B(p, q) = [S(p)S(q̂)− S(q)S(p̂)]R−1
n

= −R−1
n [S(p̂)S(q)− S(q̂)S(p)].

The causation is just the equality Rn = R−1
n .

For further discussions on the connections between polynomial Bezoutians and

generalized resultant matrices, we introduce an n× (n+ r) matrix operator

Dn(f) :=




f0 f1 · · · fr
. . .

. . .
. . .

f0 f1 · · · fr




n×(n+r)

for the polynomial f(x) =
∑r

i=0 fix
i of degree r(r ≤ n− 1).

First we need the following assertion which can be viewed as a extended property

of the generating function (see [9, Prop.1.8]).

Proposition 3.7. Let Q(x) be the general polynomial sequence defined as before,

C ∈ C
n×n and C̃ ∈ C

(n−r)×(n−s). If there exist polynomials a(x) and b(x) with

deg a = r, deg b = s satisfying the condition

CQ(x, y) := Q(x)CQ(y)t = a(x)Q̃r(x)C̃Q̃s(y)
tb(y),(3.12)

in which Q̃r(x) = (Q0(x), Q1(x), . . . , Qn−r−1(x)), then

C = Wn−r(a)
tC̃Wn−s(b),

where

Wn−r(a) := T t
n−rDn−r(a)(T

t)−1(3.13)

and Tn−r is the (n− r)th leading submatrix of matrix T .

Proof. By the definition of Q̃r(x), we have Q̃r(x) = (1, x, . . . , xn−r−1)Tn−r. Thus

a(x)Q̃r(x)C̃Q̃s(y)
tb(y)

= a(x)(1, x, . . . , xn−r−1)Tn−rC̃T t
n−s(1, y, . . . , y

n−s−1)tb(y)

= π(x)Dn−r(a)
tTn−rC̃T t

n−sDn−s(b)π(y)
t

= Q(x)T−1Dn−r(a)
tTn−rC̃T t

n−sDn−s(b)(T
t)−1Q(y)t

= Q(x)Wn−r(a)
tC̃Wn−r(b)Q(y)t,
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where Wn−r(a) = T t
n−rDn−r(a)(T

t)−1. Since Q(x) is a basis sequence, (3.12) implies

the assertion.

From Lemma 3.7 we gain two interesting properties, which give the represen-

tations of Bezoutian BQ(p, q) as a product of generalized resultant matrices with

polynomial Bezoutians of factors. They are the generalizations of Propositions 2.6

and 2.14 in [9], respectively.

Proposition 3.8. If p(x) = p̃(x)d(x), q(x) = q̃(x)d(x) with deg q ≤ deg p = n,

deg d = r and (p̃, q̃) = 1. Then

BQ(p, q) = Wn−r(d)
tBQ(p̃, q̃)Wn−r(d).

Proof. Writing

p(x)q(y)− p(y)q(x)

x− y
= d(x)

p̃(x)q̃(y)− p̃(y)q̃(x)

x− y
d(y),

one can deduce that

Q(x)BQ(p, q)Q(y)t = d(x)Q̃r(x)BQ(p̃, q̃)Q̃r(y)
td(y).

From Lemma 3.7, the conclusion is immediately deduced.

Proposition 3.9. Suppose that the polynomials a(x) = a1(x)a2(x), b(x) =

b1(x)b2(x) are all of degree n and satisfy deg ai = deg bi = ni, i = 1, 2. Then

BQ(a, b) = R̃esQ(a2, b1)
t

[
B

Q̃
(a1, b1) 0

0 BQ(a2, b2)

]
R̃esQ(b2, a1),(3.14)

where Q̃(x) = (Q0(x), . . . , Qn1−1(x)) and Q(x) = (Q0(x), . . . , Qn2−1(x)), and

R̃esQ(b2, a1) :=

[
T t
n1

0

0 T t
n2

]
Res(b2, a1)(T

t)−1.

Proof. In view of a(x) = a1(x)a2(x), b(x) = b1(x)b2(x), we evaluate

a(x)b(y) − a(y)b(x)

x− y
= a2(x)

a1(x)b1(y)− a1(y)b1(x)

x− y
b2(y)

+ b1(x)
a2(x)b2(y)− a2(y)b2(x)

x− y
a1(y).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 21, pp. 154-171, October 2010



ELA

More on Polynomial Bezoutians with Respect to a General Basis 167

Thereby

Q(x)BQ(a, b)Q(y)t

= a2(x)Q̃(x)B
Q̃
(a1, b1)Q̃(y)tb2(y) + b1(x)Q(x)BQ(a2, b2)Q(y)ta1(y).

By Lemma 3.7, we have

BQ(a, b) = Wn1
(a2)

tB
Q̃
(a1, b1)Wn1

(b2) +Wn2
(b1)

tBQ(a2, b2)Wn2
(a1)

=

[
Wn1

(a2)

Wn2
(b1)

]t [
B

Q̃
(a1, b1) 0

0 BQ(a2, b2)

][
Wn1

(b2)

Wn2
(a1)

]
.

In view of (3.10), the last equality is equivalent to (3.14).

To this end we will study two properties of polynomial Bezoutians on the trans-

lation and scalar multiplication transformations of variables.

Proposition 3.10. Suppose that p(x), q(x) are two polynomials of degrees n and

m, respectively. Denote pα = pα(x) = p(x+ α), qα = qα(x) = q(x+ α). Then

BQ(pα, qα) = VQ(α)BQ(p, q)VQ(α)
t,

where VQ(α) = T−1V (α)T with V (α) =
[( j

i

)
αj−i

]n−1

i,j=0

Proof. Introduce linear transformation σ in Cn[x] such that

σ(f) = f(x+ α), f ∈ Cn[x].

It is easy to check that

σπ(x) = (1, x+ α, . . . , (x+ α)n−1) = π(x)V (α),

where V (α) =
[( j

i

)
αj−i

]n−1

i,j=0
, with convention

(
j

i

)
= 0 for j < i. In view of

Q(x) = π(x)T , we deduce that σQ(x) = Q(x)T−1V (α)T , which is equivalent to

Q(x+ α) = Q(x)VQ(α),

where VQ(α) = T−1V (α)T . Considering the generating function of BQ(pα, qα) as:

R(x, y) = Q(x)BQ(pα, qα)Q(y)t

=
p(x+ α)q(y + α) − q(x+ α)p(y + α)

(x+ α) − (y + α)

= Q(x+ α)BQ(p, q)Q(y + α)t

= Q(x)VQ(α)BQ(p, q)VQ(α)
tQ(y),
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we obtain BQ(pα, qα) = VQ(α)BQ(p, q)VQ(α)
t.

Using a method similar that in the proof of Proposition 3.10, we can deduce the

following result.

Proposition 3.11. Suppose that p(x) and q(x) are defined as before. Denote

pα = pα(x) = p(αx), qα = qα(x) = q(αx). Then

BQ(p
α, qα) = αΛQ(α)BQ(p, q)ΛQ(α)

t,

where ΛQ(α) = T−1Λ(α)T with Λ(α) = diag[αi]n−1
i,=0.

4. Nonsymmetric Lyapunov-type equations of polynomial Bezoutians.

In this section we will investigate some characteristic properties of polynomial Be-

zoutians as solutions of some nonsymmetric Lyapunov-type equations. For conve-

nience, from now on we assume that the polynomial sequence Q(x) satisfies the re-

currence relation:

Q0(x) = δ0, Qk(x) = δkQ0(x) + x

k∑

i=1

wi,k+1Qi−1(x), k = 1, 2, . . . , n.(4.1)

We introduce matrix WQ associated with the relation (4.1) as

WQ =




0 w12 · · · w1n

...
. . .

. . .
...

0 · · · 0 wn−1,n

0 · · · 0 0


 .(4.2)

Let Z designate the forward shift matrix of order n:

Z =




0 1 · · · 0
...

. . .
. . .

...

0 · · · 0 1

0 · · · 0 0


 .

Then matrices WQ and Z are similar. We formulate this as follows.

Lemma 4.1. The matrix WQ and the forward shift matrix Z of order n satisfy

the similarity relation

WQ = T−1ZT.

Hereafter T stands for the transition matrix from π(x) to the sequence Q(x) in (4.1).

Proof. Introduce a linear function σ on the linear space Cn[x]:

σ(f) =
f − f0

x
, f =

n−1∑

k=0

fkx
k ∈ Cn[x].
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It is easy to verify

σ(1, x, . . . , xn−1) = (1, x, . . . , xn−1)Z,

σ(Q0(x), Q1(x), . . . , Qn−1(x)) = (Q0(x), Q1(x), . . . , Qn−1(x))WQ.

Considering the relation Q(x) = π(x)T , one can immediately obtain WQ = T−1ZT .

We also need the following two results.

Lemma 4.2. Let p(x) be a polynomial of degree n and p̂(x) = xnp(x−1) be its

reciprocal polynomial. Then we have the following relation

p̂(WQ)R
−1
Q = SQ(p).

Proof. Direct verification implies p̂(Z)Rn = S(p). By the formula RQ = T tRnT

and Lemmas 4.1 and 2.2 we have

p̂(WQ)R
−1
Q = p̂(WQ)T

−1Rn(T
−1)t = T−1p̂(Z)TT−1Rn(T

−1)t

= T−1p̂(Z)Rn(T
−1)t = T−1S(p)(T−1)t = SQ(p).

This proof is complete.

The next Lemma comes from an Exercise in [11, Chapter 12, Section 3].

Lemma 4.3. Let A,B,G ∈ Cn×n. If λµ 6= 1 for all λ ∈ σ(A) and µ ∈ σ(B), then

the matrix equation

X −AXB = G

has a unique solution, where σ(A) represents the spectrum of matrix A.

Now we generalize nonsymmetric Lyapunov-type equations in [15] of the form

X − ZXC(p)t = W

to the polynomial case, where shift matrix Z and companion matrix C(p)t will be

replaced by WQ and CQ(p)
t, respectively. The results obtained extend part results of

[15, Propositions 2.3 and 2.6].

Proposition 4.4. Let p(x) =
∑n

k=0 pkx
k. Then the Bezoutian BQ(p, x

k−1) is

the unique solution of matrix equation

X −WQXCQ(p)
t = ũẽtk (1 ≤ k ≤ n),(4.3)
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where ũ = T−1(p1, . . . , pn)
t, ẽk = T−1ek and ek is the kth unit column vector.

Proof. Let N = [en, 0, · · · , 0]. From Lemma 4.3 it is obvious to see that the matrix

equation

X −WQXCQ(p)
t = T−1N(T−1)t

has a unique solution, and the solution is R−1
Q = T−1Rn(T

−1)t by Lemmas 4.1 and

2.1. Direct calculation gives

(p1, . . . , pn)
tetk = p̂(Z)N [C(p)t]k−1, 1 ≤ k ≤ n.

Thus, in terms of Lemma 4.1, we have

ũẽtk = p̂(WQ)T
−1N(T−1)t[CQ(p)

t]k−1, 1 ≤ k ≤ n.

Therefore, in view of Lemma 4.2 and Proposition 2.5, (4.3) has a unique solution

X = p̂(WQ)R
−1
Q [CQ(p)

t]k−1 = SQ(p)[CQ(p)
t]k−1 = BQ(p, x

k−1).

This completes the proof.

Proposition 4.5. With the aforementioned notation and a polynomial p(x)

of degree n − 1, there exists nonzero polynomial q(x) such that the Bezoutian B =

BQ(p, q) is the unique solution of the equation

X −WQXCQ(p)
t = ũwt,(4.4)

for a certain nonzero column vector w ∈ Cn.

Proof. Suppose first that there exists a polynomial q(x) =
∑n

k=1 qk−1x
k−1 6= 0,

such that

B = BQ(p, q) =

n∑

k=1

qk−1BQ(p, x
k−1).

By Proposition 4.4 the Bezoutian B satisifes the equation

B −WQBCQ(p)
t = ũ

n∑

k=1

qk−1ẽ
t
k(1 ≤ k ≤ n).

Taking w =
∑n

k=1 qk−1ẽk =
∑n

k=1 qk−1T
−1ek, the condition q(x) 6= 0 and nonsingu-

larity of T implies w 6= 0. The uniqueness of the solution is guaranteed by Proposition

4.4.

We note that nonsymmetric Lyapunov-type (4.3) and (4.4) exhibit the displace-

ment structure of polynomial Bezoutians. The theory of displacement structures for
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structured matrices (such as Hankel, Toeplitz, Cauchy and Vandermonde matrices

etc.) have been extensively studied in recent years.

Acknowledgments. Authors acknowledge with many thanks the the referee for

helpful suggestions and comments.

REFERENCES

[1] S. Barnett. Polynomials and Linear Control System. Marcel Dekker, NewYork, 1983.

[2] S. Barnett. A note on the Bezoutian matrix. SIAM J. Appl. Math., 22:84–86, 1972.

[3] S. Barnett. A Bezoutian matrix for Chebyshev polynomials, in Applications of Matrix Theory,

Oxford University Press, New York, 137–149, 1989.

[4] S. Barnett, and P. Lancaster. Some properties of the Bezoutian for polynomial matrices. Linear

and Multilinear Algebra. 9:99–110, 1980.

[5] M. Fiedler, and V. Pták. Intertwining and testing matrices corresponding to apolynomial. Linear

Algebra and its Applications, 86:53–74, 1987.

[6] P. A. Fuhrmann, and B. N. Datta. On Bezoutian, Vandermonde matrices and the Lienard-

Chipart criterion. Linear Algebra and its Applications, 120:23–37, 1989.

[7] I. Gohberg, and V. Olshevsky, Fast inversion of Chebyshev Vandermonde matrices. Numer.

Math., 67:71–92, 1994.

[8] J. Gover, and S. Barnett. A generalized Bezoutian matrix. Linear and Multilinear Algebra.

27:33–48, 1990.

[9] G. Heinig, and K. Rost. Algebraic Methods for Toeplitz-like Matrices and Operators. Operator

Theory, vol. 13, Birkhauser, Basel, 1984.

[10] U. Helmke, and P. A. Fuhrmann. Bezoutians. Linear Algebra and its Applications, 122–124:

1039–1097, 1989.

[11] P. Lancaster, and M. Tismenetsky. The Theory of Matrices, 2nd edition. Academic Press, 1985.

[12] L. Lerer, and M. Tismenetsky. The Bezoutian and the eigenvalue separation problem for matrix

polynomials. Integral Equation and Operator Theory, 5:386-445, 1982.

[13] J. Mani, and R. E. Hartwig. Generalized polynomial bases and the Bezoutian. Linear Algebra

and its Applications, 251:293–320, 1997.

[14] J. Maroulas, and S. Barnett. Polynomials with respect to a general basis I: Theory. J. Math.

Anal. Appl., 72:177–194, 1979.

[15] V. Pták. Lyapunov, Bezoutian and Hankel. Linear Algebra and its Applications, 58:363–390,

1984.

[16] G. Sansigre, and M. Alvarez. On Bezoutian reduction with the Vandermonde matrix. Linear

Algebra and its Applications, 121:401–408, 1989.

[17] L. Verde-Star. Polynomial sequences of interpolatory type. Studies in Applied Mathematics,

88:173–190, 1993.

[18] Z. H. Yang. Polynomial Bezoutian matrix with respect to a general basis. Linear Algebra and

its Applications, 331:165-179, 2001.

[19] Z. H. Yang, and Y. J. Hu. A generalized Bezoutian matrix with respect to a polynomial sequence

of interpolatory type. IEEE Transactions on Automatic Control, 49(10):1783–1789, 2004.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 21, pp. 154-171, October 2010


