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COMMUTING ADDITIVE MAPS ON UPPER TRIANGULAR AND STRICTLY UPPER

TRIANGULAR INFINITE MATRICES∗

DI-CHEN LAN† AND CHENG-KAI LIU†

Abstract. Let F be a field, let N∞(F) be the ring of all N×N strictly upper triangular matrices over F, and let T∞(F) be the

ring of all N×N upper triangular matrices over F. In this paper, we completely characterize additive maps f : N∞(F)→ T∞(F)

satisfying [f(x), x] = 0 for all x ∈ N∞(F). As applications, we obtain the finite fields versions of the two main results recently

obtained by Slowik and Ahmed [Electron. J. Linear Algebra 37:247–255, 2021].
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1. Introduction and results. Let R be an associative ring with center Z(R). For a, b ∈ R, let

[a, b] = ab− ba be the commutator of a and b. A map f : R→ R is called additive if f(x+ y) = f(x) + f(y)

for all x, y ∈ R. A map f : R → R is called commuting if [f(x), x] = 0 for all x ∈ R. The usual goal when

dealing with a commuting map is to characterize its form.

The study of commuting additive maps was initiated by Divinsky and Posner. In 1955, Divinsky [13]

proved that if a simple artinian ring R admits a commuting automorphism σ, then either R is commutative

or σ is the identity map. On the other hand, in 1957 Posner [19] proved that if a prime ring R admits a

commuting derivation d, then either R is commutative or d = 0. In 1993, Brešar [3] extended above two

results to general additive maps and proved that if R is a prime ring with extended centroid C and f : R→ R

is a commuting additive map, then f must be of the form f(x) = λx + µ(x) for all x ∈ R, where λ ∈ C
and µ : R → C is an additive map. This important result had been generalized to many different rings

and operator algebras. We refer the reader to references [4, 5] for the developments and applications of the

theory of commuting maps. Recently, commuting maps on subrings or subsets of matrix rings have been

widely investigated in the literature (see [1, 2, 6–12, 14–18, 20–23] for instance). In 2000, Beidar, Brešar,

and Chebotar [1] showed that if F is a field, Tn(F) is the ring of all n×n upper triangular matrices over F for

an integer n ≥ 2, and f : Tn(F)→ Tn(F) is a commuting linear map, then f is of the form f(x) = λx+µ(x)

for all x ∈ Tn(F), where λ ∈ F and µ : Tn(F) → Z(Tn(F)) is a linear map. This result was later extended

to commuting additive maps on the ring of all upper triangular matrices over fields by Eremita in [14]. In

2016, Bounds [2] successfully characterized commuting linear maps on the ring of all strictly upper triangular

matrices over fields of characteristic 0. Precisely, he proved the following:

Theorem B. ([2]) Let n ≥ 4 be an integer and let Nn(F) be the ring of all n× n strictly upper triangular

matrices over a field F of characteristic 0. Assume that f : Nn(F) → Nn(F) is a linear map such that
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[f(x), x] = 0 for all x ∈ Nn(F). Then, there exist λ ∈ F and a linear map µ : Nn(F) → Ω such that

f(x) = λx+ µ(x) for all x ∈ Nn(F), where Ω = {αE1,n−1 + βE1,n + γE2,n | α, β, γ ∈ F}.

Let F be a field. We denote by T∞(F) the ring of all N × N upper triangular matrices over F and

N∞(F) the ring of all N × N strictly upper triangular matrices over F. As usual, for i, j ∈ N with i ≤ j,

let Ei,j ∈ T∞(F) denote the matrix unit with 1 in the (i, j)-entry and 0 in any other entry. It is known

that Ei,jEk,` = δjkEi,`, where δ is the Kronecker delta. Note that the set {Ei,j | i, j ∈ N, i ≤ j} does

not form a basis of T∞(F) over F. However, for abbreviation, if a = [as,t] ∈ T∞(F), we will formally write

a =
∑∞

s,t=1,s≤t as,tEs,t. Also, if a = [as,t] ∈ N∞(F), we will write a =
∑∞

s,t=1,s<t as,tEs,t. The symbol 0

may stand for the zero element of F as well as for the zero matrix of T∞(F). Motivated by Theorem B, in

2021 Slowik and Ahmed [20] described commuting additive maps on the ring of all infinite strictly upper

triangular matrices over infinite fields. Precisely, they proved the following:

Theorem SA1. ([20, Theorem 1.1]) Let F be an infinite field and let N∞(F) be the ring of all N × N
strictly upper triangular matrices over F. Suppose that f : N∞(F) → N∞(F) is an additive map such that

[f(x), x] = 0 for all x ∈ N∞(F). Then, there exists λ ∈ F such that f(x) = λx for all x ∈ N∞(F).

Moreover, in [20] Slowik and Ahmed also characterized commuting additive maps on the ring of all

infinite upper triangular matrices over infinite fields as follows:

Theorem SA2. (See [20, Theorem 1.2]) Let F be an infinite field and let T∞(F) be the ring of all N×N upper

triangular matrices over F. Suppose that f : T∞(F)→ T∞(F) is an additive map such that [f(x), x] = 0 for

all x ∈ T∞(F). Then, there exist λ ∈ F and an additive map µ : T∞(F)→ FI∞ such that f(x) = λx+ µ(x)

for all x ∈ T∞(F), where I∞ is the identity matrix of T∞(F).

It is natural to ask the question whether Theorem SA1 and Theorem SA2 remain true when the scalar

field F is assumed to be a finite field. The purpose of this paper is to give an affirmative answer to this

question. Precisely, we will prove the following:

Theorem 1.1. Let F be a field and let N∞(F) be the ring of all N×N strictly upper triangular matrices over

F and let T∞(F) be the ring of all N×N upper triangular matrices over F. Suppose that f : N∞(F)→ T∞(F)

is an additive map satisfying [f(x), x] = 0 for all x ∈ N∞(F). Then, there exist λ ∈ F and an additive map

µ : N∞(F)→ FI∞ such that f(x) = λx+µ(x) for all x ∈ N∞(F), where I∞ is the identity matrix of T∞(F).

As applications of Theorem 1.1, we generalize Theorem SA1 and Theorem SA2 as follows:

Corollary 1.2. Let F be a field and let N∞(F) be the ring of all N × N strictly upper triangular matrices

over F. Suppose that f : N∞(F) → N∞(F) is an additive map such that [f(x), x] = 0 for all x ∈ N∞(F).

Then, there exists λ ∈ F such that f(x) = λx for all x ∈ N∞(F).

Corollary 1.3. Let F be a field and let T∞(F) be the ring of all N × N upper triangular matrices over F.

Suppose that f : T∞(F)→ T∞(F) is an additive map such that [f(x), x] = 0 for all x ∈ T∞(F). Then, there

exist λ ∈ F and an additive map µ : T∞(F)→ FI∞ such that f(x) = λx+ µ(x) for all x ∈ T∞(F), where I∞
is the identity matrix of T∞(F).
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It is noteworthy to mention that our approaches to the proofs of this paper are quite different from those

in [20] and are based on the detailed and systematic computations of the actions of commuting additive maps

on matrix units.

2. Proof of Theorem 1.1. The goal of this section is to prove Theorem 1.1. Let F be a field, let

N∞(F) be the ring of all N × N strictly upper triangular matrices over F and let T∞(F) be the ring of all

N × N upper triangular matrices over F. Suppose that f : N∞(F) → T∞(F) is an additive map satisfying

[f(x), x] = 0 for all x ∈ N∞(F), that is,

(2.1) f(x)x = xf(x),

for all x ∈ N∞(F). Replacing x with x+ y in (2.1), we obtain

(2.2) f(x)y − yf(x) = xf(y)− f(y)x,

for all x, y ∈ N∞(F). For two integers i, j ∈ N with i < j, we write

f(αEi,j) =
∑

s,t∈N,s≤t
ai,js,t(α)Es,t,

for all α ∈ F, where each ai,js,t : F→ F is a map for s, t ∈ N. Since f is an additive map, we can see that each

ai,js,t is also an additive map for s, t ∈ N. In particular, from ai,js,t(0) = ai,js,t(0 + 0) = ai,js,t(0) + ai,js,t(0) it follows

that ai,js,t(0) = 0 for all s, t ∈ N.

Lemma 2.1. Let i, j ∈ N with i < j. Then, ai,js,i = 0 for every s ∈ N with s < i and ai,jj,t = 0 for every t ∈ N
with j < t.

Proof. Setting x = αEi,j in (2.1), we have

(2.3) f(αEi,j)αEi,j = αEi,jf(αEi,j),

for all α ∈ F. Let s ∈ N with s < i. Multiplying (2.3) by Es,s from the left and by Ej,j from the right,

we obtain Es,sf(αEi,j)αEi,j = 0. This implies that ai,js,i(α)α = 0 for all α ∈ F. Since F is a field, we

have ai,js,i(α) = 0 for all α ∈ F with α 6= 0. Recall that ai,js,i(0) = 0. Hence, ai,js,i(α) = 0 for all α ∈ F. So

ai,js,i = 0. Let t ∈ N with j < t. Multiplying (2.3) by Ei,i from the left and by Et,t from the right, we obtain

0 = αEi,jf(αEi,j)Et,t. This implies that αai,jj,t(α) = 0 for all α ∈ F. Since F is a field, we have ai,jj,t(α) = 0

for all α ∈ F with α 6= 0. Recall that ai,jj,t(0) = 0. Hence, ai,jj,t(α) = 0 for all α ∈ F. So ai,jj,t = 0, as desired. �

Lemma 2.2. Let i, j ∈ N with i < j. Then, ai,ji,i = ai,jj,j = ai,js,s for every s ∈ N.

Proof. Multiplying (2.3) by Ei,i from the left and by Ej,j from the right, we obtain Ei,if(αEi,j)αEi,j =

αEi,jf(αEi,j)Ej,j . This implies that ai,ji,i (α)α = αai,jj,j(α) for all α ∈ F. Then, (ai,ji,i (α)− ai,jj,j(α))α = 0 for all

α ∈ F. Since F is a field, we have ai,ji,i (α) = ai,jj,j(α) for all α ∈ F with α 6= 0. Recall that ai,ji,i (0) = ai,jj,j(0) = 0.

Hence, ai,ji,i (α) = ai,jj,j(α) for all α ∈ F. So ai,ji,i = ai,jj,j . Let s ∈ N with s 6= i, j. We divide the proof into three

cases.

Case 1. s < i < j. Setting x = αEi,j and y = Es,i in (2.2), we have

(2.4) f(αEi,j)Es,i − Es,if(αEi,j) = αEi,jf(Es,i)− f(Es,i)αEi,j ,
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for all α ∈ F. Multiplying (2.4) by Es,s from the left and by Ei,i from the right, we obtain Es,sf(αEi,j)Es,i−
Es,if(αEi,j)Ei,i = 0. This implies that ai,js,s(α)− ai,ji,i (α) = 0 for all α ∈ F. So ai,js,s = ai,ji,i .

Case 2. i < j < s. Setting x = αEi,j and y = Ej,s in (2.2), we have

(2.5) f(αEi,j)Ej,s − Ej,sf(αEi,j) = αEi,jf(Ej,s)− f(Ej,s)αEi,j ,

for all α ∈ F. Multiplying (2.5) by Ej,j from the left and by Es,s from the right, we obtain Ej,jf(αEi,j)Ej,s−
Ej,sf(αEi,j)Es,s = 0. This implies that ai,jj,j(α)− ai,js,s(α) = 0 for all α ∈ F. So ai,jj,j = ai,js,s.

Case 3. i < s < j. Setting x = αEi,j and y = Es,j in (2.2), we have

(2.6) f(αEi,j)Es,j − Es,jf(αEi,j) = αEi,jf(Es,j)− f(Es,j)αEi,j ,

for all α ∈ F. Note that Es,sf(Es,j)αEi,j = 0 as s > i and f(Es,j) ∈ T∞(F). Multiplying (2.6) by Es,s

from the left and by Ej,j from the right and using Es,sf(Es,j)αEi,j = 0, we obtain Es,sf(αEi,j)Es,j −
Es,jf(αEi,j)Ej,j = 0. This implies that ai,js,s(α)− ai,jj,j(α) = 0 for all α ∈ F. So ai,js,s = ai,jj,j .

Now by Cases 1,2,3, we see that ai,ji,i = ai,jj,j = ai,js,s for every s ∈ N, proving the lemma. �

Lemma 2.3. Let i, j ∈ N with i < j. Then, ai,ji,t = 0 for every t ∈ N with i < t < j.

Proof. Let t ∈ N with i < t < j. Setting x = αEi,j and y = Et,j in (2.2), we have

(2.7) f(αEi,j)Et,j − Et,jf(αEi,j) = αEi,jf(Et,j)− f(Et,j)αEi,j ,

for all α ∈ F. By Lemma 2.2, at,jj,j = at,ji,i . With this, we see that

(2.8) αEi,jf(Et,j)Ej,j − Ei,if(Et,j)αEi,j = α(at,jj,j(1)− at,ji,i (1))Ei,j = 0,

for all α ∈ F. Now multiplying (2.7) by Ei,i from the left and by Ej,j from the right and using (2.8), we

obtain Ei,if(αEi,j)Et,j = 0. This implies that ai,ji,t (α) = 0 for all α ∈ F. So ai,ji,t = 0, as desired. �

Lemma 2.4. Let i, j ∈ N with i < j. Then, ai,js,j = 0 for every s ∈ N with s < i.

Proof. Let s ∈ N with s < i. Clearly, s < i < j. Setting x = αEi,j and y = Ej,j+1 in (2.2), we have

(2.9) f(αEi,j)Ej,j+1 − Ej,j+1f(αEi,j) = αEi,jf(Ej,j+1)− f(Ej,j+1)αEi,j ,

for all α ∈ F. Now multiplying (2.9) by Es,s from the left and by Ej+1,j+1 from the right, we obtain

Es,sf(αEi,j)Ej,j+1 = 0. This implies that ai,js,j(α) = 0 for all α ∈ F. So ai,js,j = 0, as desired. �

Lemma 2.5. Let i, j ∈ N with 2 ≤ i < j. Then, ai,ji,t = 0 for every t ∈ N with j < t.

Proof. Let t ∈ N with j < t. Clearly, 2 ≤ i < j < t. Setting x = αEi,j and y = E1,i in (2.2), we have

(2.10) f(αEi,j)E1,i − E1,if(αEi,j) = αEi,jf(E1,i)− f(E1,i)αEi,j ,

for all α ∈ F. Now multiplying (2.10) by E1,1 from the left and by Et,t from the right, we obtain

−E1,if(αEi,j)Et,t = 0. This implies that ai,ji,t (α) = 0 for all α ∈ F. So ai,ji,t = 0, as desired. �
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Lemma 2.6. Let j ∈ N with 2 ≤ j. Then, a1,j1,t = 0 for every t ∈ N with j < t.

Proof. Let t ∈ N with 2 ≤ j < t. Setting x = αE1,j and y = Et,t+1 in (2.2), we have

(2.11) f(αE1,j)Et,t+1 − Et,t+1f(αE1,j) = αE1,jf(Et,t+1)− f(Et,t+1)αE1,j ,

for all α ∈ F. Multiplying (2.11) by E1,1 from the left and by Et+1,t+1 from the right, we obtain

(2.12) E1,1f(αE1,j)Et,t+1 = αE1,jf(Et,t+1)Et+1,t+1,

for all α ∈ F. By Lemma 2.4, at,t+1
j,t+1 = 0. Thus, αE1,jf(Et,t+1)Et+1,t+1 = 0. With this and (2.12), we have

E1,1f(αE1,j)Et,t+1 = 0. This implies that a1,j1,t (α) = 0 for all α ∈ F. So a1,j1,t = 0, as desired. �

Lemma 2.7. Let i, j ∈ N with i < j. Then, ai,js,t = 0 for every s, t ∈ N with j < s < t.

Proof. Let s, t ∈ N with j < s < t. Setting x = αEi,j and y = Ej,s in (2.2), we have

(2.13) f(αEi,j)Ej,s − Ej,sf(αEi,j) = αEi,jf(Ej,s)− f(Ej,s)αEi,j ,

for all α ∈ F. Now multiplying (2.13) by Ej,j from the left and by Et,t from the right, we obtain

−Ej,sf(αEi,j)Et,t = 0. This implies that ai,js,t(α) = 0 for all α ∈ F. So ai,js,t = 0, as desired. �

Lemma 2.8. Let i, j ∈ N with i < j. Then, ai,js,t = 0 for every s, t ∈ N with i < s < j and s < t.

Proof. Let s, t ∈ N with i < s < j and s < t. Setting x = αEi,j and y = Ei,s in (2.2), we have

(2.14) f(αEi,j)Ei,s − Ei,sf(αEi,j) = αEi,jf(Ei,s)− f(Ei,s)αEi,j ,

for all α ∈ F. We divide the proof into two cases.

Case 1. j 6= t. Multiplying (2.14) by Ei,i from the left and by Et,t from the right, we obtain

(2.15) − Ei,sf(αEi,j)Et,t = αEi,jf(Ei,s)Et,t,

for all α ∈ F. Assume first that j > t. Then, αEi,jf(Ei,s)αEt,t = 0 as f(Ei,s) ∈ T∞(F). With this and

(2.15), we obtain −Ei,sf(αEi,j)Et,t = 0. This implies that ai,js,t(α) = 0 for all α ∈ F. So ai,js,t = 0, as

desired. Assume next that t > j. In this case, i < s < j < t. Now by Lemma 2.7, ai,sj,t = 0. Thus,

αEi,jf(Ei,s)Et,t = 0. With this and (2.15), we obtain −Ei,sf(αEi,j)Et,t = 0. This implies that ai,js,t(α) = 0

for all α ∈ F. So ai,js,t = 0, as desired.

Case 2. j = t. Multiplying (2.14) by Ei,i from the left and by Ej,j from the right, we obtain

(2.16) − Ei,sf(αEi,j)Ej,j = αEi,jf(Ei,s)Ej,j − Ei,if(Ei,s)αEi,j ,

for all α ∈ F. By Lemma 2.2, ai,sj,j = ai,si,i . With this, we see that

(2.17) αEi,jf(Ei,s)Ej,j − Ei,if(Ei,s)αEi,j = α(ai,sj,j(1)− ai,si,i (1))Ei,j = 0,

for all α ∈ F. Applying (2.17) to (2.16), we obtain −Ei,sf(αEi,j)Ej,j = 0. This implies that ai,js,j(α) = 0 for

all α ∈ F. So ai,js,j = 0. From j = t, ai,js,t = 0 follows, as desired. �
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Lemma 2.9. Let i, j ∈ N with i < j. Then, ai,js,t = 0 for every s, t ∈ N with s < t < i.

Proof. Let s, t ∈ N with s < t < i. Clearly, s < t < i < j. Setting x = αEi,j and y = Et,i in (2.2), we have

(2.18) f(αEi,j)Et,i − Et,if(αEi,j) = αEi,jf(Et,i)− f(Et,i)αEi,j ,

for all α ∈ F. Multiplying (2.18) by Es,s from the left and by Ei,i from the right, we obtain Es,sf(αEi,j)Et,i =

0. This implies that ai,js,t(α) = 0 for all α ∈ F. So ai,js,t = 0, as desired. �

Lemma 2.10. Let i, j ∈ N with i < j. Then, ai,js,t = 0 for every s, t ∈ N with s < i < t < j.

Proof. Let s, t ∈ N with s < i < t < j. Setting x = αEi,j and y = Et,j in (2.2), we have

(2.19) f(αEi,j)Et,j − Et,jf(αEi,j) = αEi,jf(Et,j)− f(Et,j)αEi,j ,

for all α ∈ F. Multiplying (2.19) by Es,s from the left and by Ej,j from the right, we obtain

(2.20) Es,sf(αEi,j)Et,j = −Es,sf(Et,j)αEi,j ,

for all α ∈ F. By Lemma 2.9, at,js,i = 0 as s < i < t < j. Thus, −Es,sf(Et,j)αEi,j = 0. With this and (2.20),

we obtain Es,sf(αEi,j)Et,j = 0. This implies that ai,js,t(α) = 0 for all α ∈ F. So ai,js,t = 0, as desired. �

Lemma 2.11. Let i, j ∈ N with i < j. Then, ai,js,t = 0 for every s, t ∈ N with s < i < j < t.

Proof. Let s, t ∈ N with s < i < j < t. Setting x = αEi,j and y = Et,t+1 in (2.2), we have

(2.21) f(αEi,j)Et,t+1 − Et,t+1f(αEi,j) = αEi,jf(Et,t+1)− f(Et,t+1)αEi,j ,

for all α ∈ F. Now multiplying (2.21) by Es,s from the left and by Et+1,t+1 from the right, we obtain

Es,sf(αEi,j)Et,t+1 = 0. This implies that ai,js,t(α) = 0 for all α ∈ F. So ai,js,t = 0, as desired. �

Lemma 2.12. Let F be a field. Suppose that f : N∞(F)→ T∞(F) is an additive map such that [f(x), x] = 0

for all x ∈ N∞(F). Then for every i, j ∈ N with i < j, there exist an additive map ai,ji,j : F → F and an

additive map µi,j : F→ F such that f(αEi,j) = ai,ji,j(α)Ei,j + µi,j(α)I∞ for all α ∈ F.

Proof. Let i, j ∈ N with i < j. Write f(αEi,j) =
∑∞

s,t=1,s≤t a
i,j
s,t(α)Es,t for all α ∈ F, where each ai,js,t : F→ F

is an additive map. By Lemmas 2.4 and 2.8, ai,js,j = 0 for all s ∈ N with s < j and s 6= i and by Lemma 2.1,

ai,jj,t = 0 for all t ∈ N with j < t. Next by Lemma 2.1, ai,js,i = 0 for all s ∈ N with s < i and by Lemmas 2.3,

2.5 and 2.6, ai,ji,t = 0 for all t ∈ N with i < t and t 6= j. Moreover, by Lemmas 2.7, 2.8, 2.9, 2.10 and 2.11,

ai,js,t = 0 for all s, t ∈ N with s < t and s, t /∈ {i, j}. Finally, by Lemma 2.2, ai,j1,1 = ai,js,s for all s ∈ N. With

these, we obtain f(αEi,j) = ai,ji,j(α)Ei,j +
∑∞

s=1 a
i,j
s,s(α)Es,s = ai,ji,j(α)Ei,j + µi,j(α)I∞ for all α ∈ F, where

µi,j = ai,j1,1. This proves the lemma. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.12, for every i, j ∈ N with i < j, there exist an additive map

ai,ji,j : F→ F and an additive map µi,j : F→ F such that

(2.22) f(αEi,j) = ai,ji,j(α)Ei,j + µi,j(α)I∞,
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for all α ∈ F.

Let i ∈ N. Setting x = αEi,i+1 and y = βEi+1,i+2 in (2.2), we have

(2.23) f(αEi,i+1)βEi+1,i+2 − βEi+1,i+2f(αEi,i+1) = αEi,i+1f(βEi+1,i+2)− f(βEi+1,i+2)αEi,i+1,

for all α, β ∈ F. Multiplying (2.23) by Ei,i from the left and by Ei+2,i+2 from the right, we obtain

Ei,if(αEi,i+1)βEi+1,i+2 = αEi,i+1f(βEi+1,i+2)Ei+2,i+2. This implies that

(2.24) ai,i+1
i,i+1(α)β = αai+1,i+2

i+1,i+2(β),

for all α, β ∈ F and i ∈ N. By (2.24), we have

(2.25) a1,21,2(α)β = αa2,32,3(β),

and

(2.26) a2,32,3(α)β = αa3,43,4(β),

for all α, β ∈ F. Setting β = 1 in (2.25), we obtain a1,21,2(α) = λα for all α ∈ F, where λ = a2,32,3(1) ∈ F. Next

applying a1,21,2(α) = λα to (2.25), we get a2,32,3(β) = λβ for all β ∈ F. Consequently, a1,21,2(α) = a2,32,3(α) = λα

for all α ∈ F. Similarly, using (2.26) and a2,32,3(α) = λα, we obtain a2,32,3(α) = a3,43,4(α) = λα for all α ∈ F. Now

using (2.24) repeatedly, we conclude that

(2.27) ai,i+1
i,i+1(α) = λα,

for all α ∈ F and i ∈ N. Let i, j ∈ N with i < j. Setting x = αEi,j and y = Ej,j+1 in (2.2), we have

(2.28) f(αEi,j)Ej,j+1 − Ej,j+1f(αEi,j) = αEi,jf(Ej,j+1)− f(Ej,j+1)αEi,j ,

for all α ∈ F. Multiplying (2.28) by Ei,i from the left and by Ej+1,j+1 from the right, we obtain

Ei,if(αEi,j)Ej,j+1 = αEi,jf(Ej,j+1)Ej+1,j+1.

This implies that ai,ji,j(α) = αaj,j+1
j,j+1(1) for all α ∈ F. Recall that aj,j+1

j,j+1(1) = λ by (2.27). Hence, ai,ji,j(α) = λα

for all α ∈ F. With this and (2.22), we see that for every i, j ∈ N with i < j,

(2.29) f(αEi,j) = λαEi,j + µi,j(α)I∞,

for all α ∈ F. Let i, j ∈ N with i < j. Clearly, by (2.29) f(Ei,j) = λEi,j + µi,j(1)I∞. Setting y = Ei,j in

(2.2), we obtain

f(x)Ei,j − Ei,jf(x) = xf(Ei,j)− f(Ei,j)x

= x(λEi,j + µi,j(1)I∞)− (λEi,j + µi,j(1)I∞)x

= (λx)Ei,j − Ei,j(λx),

for all x ∈ N∞(F). This implies that

(2.30) (f(x)− λx)Ei,j = Ei,j(f(x)− λx),
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for all x ∈ N∞(F) and i, j ∈ N with i < j. Clearly, from (2.30) it follows that f(x) − λx ∈ FI∞ for all

x ∈ N∞(F). Let µ : N∞(F) → FI∞ be the additive map defined by µ(x) = f(x) − λx for all x ∈ N∞(F).

Then, f(x) = λx+ µ(x) for all x ∈ N∞(F). This proves the theorem. �

Proof of Corollary 1.2. By Theorem 1.1, there exist λ ∈ F and an additive map µ : N∞(F) → FI∞
such that f(x) = λx + µ(x) for all x ∈ N∞(F). By assumption, f(x) ∈ N∞(F) for all x ∈ N∞(F). Thus,

µ(x) = f(x) − λx ∈ N∞(F) for all x ∈ N∞(F). From FI∞ ∩ N∞(F) = {0}, it follows that µ(x) = 0 for all

x ∈ N∞(F). This implies that f(x) = λx for all x ∈ N∞(F), as desired. �

Proof of Corollary 1.3. By Theorem 1.1, there exist λ ∈ F and an additive map ν : N∞(F)→ FI∞ such

that

(2.31) f(y) = λy + ν(y),

for all y ∈ N∞(F). Similarly, in view of (2.2), we have

(2.32) f(x)y − yf(x) = xf(y)− f(y)x,

for all x, y ∈ T∞(F). Let x ∈ T∞(F) and y ∈ N∞(F). By (2.31) and (2.32), we have

f(x)y − yf(x) = xf(y)− f(y)x = x(λy + ν(y))− (λy + ν(y))x = (λx)y − y(λx).

This implies that (f(x) − λx)y = y(f(x) − λx) for all x ∈ T∞(F) and y ∈ N∞(F). In particular, (f(x) −
λx)Ei,j = Ei,j(f(x) − λx) for all x ∈ T∞(F) and i, j ∈ N with i < j. Hence, f(x) − λx ∈ FI∞ for all

x ∈ T∞(F). Let µ : T∞(F) → FI∞ be the additive map defined by µ(x) = f(x) − λx for all x ∈ T∞(F).

Then, f(x) = λx+ µ(x) for all x ∈ T∞(F), as desired. �
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