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Abstract. For a Hermitian matrix with its main block diagonal given, this paper shows how to

choose the off-diagonal blocks such that the resulting matrix has the maximal and minimal possible

ranks and inertias, respectively. Some direct consequences and applications are also given.
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1. Introduction. Throughout this paper, Cm×n and C
m×m
h denote the sets of

all m×n complex matrices and m×m complex Hermitian matrices, respectively. The

symbols AT , A∗ and r(A) stand for the transpose, conjugate transpose, and rank of a

matrix A ∈ Cm×n, respectively; Im denotes the identity matrix of order m. We write

A ≥ 0 (A > 0) if A is Hermitian nonnegative (positive) definite. Two Hermitian

matrices A and B of the same size are said to satisfy the (strict) Löwner partial

ordering, denoted by A ≥ B (A > B), if A−B is nonnegative (positive) definite.

As is well known, the eigenvalues of a Hermitian matrix A ∈ C
m×m
h are all real,

and the inertia of A is defined to be the triplet

In(A) = { i
+
(A), i−(A), i0(A) },

where i
+
(A), i−(A) and i

0
(A) are the numbers of the positive, negative and zero

eigenvalues of A counted with multiplicities, respectively. The two numbers i
+
(A)

and i−(A) are usually called the positive index and negative index of inertia, or the

positive and negative signatures, respectively. For a matrix A ∈ C
m×m
h , we have

r(A) = i
+
(A) + i−(A), i

0
(A) = m− r(A).(1.1)

Hence once i
+
(A) and i−(A) are both determined, r(A) and i

0
(A) are both obtained

as well.
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A partially specified block matrix is a matrix in which some submatrices are

specified, while the remaining unspecified submatrices are free to be chosen from

some matrix sets. One of the typical forms of partially specified block Hermitian

matrices is given by

M =




A11 ? . . . ?

?∗ A22 . . . ?
...

...
. . .

...

?∗ ?∗ . . . Ann


,(1.2)

where Ajj ∈ C
sj×sj
h are given, j = 1, . . . , n, and the symbols ?s and ?∗s in the

off-diagonal positions denote unspecified blocks (variable submatrices) and their con-

jugate transposes. Equation (1.2) is usually called a block diagonal partial Hermitian

matrix. When the variable submatrices run over Csj×sk , the matrix M in (1.2), as

well as its rank, range, nullity, inertia and so on also vary with respect to the choices of

these variable submatrices. In this case, it would be of interest to complete the partial

block matrix such that the resulting one has some prescribed properties. These kind

of problems are usually called matrix completion problems in the literature. Matrix

completion problems are a wide broad area in matrix theory and applications, which

have attracted much attention since 1980s. Some previous work on determinant, rank,

inertia, eigenvalue completions of partial matrices, as well as (skew)-Hermitian, posi-

tive (negative)-definite, invertible and inverse completions of partial matrices can be

found, e.g., in [5]–[10], [15], [16], [19], [23], [24] and [28]–[35]. It has been noticed that

completing a partial matrix with a prescribed property has a deep connections with

computational complexity. Under different settings of variable matrices or unknown

entries in the given matrix expressions or partial matrices, the problem is now known

as P, RP, or NP-hard; see, e.g., [15], [20], [25] and [27].

Note that the inertia of a Hermitian matrix divides the eigenvalues of the matrix

into three parts on the real line. Hence the inertia of a Hermitian matrix can be

used to characterize definiteness of the matrix. The following results follow from the

definitions of the rank and inertia of a (Hermitian) matrix.

Lemma 1.1. Let A ∈ C
m×m, B ∈ C

m×n, and C ∈ C
m×m
h . Then,

(a) A is nonsingular if and only if r(A) = m.

(b) B = 0 if and only if r(B) = 0.

(c) C > 0 (C < 0) if and only if i
+
(C) = m (i−(C) = m).

(d) C ≥ 0 (C ≤ 0) if and only if i−(C) = 0 (i
+
(C) = 0).

This lemma shows that if some formulas for ranks and inertias of Hermitian

matrices are derived, then we can use them to characterize equalities and inequalities

for Hermitian matrices. This basic algebraic method, which we refer to as the matrix
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rank/inertia method, is also available for approaching rank and inertia completion

problems of partial matrices described above. Note that the rank and inertia of a

Hermitian are all finite nonnegative integers. Hence the maximal and minimal values

of the rank and inertia of a partial Hermitian matrix do exist with respect to the

choices of the unspecified entries in it.

The aim of this paper is to derive explicit formulas for the maximal and minimal

values of the rank and the positive and negative signatures of the matrix M in (1.2)

with respect to its unspecified blocks, and to determine at same time the unspecified

blocks in (1.2) such that M attains the extremal values. To do so, we need to use the

following simple or well-known results on inertias of Hermitian matrices.

Lemma 1.2. Let A ∈ C
m×m
h , B ∈ C

n×n
h , C ∈ Cm×n, and assume that P ∈ Cm×m

is nonsingular. Then

i±(PAP ∗) = i±(A),(1.3)

i±(A
−1) = i±(A),(1.4)

i±(λA) =

{
i±(A) if λ > 0

i∓(A) if λ < 0,
(1.5)

i±

[
A Im

Im 0

]
= m,(1.6)

i±

[
A 0

0 B

]
= i±(A) + i±(B),(1.7)

i±

[
A C

C∗ B

]
≥ max{ i±(A), i±(B)},(1.8)

i±

[
A C

C∗ B

]
= i±(A) + i±(B − C∗A−1C), if A is nonsingular.(1.9)

Equation (1.3) are the well-known Sylvester’s law of inertia. Equation (1.4) fol-

lows from the fact that the eigenvalues A−1 is the reciprocals of those of A. Equation

(1.5) is from the fact that the eigenvalues of λA are the eigenvalues of A multiplied

by λ. Equation (1.6) is from Lemma 1 in [22]. Equation (1.7) is from the definition of

inertia. Equation (1.8) is the well-known Poincaré’s inequality; see [11, 21]. Equation

(1.9) is well known; see Theorem 1 in [21].

2. Rank and inertia completions for a 2 × 2 block Hermitian matrix.

We first consider the block Hermitian matrix in (1.2) for n = 2:

M(X) =

[
A X

X∗ B

]
,(2.1)
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where A ∈ C
m×m
h , B ∈ C

n×n
h and X ∈ Cm×n. Equation (2.1) is a standard form of

block Hermitian matrix in the investigations of Hermitian matrices and their appli-

cations. Equalities and inequalities for the rank and inertia of the block Hermitian

matrix in (2.1), as well as various completion problems associated with its rank and

inertia were widely studied in the literature; see, e.g., [2]–[5], [8], [11]–[14], [17], [18]

and [26]. Also note that the M(X) in (2.1) can be rewritten as

M(X) =

[
A 0

0 B

]
+

[
Im

0

]
X [ 0, In ] +

[
0

In

]
X∗[ Im, 0 ].

Hence the rank and inertia of M(X) can also be derived from the general results on

the rank and inertia of the matrix expression A−BXC− (BXC)∗ given in the recent

paper [4].

In this section, we revisit the rank and inertia of M(X) in (2.1) through the

canonical forms of A and B under ∗-congruence transformation. We shall use the

canonical forms to derive the maximal and minimal values of the rank and inertia of

the matrix M(X) in (2.1), and give the procedure of choosing Xs such that the rank

and inertia of M(X) attain the extremal values respectively.

Theorem 2.1. Let M(X) be as given in (2.1). Then

max
X∈Cm×n

r[M(X)] = min{m+ n, r(A) + 2n, r(B) + 2m },(2.2)

min
X∈Cm×n

r[M(X)] = max{ r(A), r(B), i
+
(A) + i−(B), i−(A) + i

+
(B) },(2.3)

max
X∈Cm×n

i± [M(X)] = min{ i±(A) + n, i±(B) +m },(2.4)

min
X∈Cm×n

i± [M(X)] = max{ i±(A), i±(B) }.(2.5)

Hence,

(a) There exists an X ∈ Cm×n such that M(X) is nonsingular if and only if

r(A) ≥ m− n and r(B) ≥ n−m.

(b) M(X) is nonsingular for any X ∈ Cm×n if and only if A > 0 and B < 0, or

A < 0 and B > 0.

(c) There exists an X ∈ Cm×n such that M(X) > 0 (M(X) < 0) if and only if

A > 0 and B > 0 (A < 0 and B < 0).

(d) There exists an X ∈ C
m×n such that M(X) ≥ 0 (M(X) ≤ 0) if and only if

A ≥ 0 and B ≥ 0 (A ≤ 0 and B ≤ 0).

Proof. Since both A and B are Hermitian matrices, they can be decomposed

under ∗-congruence transformation into the following canonical forms

(2.6) W1AW
∗

1 = diag( Ip1
, −Iq1 , 0 ) := D1, W2BW ∗

2 = diag( 0, −Iq2 , Ip2
) := D2,
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where W1 and W2 are two nonsingular matrices, p1 = i
+
(A), q1 = i−(A), p2 = i

+
(B)

and q2 = i−(B). Denote X̂ = W1XW ∗

2 and W = diag(W1, W2 ). Correspondingly,

WM(X)W ∗ can be written as

WM(X)W ∗ =

[
D1 X̂

X̂∗ D2

]
=




Ip1
0 0 X̂11 X̂12 X̂13

0 −Iq1 0 X̂21 X̂22 X̂23

0 0 0 X̂31 X̂32 X̂33

X̂∗

11 X̂∗

21 X̂∗

31 0 0 0

X̂∗

12 X̂∗

22 X̂∗

32 0 −Iq2 0

X̂∗

13 X̂∗

23 X̂∗

33 0 0 Ip2




:= Φ.(2.7)

From (1.3), the inertia and rank of M(X) in (2.1) satisfy

i± [M(X)] = i±(Φ) and r[M(X)] = r(Φ).(2.8)

Note from the dimension of M(X) in (2.1) and the well-known rank inequality

r(P +Q ) ≤ r(P ) + r(Q)

that the rank of M(X) satisfies the inequalities r[M(X)] ≤ m+ n, and

r[M(X)] ≤ r(A) + r

[
0 X

X∗ B

]
≤ r(A) + 2n,

r[M(X)] ≤ r(B) + r

[
A X

X∗ 0

]
≤ r(B) + 2m.

Combining them yields the following inequality

(2.9) r[M(X)] ≤ min{m+ n, r(A) + 2n, r(B) + 2m }.

We next choose the arbitrary matrix X̂ in (2.7) such that the upper bound in (2.9)

is attained.

Case 1. Assume that m+n ≤ min{ r(A) + 2n, r(B) + 2m }, and also assume m ≤ n

without loss of generality. In this case, set X̂ = [ tIm, 0 ], where t is a real

number. Then

r(Φ) = r

[
D1 X̂

X̂∗ D2

]
= r



D1 tIm 0

tIm D21 0

0 0 D22


 = r

[
tIm D1

D21 tIm

]
+ r(D22),

where D2 = diag(D21, D22 ) with r(D22) = n − m. Thus, there exists a

(sufficiently large or small) real number t such that r

[
tIm D1

D21 tIm

]
= 2m, so

that r[M(X)] = 2m+ (n−m) = m+ n.
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Case 2. Assume that r(A) + 2n ≤ min{m + n, r(B) + 2m }. Then setting X̂ =

[ 0, tIn ]T with t 6= 0 leads to

r(Φ) = r

[
D1 X̂

X̂∗ D2

]
= r



D11 0 0

0 0 tIn

0 tIn D2


 = 2n+ r(D11),

where D1 = diag(D11, 0 ) with r(D11) = r(A), so that r[M(X)] = r(A)+2n.

The case for r(B)+2m ≤ min{m+n, r(A)+2n } can be shown similarly. Combining

the three cases leads to (2.2).

Recall that the rank of a matrix is always greater than or equal to the ranks of

its submatrices. Hence it is easy to see from (2.7) and its submatrices that

r(Φ) ≥ r

[
Ip1

0

0 −Iq1

]
= p1 + q1, r(Φ) ≥ r

[
Ip2

0

0 −Iq2

]
= p2 + q2,

r(Φ) ≥ r

[
Ip1

X̂23

X̂∗

23 −Iq2

]
= r

[
Ip1

0

0 −Iq2 − X̂∗

23X̂23

]
= p1 + r( Iq2 + X̂∗

23X̂23 )

= p1 + q2,

r(Φ) ≥ r

[
−Iq1 X̂21

X̂∗

21 Ip2

]
= r

[
−Iq1 0

0 Ip2
+ X̂∗

21X̂21

]
= q1 + r(Ip2

+ X̂∗

21X̂21)

= q1 + p2,

so that the inequality

r(Φ) ≥ max{ p1 + q1, p1 + q2, p2 + q1, p2 + q2 }

= max{ p1, p2 }+max{ q1, q2 }
(2.10)

follows. We next choose the submatrices X̂jk in (2.7) such that the lower bound in

(2.10) is attained.

Case 1. If p1 ≥ p2 and q1 ≥ q2, we choose X̂12 = 0, X̂13 = 0, X̂21 = 0, X̂23 = 0,

X̂31 = 0, X̂32 = 0, X̂33 = 0, X̂11 = [ Ip2
, 0 ]T and X̂22 = [ Iq2 , 0 ]

T . In this

case, we have

r[M(X)] = p1 + q1 = max{ p1, p2 }+max{ q1, q2 }.

Case 2. If p1 ≥ p2 and q1 ≤ q2, then we choose X̂12 = 0, X̂13 = 0, X̂21 = 0, X̂23 = 0,

X̂31 = 0, X̂32 = 0, X̂33 = 0, X̂11 = [ Ip2
, 0 ]T and X̂22 = [ Iq1 , 0 ]

T . In this

case, we have

r[M(X)] = p1 + q2 = max{ p1, p2 }+max{ q1, q2 }.
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The remaining two cases for p1 ≤ p2, q1 ≥ q2 and p1 ≤ p2, q1 ≤ q2 can be shown

similarly. Thus (2.3) follows.

To show (2.4), we set

X̂ =

[
0 0

tIm−p1
0

]
if m− p1 ≤ n− p2, and X̂ =

[
0 0

tIn−p2
0

]
if m− p1 ≥ n− p2

in (2.7). Also denote J1 = diag(−Iq1 , 0 ) and J2 = diag( 0, −Iq2 ). Then it can be

derived from (1.6) and (1.7) that

i
+
(Φ) = i

+




Ip1
0 0 0

0 J1 [ tIm−p1
, 0 ] 0

0 [ tIm−p1
, 0 ]T J2 0

0 0 0 Ip2


(2.11)

= p1 + p2 + i
+

[
J1 [ tIm−p1

, 0 ]

[ tIm−p1
, 0 ]T J2

]

= p1 + p2 + i
+

[
J1 tIm−p1

tIm−p1
0

]

= p1 + p2 +m− p1 = m+ p2 if m− p1 ≤ n− p2,

i
+
(Φ) = i

+




Ip1
0 0 0

0 J1 [ tIn−p2
, 0 ]T 0

0 [ tIn−p2
, 0 ] J2 0

0 0 0 Ip2


(2.12)

= p1 + p2 + i
+

[
J1 [ tIn−p2

, 0 ]T

[ tIn−p2
, 0 ] J2

]

= p1 + p2 + i
+

[
0 tIn−p2

tIn−p2
J2

]

= p1 + p2 + n− p2 = n+ p1 if m− p1 ≥ n− p2.

Combining (2.11) and (2.12) with (2.8) leads to (2.4) for the positive signature. Equa-

tion (2.4) for the negative signature can be shown similarly.

From (1.8), the right-hand sides of (2.5) are lower bounds of i± [M(X)]. We

next choose the matrix X such that i± [M(X)] are equal to the lower bounds. If

i
+
(A) ≤ i

+
(B), we set X̂ =

[
0 [ Ip1

, 0 ]

0 0

]
. Substituting it into (2.7) and applying

(1.9) gives

i
+
(Φ) = i

+

[
Ip1

[ Ip1
, 0 ]

[ Ip1
, 0 ]T Ip2

]
= i

+

[
0 0

0 Ip2

]
= p2.
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If i
+
(A) ≥ i

+
(B), we set X̂ =

[
0 [ Ip2

, 0 ]T

0 0

]
. Substituting it into (2.7) and applying

(1.9) gives

i
+
(Φ) = i

+

[
Ip1

[Ip2
, 0]T

[ Ip2
, 0] Ip2

]
= i

+

[
Ip1

0

0 0

]
= p1.

Combining the two cases yields the formula in (2.5) for the positive signature. The

formula in (2.5) for the negative signature can be shown similarly.

Results (a)–(d) follow from (2.2)–(2.5) and Lemma 1.1.

The proof of Theorem 2.1 is constructive, namely, procedures to choose a matrix

X that satisfies (2.2)–(2.5) respectively are given in the derivations of the extremal

ranks and inertias.

The quantities on the right-hand sides of (2.2)–(2.5), as upper and lower bounds

for the rank and inertia of M(X) in (2.1), were given in the literature. For example,

the right-hand sides of (2.4) and (2.5) were given in the first theorem of [2] as upper

and lower bounds for the inertia of M(X). But the matrices X satisfying (2.4) and

(2.5) were not given in [2].

Notice that Theorem 2.1 and its proof show how to choose the variable matrix X

such that the rank and inertia of M(X) in (2.1) attain their maximal and minimal

values. Hence we can easily use them, as demonstrated in Theorem 2.1(a)–(d), to

study various invertible and definiteness completions ofM(X) in (2.1). Some previous

work on invertible and nonnegative definite completions of partial Hermitian matrices

can be found in [12, 14, 19].

A variation of the block Hermitian matrix in (2.1) is given by

M(X, Y ) =

[
A X

X∗ Y

]
,(2.13)

where A ∈ C
m×m
h is given, and X ∈ Cm×n and Y ∈ C

n×n
h are two variable matrices.

Some upper and lower bounds for the inertia of M(X, Y ) were given in Lemma 4.1

of [6]. From Theorem 2.1, we now can derive the maximal and minimal values of the

ranks and inertias of M(X, Y ) in (2.13) with respect to the two variable matrices X

and Y .
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Corollary 2.2. Let M(X, Y ) be as given in (2.13). Then

max
X∈Cm×n, Y ∈C

n×n

h

r[M(X, Y )] = min{m+ n, r(A) + 2n },(2.14)

min
X∈Cm×n, Y ∈C

n×n

h

r[M(X, Y )] = r(A),(2.15)

max
X∈Cm×n, Y ∈C

n×n

h

i± [M(X, Y )] = n+ i±(A),(2.16)

min
X∈Cm×n, Y ∈C

n×n

h

i± [M(X, Y )] = i±(A).(2.17)

Proof. We have

max
B∈C

n×n

h

r(B) = n, min
B∈C

n×n

h

r(B) = 0, max
B∈C

n×n

h

i±(B) = n, min
B∈C

n×n

h

i±(B) = 0.

Substituting them into (2.2)–(2.5) leads to (2.14)–(2.17).

As a useful application of Theorem 2.1, we are now able to derive the maximal

and minimal values of the rank and inertia of the simple quadratic Hermitian matrix

expression B −X∗AX with respect to a variable matrix X .

Theorem 2.3. Let A ∈ C
m×m
h and B ∈ C

n×n
h be given, and assume that A is

nonsingular. Then

max
X∈Cm×n

r(B −X∗AX ) = min{n, m+ r(B) },(2.18)

min
X∈Cm×n

r(B −X∗AX )

(2.19)

= max{ 0, r(B) −m, i
+
(B) − i

+
(A), i−(B)− i−(A) },

max
X∈Cm×n

i±(B −X∗AX ) = min{n, i∓(A) + i±(B) },(2.20)

min
X∈Cm×n

i±(B −X∗AX ) = max{ 0, i±(B)− i±(A) }.(2.21)

Hence,

(a) There exists an X ∈ Cm×n such that B −X∗AX is nonsingular if and only

if r(B) ≥ n−m.

(b) There exists an X ∈ Cm×n such that X∗AX = B if and only if both i
+
(B) ≤

i
+
(A) and i−(B) ≤ i−(A).

(c) There exists an X ∈ Cm×n such that B −X∗AX > 0 (B − X∗AX < 0) if

and only if i−(A) + i
+
(B) ≥ n ( i

+
(A) + i−(B) ≥ n ).
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(d) B−X∗AX > 0 (B−X∗AX < 0) for all X ∈ Cm×n if and only if both A ≤ 0

and B > 0 (both A ≥ 0 and B < 0).

(e) There exists an X ∈ Cm×n such that B −X∗AX ≥ 0 (B − X∗AX ≤ 0) if

and only if i−(B) ≤ i−(A) ( i+(B) ≤ i
+
(A) ).

(f) B−X∗AX ≥ 0 (B−X∗AX ≤ 0) for all X ∈ Cm×n if and only if both A ≤ 0

and B ≥ 0 (both A ≥ 0 and B ≤ 0).

Proof. Let M =

[
A−1 X

X∗ B

]
. Then applying (1.1), (1.4), and (1.9) to this M

gives

i±(M) = i±(A
−1) + i±(B −X∗AX ) = i±(A) + i±(B −X∗AX ),

r(M) = m+ r(B −X∗AX ).

Hence we have

max
X∈Cm×n

r(M) = m+ max
X∈Cm×n

r(B −X∗AX ),(2.22)

min
X∈Cm×n

r(M) = m+ min
X∈Cm×n

r(B −X∗AX ),(2.23)

max
X∈Cm×n

i±(M) = i±(A) + max
X∈Cm×n

i±(B −X∗AX ),(2.24)

min
X∈Cm×n

i±(M) = i±(A) + min
X∈Cm×n

i±(B −X∗AX ).(2.25)

On the other hand, applying (2.2)–(2.5) to the M also gives

max
X∈Cm×n

r(M) = min{m+ n, r(B) + 2m },(2.26)

min
X∈Cm×n

r(M) = max{m, r(B), i
+
(A) + i−(B), i−(A) + i

+
(B) },(2.27)

max
X∈Cm×n

i±(M) = min{ i±(A) + n, i±(B) +m },(2.28)

min
X∈Cm×n

i±(M) = max{ i±(A), i±(B) }.(2.29)

Substituting (2.26)–(2.29) into (2.22)–(2.25) and simplifying produces (2.18)–(2.21).

Results (a)–(f) follow from (2.18)–(2.21) and Lemma 1.1.

The matrices X satisfying (2.18)–(2.21), or equivalently satisfying (2.26)–(2.29),

can be constructed respectively from the canonical forms of A and B, as demonstrated

in the proof of Theorem 2.1.

If the Hermitian matrix A ∈ C
m×m
h in Theorem 2.3 is given with r(A) = k < m,

then it can be decomposed by (2.6) as

A = P ∗DP,
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where D ∈ C
k×k
h and P ∈ Ck×m satisfy r(D) = r(P ) = k. In this case, B −X∗AX

can equivalently be expressed as

B −X∗AX = B −X∗P ∗DPX = B − Y ∗DY,

where Y = PX . In this case, applying Theorem 2.3 to B − Y ∗DY will yield the

corresponding extremal values of the rank and inertia of B −X∗AX with respect to

X .

The inertia of rank 1 Hermitian perturbation of Hermitian matrix was considered

in [17]. Now setting A = αIm in Theorem 2.3, we obtain the following result on the

rank and inertia of a Hermitian matrix with a Hermitian perturbation of arbitrary

rank.

Corollary 2.4. Let B ∈ C
n×n
h be given, and assume α > 0. Then

max
X∈Cm×n

r(B − αX∗X ) = min{n, m+ r(B) },(2.30)

min
X∈Cm×n

r(B − αX∗X ) = max{ i−(B), r(B) −m },(2.31)

max
X∈Cm×n

i
+
(B − αX∗X ) = i

+
(B),(2.32)

max
X∈Cm×n

i−(B − αX∗X ) = min{n, m+ i−(B) },(2.33)

min
X∈Cm×n

i
+
(B − αX∗X ) = max{ 0, i

+
(B)−m },(2.34)

min
X∈Cm×n

i−(B − αX∗X ) = i−(B).(2.35)

3. Rank and inertia completions for an n× n block Hermitian matrix.

Without much effort, the results in Theorem 2.1 can be extended to the block matrix

in (1.2).

Theorem 3.1. Denote the matrix M ∈ C
s×s
h in (1.2) as

M =




A11 X12 . . . X1n

X∗

12 A22 . . . X2n

...
...

. . .
...

X∗

1n X∗

2n . . . Ann


, Ajj ∈ C

sj×sj
h , j = 1, . . . , n,(3.1)
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where Xjk ∈ Csj×sk , j < k, j, k = 1, . . . , n, are variable matrices, and s =
∑n

j=1 sj .

Then

max
Xjk∈C

sj×sk , j<k

r(M) = min{ s, 2(s− s1) + r(A11), . . . , 2(s− sn) + r(Ann) },

(3.2)

min
Xjk∈C

sj×sk , j<k

r(M) = max{ i
+
(A11), . . . , i+(Ann) }+max{ i−(A11), . . . , i−(Ann) },

(3.3)

max
Xjk∈C

sj×sk , j<k

i±(M) = min{ s− s1 + i±(A11), . . . , s− sn + i±(Ann) },

(3.4)

min
Xjk∈C

sj×sk , j<k

i±(M) = max{ i±(A11), . . . , i±(Ann) }.

(3.5)

Hence,

(a) There exist Xjk, j < k, j, k = 1, . . . , n, such that M is nonsingular if and

only if

r(A11) ≥ 2s1 − s, . . . , r(Ann) ≥ 2sn − s.

(b) There exist Xjk, j < k, j, k = 1, . . . , n, such that M > 0 (M < 0) if and only

if

A11 > 0, . . . , Ann > 0 (A11 < 0, . . . , Ann < 0).

(c) There exist Xjk, j < k, j, k = 1, . . . , n, such that M ≥ 0 (M ≤ 0) if and only

if

A11 ≥ 0, . . . , Ann ≥ 0 (A11 ≤ 0, . . . , Ann ≤ 0).

Proof. Rewrite the matrix M in (3.1) as

M =

[
M1 Xn

X∗

n Ann

]
,(3.6)

where M1 is a block matrix of order n− 1 with the same structure as M . Applying

(2.2) to this M gives

max
Xn

r(M) = min{ s, 2(s− sn) + r(Ann), 2sn + r(M1) }.(3.7)

Thus (3.2) follows by induction on the matrix M1 in (3.6). Applying (2.4) to (3.6)

gives

max
Xn

i±(M) = min{ s− sn + i±(Ann), sn + i±(M1) }.(3.8)
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Thus (3.4) follows by induction on the matrix M1 in (3.6).

Applying (2.3) to (3.6) gives

min
Xn

r(M) = max{ i
+
(M1), i

+
(Ann) }+max{ i−(M1), i−(Ann) }.(3.9)

Because M1 occurs twice in (3.9), we cannot derive the minimal values of i
+
(M1)

and i−(M1) separately, and thus we cannot go further along (3.9). In such a case, we

have to use the following canonical decomposition of Ajj , as well as the corresponding

decomposition of Xjk in (3.1):

WjAjjW
∗

j =



Ipj

0 0

0 −Iqj 0

0 0 0


, WjXjkW

∗

k =



Z

(11)
jk Z

(12)
jk Z

(13)
jk

Z
(21)
jk Z

(22)
jk Z

(23)
jk

Z
(31)
jk Z

(32)
jk Z

(33)
jk


,(3.10)

where pj = i
+
(Ajj), qj = i−(Ajj), Wj is a nonsingular matrix, Z

(st)
jk is an arbitrary

matrix of appropriate size, j < k and j, k = 1, . . . , n, and s, t = 1, 2, 3. Denote

W = diag(W1, . . . ,Wn ). Then

r(M) = r(WMW ∗) = r




W1A11W
∗

1 W1X12W
∗

2 . . . W1X1nW
∗

n

W2X
∗

12W
∗

1 W2A22W
∗

2 . . . W2X2nW
∗

n

...
...

. . .
...

WnX
∗

1nW
∗

1 WnX
∗

2nW
∗

2 . . . WnAnnW
∗

n


.(3.11)

Removing the third block rows and columns in all WjXjkW
∗

k s on the right-hand side

of (3.11) leads to the following rank inequality

r(M) ≥ r




diag( Ip1
, −Iq1 ) Z12 . . . Z1n

Z∗

12 diag( Ip2
, −Iq2 ) . . . Z2n

...
...

. . .
...

Z∗

1n Z∗

2n . . . diag( Ipn
, −Iqn )


,(3.12)

where Zjk =

[
Z

(11)
jk Z

(12)
jk

Z
(21)
jk Z

(22)
jk

]
, j < k and j, k = 1, . . . , n. Comparing the block matrix

in (3.12) with its submatrices gives rise to the following rank inequalities

r(M) ≥ pj + qj , j = 1, . . . , n,(3.13)

r(M) ≥ r

[
Ipj

Z
(12)
jk

(Z
(12)
jk )∗ −Iqk

]
= r

[
Ipj

0

0 −Iqk − (Z
(12)
jk )∗Z

(12)
jk

]
(3.14)

= pj + r
[
Iqk + (Z

(12)
jk )∗Z

(12)
jk

]

= pj + qk, j < k and j, k = 1, . . . , n.
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These inequalities indicate the right-hand side of (3.3) is a lower bound for r(M).

Without loss of generality, we assume that

p1 ≥ max{ p2, . . . , pn } and q1 ≥ max{ q2, . . . , qn },(3.15)

and set

WjXjkW
∗

k =



Z

(11)
jk 0 0

0 Z
(22)
jk 0

0 0 0


, j < k and j, k = 1, . . . , n

in (3.10). Then the rank of the corresponding matrix M in (3.11) can be written as

the sum

r(M) = r




Ip1
Z

(11)
12 . . . Z

(11)
1n

(Z
(11)
12 )∗ Ip2

. . . Z
(11)
2n

...
...

. . .
...

(Z
(11)
1n )∗ (Z

(11)
2n )∗ . . . Ipn



+ r




−Iq1 Z
(22)
12 . . . Z

(22)
1n

(Z
(22)
12 )∗ −Iq2 . . . Z

(22)
2n

...
...

. . .
...

(Z
(22)
1n )∗ (Z

(22)
2n )∗ . . . −Iqn




(3.16)

= r




Ip1
0 . . . 0

0 Ip2
− (Z

(11)
12 )∗Z

(11)
12 . . . Z

(11)
2n − (Z

(11)
12 )∗Z

(11)
1n

...
...

. . .
...

0 (Z
(11)
2n )∗ − (Z

(11)
1n )∗Z

(11)
12 . . . Ipn

− (Z
(11)
1n )∗Z

(11)
1n




+ r




−Iq1 0 . . . 0

0 −Iq2 + (Z
(22)
12 )∗Z

(22)
12 . . . Z

(22)
2n + (Z

(22)
12 )∗Z

(22)
1n

...
...

. . .
...

0 (Z
(22)
2n )∗ + (Z

(22)
1n )∗Z

(22)
12 . . . −Iqn + (Z

(22)
1n )∗Z

(22)
1n



.

Under (3.15), there exist Z
(11)
12 , . . . , Z

(11)
1n and Z

(22)
12 , . . . , Z

(22)
1n such that

(Z
(11)
12 )∗Z

(11)
12 = Ip2

, . . . , (Z
(11)
1n )∗Z

(11)
1n = Ipn

,

(Z
(22)
12 )∗Z

(22)
12 = Iq2 , . . . , (Z

(11)
1n )∗Z

(11)
1n = Iqn ,

say (Z
(11)
1k )∗ = [ Ipk

, 0 ] and (Z
(22)
1k )∗ = [ Iqk , 0 ], k = 2, . . . , n. Also set

Z
(11)
jk = (Z

(11)
1j )∗Z

(11)
1k and Z

(22)
jk = −(Z

(22)
1j )∗Z

(22)
1k , j < k and j, k = 1, . . . , n.

Then (3.16) becomes r(M) = p1 + q1, which satisfies (3.3).

Applying (2.5) to (3.6) gives

min
Xn

i±(M) = max{ i±(M1), i±(Ann) }.(3.17)
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Thus (3.5) follows by induction on the matrix M1 in (3.6). Results (a), (b) and (c)

follow from (3.2)–(3.5) and Lemma 1.1.

The quantities on the right-hand sides of (3.4) and (3.5), as upper and lower

bounds for the inertia of M in (3.1), were given in Theorem 2.1 and Lemma 3.1 of

[1].

4. Concluding remarks and open problems. The author provided in this

paper some procedures of completing the partial block Hermitian matrices in (2.1) and

(3.1) such that the resulting matrices have the maximal and minimal possible ranks

and inertias, respectively. From these extremal ranks and inertias, the author derived

necessary and sufficient conditions for the partial block Hermitian matrices in (2.1)

and (3.1) to be invertible and positive (negative) definite, respectively. It is expected

that the results obtained in this paper can be used to solve completion problems

on ranks, inertias, invertibility and definiteness of some other types of partial block

Hermitian matrices.

More matrix completion problems associated with the ranks and inertias of the

partial block Hermitian matrices in (2.1) and (3.1) can be proposed. For instance,

for any integer between the maximal and minimal values of the ranks and inertias

in Theorems 2.1 and 3.1, consider how to choose the variable matrices in (2.1) and

(3.1) such that the rank and inertia of the completed matrix have this given integer,

respectively.

Note that a partial square matrix of order m has an invertible completion if and

only if the maximal rank of the partial matrix is equal to m. Hence it would be of

interest to consider under Theorems 2.1(a) and 3.1(a) the following inverse completion

problems

[
A ?

?∗ B

]−1

=

[
C ?

?∗ D

]
,

[
A ?

?∗ B

]−1

=

[
? P

P ∗ ?

]
,




A11 ? . . . ?

?∗ A22 . . . ?
...

...
. . .

...

?∗ ?∗ . . . Ann




−1

=




? B12 . . . B1n

B∗

12 ? . . . B2n

...
...

. . .
...

B∗

1n B∗

2n . . . ?


.

Matrix completion problems are often considered under some restrictions to un-

specified entries in a given partial matrix. Some previous work on the inertias of

the block matrices in (2.1) and (3.1) with restrictions to the specified or unspecified

entries can be found, e.g., in [8]–[10] and [17]. As a continuation of the work in the

previous sections, it is of interest to derive maximal and minimal ranks and inertias
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of the Hermitian matrices under various restrictions, such as,

[
A X

X∗ B

]
subject to X = AY B or r(X) = k ≤ min{m, n},

B −X∗AX subject to X∗X = In or XX∗ = Im.

Another valuable work on the block Hermitian matrix in (2.1) as well as the matrix

expressions B ±X∗AX is to solve the following rank/inertia additivity/subtractivity

equations

r

[
A X

X∗ B

]
= r(A) + r

[
0 X

X∗ B

]
, i±

[
A X

X∗ B

]
= i±(A) + i±

[
0 X

X∗ B

]
,

r

[
A X

X∗ B

]
= r(A) + r(B) + 2r(X), i±

[
A X

X∗ B

]
= i±(A) + i±(B) + r(X),

r(B ±X∗AX ) = r(B) ± r(X∗AX), i±(B ±X∗AX ) = i±(B)± i±(X
∗AX).

These further developments are beyond the scope of the present paper and will be

the subjects of separate studies.
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