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IDEMPOTENCE-PRESERVING MAPS BETWEEN MATRIX SPACES

OVER FIELDS OF CHARACTERISTIC 2∗

JIN-LI XU† , XIAO-MIN TANG† , AND CHONG-GUANG CAO†

Abstract. Let Mn(F) be the space of all n× n matrices over a field F of characteristic 2 other

than F2 = {0, 1}, and let Pn(F) be the subset of Mn(F) consisting of all n× n idempotent matrices.

Let m and n be integers with n ≥ m and n ≥ 3. We denote by Φn,m(F) the set of all maps from

Mn(F) to Mm(F) satisfying that A−λB ∈ Pn(F) implies φ(A)−λφ(B) ∈ Pm(F) for all A,B ∈ Mn(F)

and λ ∈ F. In this paper, we give a complete characterization of Φn,m(F).
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1. Introduction. Suppose F is an arbitrary field. Let Mn(F) be the space of

all n × n matrices over F and Pn(F) be the subset of Mn(F) consisting of all n × n

idempotent matrices. Denote by Eij the n× n matrix which has 1 in the (i, j) entry

and has 0 elsewhere. For any positive integer k ≤ n, let Fk be the vector space of all

k × 1 matrices over F. Let e1, e2, . . . , en denote the vectors of the canonical basis of

F
n. We denote by Ik and 0k the k × k identity matrix and zero matrix, respectively,

or simply I and 0, if the dimensions of these matrices are clear.

The problem of characterizing linear maps preserving idempotence belongs to

a large group of the so-called linear preserver problems (see [3] and the references

therein). The theory of linear preservers of idempotence is well-developed (see [1, 4]).

Some initial results on more difficult non-linear idempotence preserver problems have

been obtained [5, 2, 8]. We denote by SΦn(F) the set of all maps fromMn(F) to itself

satisfying that A−λB ∈ Pn(F) ⇐⇒ φ(A)−λφ(B) ∈ Pn(F) for all A,B ∈Mn(F) and

λ ∈ F. A map φ is called a strong idempotence-preserving map if φ ∈ SΦn(F). Šemrl

[5], Dolinar [2] and Zhang [8] characterize the set of strong idempotence-preserving

maps SΦn(F), where F is a field of characteristic other than 2.

Recently, Tang et. al. [6] improve the results mentioned above by characterizating
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of the set Φn(F) of idempotence-preserving maps from Mn(F) to itself satisfying that

A − λB ∈ Pn(F) implies φ(A) − λφ(B) ∈ Pn(F) for all A,B ∈ Mn(F) and λ ∈ F.

However, they are still confined to the fields of characteristic other than 2. Tang et.

al. [7] studies the same problem over fields F of characteristic 2 except F2 = {0, 1},

under the assumption that there exists an invertible matrix T ∈ Mn(F) such that

Tφ(Ekk)T
−1 = Ekk for all k ∈ {1, . . . , n}. In this paper, we consider the remaining

problem between spaces having different dimensions.

Let m and n be integers with n ≥ m and n ≥ 3. We denote by Φn,m(F) the set of

all maps from Mn(F) to Mm(F) for which A − λB ∈ Pn(F) implies φ(A) − λφ(B) ∈

Pm(F) for all A,B ∈Mn(F) and λ ∈ F. We will characterize the set Φn,m(F) when the

field F is of characteristic 2 and F 6= F2. Hence, the result of this paper complements

the results of [6].

Since the field we consider is of characteristic 2, 2 does not have a multiplicative

inverse. Hence, the approach of the above mentioned references does not work. In

fact, if the field is of characteristic 2, then the problem is more complicated. To

overcome the difficulties, the following two new ideas are pivotal:

(i) We define a string of subsets ∆n,k,µ ofMn(F). Then we use the subsets ∆n,k,µ

to prove some result by induction. The string of subsets ∆n,k,µ is interesting

itself.

(ii) The images of Eii under φ are important for our purpose. But the cases of

φ(Eii) are complicated. We show that φ(Eii) may take one of three distinct

forms (see Lemma 3.3). This is different from the case of characteristic other

than 2.

2. Characterization of some subsets of Mn(F). In the rest of this paper,

we always let m and n be integers with n ≥ m and n ≥ 3 unless otherwise stated,

and let F be a field of characteristic 2 other than F2. For x ∈ F
n\ {0}, we denote

Sn,x = {P ∈ Pn(F) : Px 6= x}. Next, we define by induction on k a string of sets

∆n,k,µ as follows for every µ ∈ F
∗, where F

∗ = F\ {0}.

(i) ∆n,0,µ = {0 ∈Mn(F)} ;

(ii) ∆n,k,µ = {A ∈ Mn(F) : there are B ∈ ∆n,k−1,µ and λ ∈ F
∗\{µ−1} such that

λA+B ∈ Pn(F)} for 1 ≤ k ≤ 2n2.

The following lemma is useful for the proof of our main theorem.

Lemma 2.1. ([7]) For any fixed µ ∈ F
∗, we have Mn(F) = ∪

2n2

k=0
∆n,k,µ.

3. Preliminary results. This section provides some preliminary results.
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Lemma 3.1. ([7]) If φ ∈ Φn,m(F), then

(i) φ(Pn(F)) ⊆ Pm(F);

(ii) φ is homogeneous, i.e., φ(λA) = λφ(A) for every A ∈Mn(F) and λ ∈ F.

Lemma 3.2. Suppose that φ ∈ Φn,m(F) and A,B ∈ Pn(F) satisfy A+B ∈ Pn(F).

Then

φ (A+ λB) = φ (A) + λφ(B) for every λ ∈ F.

Proof. For any λ ∈ F\{0, 1}, since (A+λB)+λB, (A+λB)+ (1+λ)B, λ−1(A+

λB) + λ−1A, λ−1(A+ λB) + (1 + λ−1)A are idempotent, by φ ∈ Φn,m (F) and (ii) of

Lemma 3.1, we deduce:

φ(A + λB) + λφ(B) ∈ Pm(F),(3.1)

φ(A + λB) + (1 + λ)φ(B) ∈ Pm(F),(3.2)

λ−1[φ(A + λB) + φ(A)] ∈ Pm(F),(3.3)

λ−1φ(A+ λB) + (1 + λ−1)φ(A) ∈ Pm(F).(3.4)

Applying Lemma 3.1 (i) to B ∈ Pn (F), we have φ(B) ∈ Pm (F), so we deduce

from (3.1) and (3.2) that

φ(A+ λB)φ(B) + φ(B)φ(A + λB) = 0.

This, together with (3.1), gives that

φ(A + λB)2 = φ(A + λB) + λ(λ + 1)φ(B).(3.5)

Similarly, one has by (3.3), (3.4) and φ(A)2 = φ(A) that

φ(A + λB)2 = λφ(A + λB) + (λ+ 1)φ(A).(3.6)

Using (3.5) and (3.6) and noticing that λ 6= 1, we have

φ (A+ λB) = φ (A) + λφ(B) for every λ ∈ F\{0, 1}.(3.7)

Since λ 6= 0, 1, we see that λ + 1 6= 0, 1. Also, we have A + B, B, (A + B) + B

are idempotent. This, together with (3.7), implies that

φ (A+ λB) = φ ((A+B) + (λ + 1)B) = φ (A+B) + (λ+ 1)φ(B) .(3.8)
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It follows from (3.7) and (3.8) that φ (A+B) = φ (A) + φ(B). We get the desired

conclusion.

Lemma 3.3. Suppose φ ∈ Φn,m(F). Then there exists an invertible matrix

T ∈Mm(F) such that one of the following holds:

(a) m = n and Tφ(Ekk)T
−1 = Ekk for all k ∈ {1, . . . , n} ;

(b) m = n and Tφ(Ekk)T
−1 = Ekk + In for all k ∈ {1, . . . , n} ;

(c) There is an r ∈ {0, 1, . . . ,m} such that Tφ(Ekk)T
−1 = Ir ⊕ 0m−r for all

k ∈ {1, . . . , n} (here Ir ⊕ 0m−r = Im if r = m, or 0 if r = 0).

Proof. The proof is divided into three steps.

Step 1. There are an invertible matrix Q0 ∈ Mm(F) and εij ∈ {0, 1}, i =

1, 2, . . . ,m, j = 1, 2, . . . , n, such that

φ(Ekk) = Q0diag(ε1k, ε2k, . . . , εmk)Q
−1
0 for all k ∈ {1, . . . , n} .

In fact, for any distinct 1 ≤ i, j ≤ n, because of Eii, Ejj , Eii + Ejj ∈ Pn(F),

it follows from φ ∈ Φn,m(F) that φ(Eii), φ(Ejj), φ(Eii) + φ (Ejj) ∈ Pn(F). Hence

φ(Eii)φ (Ejj) = φ(Ejj)φ (Eii). It is easy to see that the claim in Step 1 holds.

For convenience, we assume by Step 1 that φ(Ekk) = diag(ε1k, ε2k, . . . , εmk) for

all k ∈ {1, . . . , n}. Let E denote the m× n matrix [εij ] with entries for {0, 1}. Let

Lk(E) = {i : εik = 1} , Rk(E) = {i : εik = 0} , k = 1, 2, . . . , n.

For π ⊂ {1, . . . , n} with |π| ≥ 2, we define

Lπ
k (E) = Lk(E) ∩ (∩i∈π\{k}Ri(E)), Rπ

k (E) = Rk(E) ∩ (∩i∈π\{k}Li(E)) for all k ∈ π.

Step 2. Suppose that π ⊂ {1, . . . , n} with |π| ≥ 2. Then

(i) |Lπ
i (E)| = |Lπ

j (E)| for any i, j ∈ π;

(ii) |Rπ
i (E)| = |Rπ

j (E)| for any i, j ∈ π.

Take distinct i, j ∈ π. For convenience, we let r1 = |Lπ
i (E)|, r2 = |Lπ

j (E)|,

s = | ∩k∈π Lk(E)|, t = | ∩k∈π Rk(E)| and u = m− r1 − r2 − s− t. Then there are a

permutation matrix Q and ζ1p, . . . , ζup ∈ {0, 1}, p ∈ π such that

Q−1φ(Eii)Q = Ir1 ⊕ 0r2 ⊕ Is ⊕ 0t ⊕ diag(ζ1i, . . . , ζui),(3.9)

Q−1φ(Ejj)Q = 0r1 ⊕ Ir2 ⊕ Is ⊕ 0t ⊕ diag(ζ1j , . . . , ζuj),(3.10)
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and

Q−1φ(Ekk)Q = 0r1 ⊕ 0r2 ⊕ Is⊕ 0t⊕diag(ζ1k, . . . , ζuk), for all k ∈ π\ {i, j} if |π| > 2.

Take λ 6= 0, 1. Note that (1+λ)−1(Eii+λEij)+(1+λ)−1λEii, Eii and Eii+λEij

are idempotent. This, together with Lemma 3.1 and φ ∈ Φn,m(F), imply that

φ(Eii + λEij) = φ(Eii) + φ(Eii)φ(Eii + λEij) + φ(Eii + λEij)φ(Eii).(3.11)

Let X denote the matrix φ(Eii)φ(Eii+λEij)+φ(Eii+λEij)φ(Eii). By φ(Eii), φ(Eii+

λEij) ∈ Pm(F) and (3.11), we deduce that

X2 = 0(3.12)

and

X = φ(Eii)X +Xφ(Eii).(3.13)

Applying Lemma 3.2 to Eii, Ejj , Eii + Ejj ∈ Pn(F), we have

φ(Eii + Ejj) = φ(Eii) + φ(Ejj).(3.14)

Because of (Eii + λEij) + (Eii +Ejj) ∈ Pn(F), we have by (3.11), (3.14), Lemma

3.2 and φ ∈ Φn,m(F) that

φ(Ejj) + φ(Eii)φ(Eii + λEij) + φ(Eii + λEij)φ(Eii) ∈ Pm(F).

This, together with (3.12) and the fact φ(Ejj) ∈ Pm(F), yields that

X = φ(Ejj)X +Xφ(Ejj).(3.15)

We now can assume by (3.9), (3.10), (3.13) and (3.15) that

Q−1XQ =















0r1 X12 0 0 X15

X21 0r2 0 0 X25

0 0 0s X34 X35

0 0 X43 0t X45

X51 X52 X53 X54 X55















, where X55 ∈Mu(F).

If |π| = 2, then u = 0, so that

Q−1XQ =

[

0r1 X12

X21 0r2

]

⊕

[

0s X34

X43 0t

]

.(3.16)
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In the other case, |π| ≥ 3. We claim that X15 = 0, X25 = 0, X51 = 0 and

X52 = 0.

In fact, if X15 6= 0, then there is a (p, q) entry xpq 6= 0 of X15. And hence we see

by (3.13) and (3.15) that ζqi = 0 and ζqj = 1. By the definition of Lπ
j (E), one can

conclude that there is a k ∈ π\ {i, j} such that ζqk = 1. Note that Ekk+(Eii+λEij) ∈

Pn(F). This, together with Lemma 3.2, (3.11), (3.12) and φ ∈ Φn,m(F), yields that

X = (φ(Ekk) + φ(Eii))X +X(φ(Ekk) + φ(Eii)).

By a direct computation, we get xpq = 0, which is impossible. Similarly, we have

X25 = 0, X51 = 0 and X52 = 0. Thus,

Q−1XQ =

[

0r1 X12

X21 0r2

]

⊕





0s X34 X35

X43 0t X45

X53 X54 X55



 .(3.17)

By composing (3.9), (3.11) with (3.16) or (3.17), one can assume that

Q−1φ(Eii + λEij)Q =

[

Ir1 X12

X21 0r2

]

⊕ Y, where Y ∈Mm−r1−r2(F).(3.18)

Take σ 6= 0, 1 and λ = σ−1(σ+1). This, together with (3.18), allows us to assume

that

Q−1φ(σEii + (1 + σ)Eij)Q =

[

σIr1 A

B 0r2

]

⊕ U,(3.19)

where U ∈Mm−r1−r2(F).

By a similar argument, we can assume that

Q−1φ(σEji + (1 + σ)Ejj)Q =

[

0r1 C

D (σ + 1)Ir2

]

⊕ V,(3.20)

where V ∈Mm−r1−r2(F).

Note that (σEii +(1+σ)Eij)+ (σEji +(1+σ)Ejj) ∈ Pn(F). This, together with

(3.19), (3.20) and φ ∈ Φn,m(F), yields that
[

σIr1 A+ C

B +D (σ + 1)Ir2

]

∈ Pr1+r2(F).(3.21)

If r1 = 0 but r2 6= 0, then we have by (3.21) that (σ + 1)Ir2 ∈ Pr2(F), which is

a contradiction. So r1 = 0 implies r2 = 0. Similarly, r2 = 0 also implies r1 = 0. We

now consider the case r1 6= 0 and r2 6= 0. By (3.21) one has

σ(σ + 1)Ir1 = (A+ C)(B +D), σ(σ + 1)Ir2 = (B +D)(A+ C).
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This tells us that r1 = r2. Thus, |Lπ
i (E)| = |Lπ

j (E)|. Similarly, we have |Rπ
i (E)| =

|Rπ
j (E)|. By the arbitrariness of i, j, we complete the proof of Step 2.

Let π = {l1, . . . , lt} ⊂ {1, . . . , n}, and let F be the submatrix of E consisting only

of columns l1, . . . , lt of E. Before Step 3, we state the following two remarks.

Remark I. Due to (i) of Step 2, we see that if there is an entry equal to 1 and all

others equal to 0 in a proper row of F , then F consists a t× t permutation matrix as

its submatrix.

Remark II. Due to (ii) of Step 2, we see that if there is an entry equal to 0 and

all others equal to 1 in a proper row of F , then F consists a submatrix W +J , where

W is a t× t permutation matrix and J is a t× t matrix in which all entries are 1.

Step 3. We will prove the conclusion based on the distribution of 0s and 1s in

E.

If all columns of E are the same, then we can easily check that (c) holds. Other-

wise, there is not only 0 but 1 in a certain row of E. Let r be the largest number of

zeros in a nonzero row; let e denote such a row. If r = n− 1, then let π = {1, . . . , n},

and so we see by Remark I that (a) holds. In the other case, we have n ≥ 3. We can

obtain a matrix E1 from E by first making a row permutation so that e is its first

row, and then by making a finite number of column permutations, so that E1 is of

the form

E1 =

[

1 0 . . . 0 1 . . . 1

∗ ∗ . . . ∗ ∗ . . . ∗

]

,

where ∗ denotes any matrix of the appropriate size. For E1 we take π = {1, . . . , r+1}.

Using Remark I, one can obtain a matrix E2 =

[

Ir+1 B

C D

]

from E1 by a finite

number proper row permutations. Since r is the biggest, we see that all entries of B

are 1. Furthermore, consider the submatrix S of E2 consisting of r + 1-th, . . ., n-th

columns of E2. Then it is clear that the first row of S has an entry equal to 0 and all

others equal to 1. For E2, we take π = {r + 1, r + 2, . . . , n}. Using Remark II, one

can obtain a matrix E3 =

[

Ir+1 B

C1 In−r−1 + J

]

from E2 by a finite number proper

row permutations, where J ∈ Mn−r−1(F) has all entries equal to 1 and C1 has all

entries of its last column equal to 1. By m ≤ n, one has m = n. For E3 we take

π = {r + 1, r + 2}. It follows from |Lπ
r+1(E)| = |Lπ

r+2(E)| that r = 1. This means

that in the first row of E there is an entry equal to 0 and all other entries are equal

to 1. Finally, it follows by Remark II that E is a sum of a permutation matrix and a

matrix in which all entries are 1, which implies (b).

Lemma 3.4. ([7]) Suppose that X ∈Mn(F) and Y ∈Ms(F), 1 ≤ s ≤ n satisfy
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(a) X + Y ⊕ 0n−s ∈ Pn(F);

(b) X + (Is + Y )⊕ 0n−s ∈ Pn(F).

Then there are U ∈ Ps(F) and V ∈ Pn−s(F) such that X = (Y + U)⊕ V .

Lemma 3.5. Suppose that φ ∈ Φn,m(F), 1 ≤ s ≤ n − 1 and r is a nonnegative

integer satisfying (a) φ(Ekk) = Ir ⊕ 0 for all k ∈ {1, . . . , n}, and (b) φ(A ⊕ 0) =

(Tr A) Ir ⊕ 0 for all A ∈Ms(F), where Tr A denotes the trace of A. Then

φ(Z ⊕ 0) = (Tr Z) Ir ⊕ 0 for all Z ∈Ms+1(F).

Proof. The proof is divided into the following four steps.

Step 1. φ(A⊕ µ⊕ 0) = (Tr A+ µ) Ir ⊕ 0 for all A ∈Ms(F), µ ∈ F
∗.

Fix any E ∈Ms(F). Note that

µ−1 (E ⊕ µ⊕ 0) + µ−1E ⊕ 0

and

µ−1 (E ⊕ µ⊕ 0) +
(

µ−1E + 1⊕ 0
)

⊕ 0

are both n× n idempotent matrices. We have by (b) and φ ∈ Φn,m(F) that

µ−1φ (E ⊕ µ⊕ 0) + µ−1 (Tr E) Ir ⊕ 0 ∈ Pm(F)

and

µ−1φ (E ⊕ µ⊕ 0) +
(

Ir + µ−1 (Tr E) Ir
)

⊕ 0 ∈ Pm(F).

Applying Lemma 3.4 to X = µ−1φ (E ⊕ µ⊕ 0) and Y = µ−1 (Tr E) Ir , we see

that there are U (E, µ) ∈ Pr(F) and V (E, µ) ∈ Pn−r(F) such that

φ (E ⊕ µ⊕ 0) = (µU (E, µ) + (Tr E) Ir)⊕ µV (E, µ)(3.22)

for all E ∈Ms(F) and µ ∈ F
∗.

We claim that U (E, µ) = Ir and V (E, µ) = 0 for all E ∈Ms(F) and µ ∈ F
∗.

In fact, (a) tells us U (0, µ) = Ir and V (0, µ) = 0 for all µ ∈ F
∗. Namely, the

claim holds for all E ∈ ∆s,0,µ and µ ∈ F
∗. We assume that the claim is true for all

µ ∈ F
∗ and E ∈ ∆s,k−1,µ where 1 ≤ k ≤ 2n2. Fix any µ ∈ F

∗ and A ∈ ∆s,k,µ. Then

there are λ ∈ F\
{

0, µ−1
}

and B ∈ ∆s,k−1,µ such that λA + B ∈ Ps(F). Hence one
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has λ (A⊕ µ⊕ 0)+B⊕λµ⊕ 0 ∈ Pn(F). This, together with (3.22) and the induction

principle, yields that

(λµU (A, µ) + λ (Tr A) Ir + (Tr B) Ir + λµIr)⊕ λµV (A, µ) ∈ Pm (F) .

As λ ∈ F\
{

0, µ−1
}

and λTr A + Tr B ∈ {0, 1}, we get U (A, µ) = Ir and

V (A, µ) = 0. Now we can complete the proof of Step 1 by Lemma 2.1 and the

induction principle.

Step 2.















φ

([

A α

0 µ

]

⊕ 0

)

= (Tr A+ µ) Ir ⊕ 0

φ

([

A 0

αT µ

]

⊕ 0

)

= (Tr A+ µ) Ir ⊕ 0

for all A ∈ Ms(F), α ∈

F
s\ {0} and µ ∈ F.

We only prove the first one, and the proof of the second is similar.

When s = 1 and µ = 0, we know by (a) and Lemma 3.2 that

φ ((A+ 1)E11 + E33) = (A+ 1)φ (E11) + φ (E33) = AIr ⊕ 0.(3.23)

Because

[

A α

0 0

]

⊕0+

[

A+ 1 0

0 0

]

⊕0 and

[

A α

0 0

]

⊕0+

[

A+ 1 0

0 0

]

⊕1⊕0

are both n× n idempotent matrices, one can obtain by (a), (3.23) and φ ∈ Φn,m(F)

that

φ

([

A α

0 0

]

⊕ 0

)

+ (A+ 1) Ir ⊕ 0 ∈ Pm(F)

and

φ

([

A α

0 0

]

⊕ 0

)

+AIr ⊕ 0 ∈ Pm(F).

This, together with Lemma 3.4, tells us that there are U1 ∈ Pr(F) and V1 ∈ Pm−r(F)

such that

φ

([

A α

0 0

]

⊕ 0

)

= (U1 +AIr)⊕ V1.(3.24)

Take λ 6= 0, 1. Note that λ

[

A α

0 0

]

⊕ 0 +

[

λA 0

0 1

]

⊕ 0 ∈ Pn(F). We have

by (3.24), Step 1 and φ ∈ Φn,m(F) that (λU1 + Ir) ⊕ λV1 ∈ Pm(F). Thus, one has

U1 = 0 and V1 = 0, proving Step 2 in this case.
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When s = 1 and µ 6= 0, we know by Lemma 3.2 and (a) that

φ
(

µ−1AE11 + E33

)

=
(

µ−1A
)

φ (E11) + φ (E33) =
(

µ−1A+ 1
)

Ir ⊕ 0.(3.25)

Since

µ−1

[

A α

0 µ

]

⊕ 0 +

[

µ−1A 0

0 0

]

⊕ 0

and

µ−1

[

A α

0 µ

]

⊕ 0 +

[

µ−1A 0

0 0

]

⊕ 1⊕ 0

are both n× n idempotent matrices, we can get by (a), (3.25) and φ ∈ Φn,m(F) that

µ−1φ

([

A α

0 µ

]

⊕ 0

)

+ µ−1AIr ⊕ 0 ∈ Pm(F)

and

µ−1φ

([

A α

0 µ

]

⊕ 0

)

+
(

µ−1A+ 1
)

Ir ⊕ 0 ∈ Pm(F).

Using Lemma 3.4, we see that there are U2 ∈ Pr(F) and V2 ∈ Pm−r(F) such that

φ

([

A α

0 µ

]

⊕ 0

)

= (µU2 +AIr)⊕ µV2.(3.26)

Take λ 6= 0, µ−1. Since λ

[

A α

0 µ

]

⊕ 0 +

[

λA 0

0 λµ+ 1

]

⊕ 0 ∈ Pn(F), we have

by (3.26), Step 1 and φ ∈ Φn,m(F) that (λµU2 + (λµ+ 1) Ir)⊕ λµV2 ∈ Pm(F). Thus,

one has U2 = Ir and V2 = 0, proving Step 2 in the case s = 1.

When s ≥ 2, it follows from α 6= 0 that there is an invertible matrix Qα ∈Ms(F)

satisfying α = Qαe1. Since

[

A α

0 µ

]

⊕ 0 +

[

A+Qα (1⊕ 0)Q−1
α 0

0 µ

]

⊕ 0

and

[

A α

0 µ

]

⊕ 0 +

[

A+Qα (1⊕ 1⊕ 0)Q−1
α 0

0 µ

]

⊕ 0
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are both n× n idempotent matrices, one can obtain by Step 1 and φ ∈ Φn,m(F) that

φ

([

A α

0 µ

]

⊕ 0

)

+ (Tr A+ µ+ 1) Ir ⊕ 0 ∈ Pm(F)

and

φ

([

A α

0 µ

]

⊕ 0

)

+ (Tr A+ µ) Ir ⊕ 0 ∈ Pm(F).

Due to Lemma 3.4, there are U3 ∈ Pr(F) and V3 ∈ Pm−r(F) such that

φ

([

A α

0 µ

]

⊕ 0

)

= (U3 + (Tr A+ µ) Ir)⊕ V3.(3.27)

Take λ 6= 0, 1. As λ

[

A α

0 µ

]

⊕ 0 +

[

λA 0

0 λµ+ 1

]

⊕ 0 ∈ Pn(F), we have by

(3.27), Step 1 and φ ∈ Φn,m(F) that (λU3 + Ir) ⊕ λV3 ∈ Pm(F). Further, we have

U3 = 0 and V3 = 0. The proof of Step 2 is completed.

Step 3. φ

([

A α

βT 0

]

⊕ 0

)

= (Tr A) Ir ⊕ 0 for all A ∈Ms(F), α, β ∈ F
s\ {0} .

If we prove that for any A ∈ Ms(F), α ∈ F
s\ {0} , there are U4 ∈ Pr(F) and

V4 ∈ Pm−r(F) such that

φ

([

A α

βT 0

]

⊕ 0

)

= (U4 + (Tr A) Ir)⊕ V4(3.28)

and then we take λ 6= 0, 1, by λ

[

A α

βT 0

]

⊕ 0 +

[

λA λα

0 1

]

⊕ 0 ∈ Pn(F), we can

use φ ∈ Φn,m (F) with Step 2 and (3.28) to get U4 = 0 and V4 = 0, proving Step 3.

To prove (3.28), we first consider the case s = 1.

Since

[

A α

βT 0

]

⊕0+

[

A+ 1 α

0 0

]

⊕0 and

[

A α

βT 0

]

⊕0+

[

A+ 1 α

0 0

]

⊕1⊕0

are n × n idempotent matrices, we can use Lemma 3.2, Step 2, Lemma 3.4 and

φ ∈ Φn,m(F) to get (3.28).

Consider the case s ≥ 2. It follows from β 6= 0 that there is an invertible matrix

Qβ ∈Ms(F) satisfying β = Qβe1. Since

[

A α

βT 0

]

⊕ 0 +





A+
(

Qβ (1⊕ 0)Q−1
β

)T

α

0 0



⊕ 0
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and

[

A α

βT 0

]

⊕ 0 +





A+
(

Qβ (1⊕ 1⊕ 0)Q−1

β

)T

α

0 0



⊕ 0

are both n× n idempotent matrices, we see by Step 2, φ ∈ Φn,m(F) and Lemma 3.4

that (3.28) holds.

Step 4. φ

([

A α

βT µ

]

⊕ 0

)

= (Tr A+ µ) Ir⊕0 for all A ∈Ms(F), α, β ∈ F
s\ {0}

and µ ∈ F
∗.

Note that

µ−1

[

A α

βT µ

]

⊕ 0 + µ−1

[

A α

βT 0

]

⊕ 0 ∈ Pn(F)

and

µ−1

[

A α

βT µ

]

⊕ 0 + µ−1

[

A+ µ⊕ 0 α

βT 0

]

⊕ 0 ∈ Pn(F).

This, together with φ ∈ Φn,m(F) and Step 3, gives that

µ−1φ

([

A α

βT µ

]

⊕ 0

)

+
(

µ−1Tr A
)

Ir ⊕ 0 ∈ Pm(F)

and

µ−1φ

([

A α

βT µ

]

⊕ 0

)

+
(

µ−1Tr A+ 1
)

Ir ⊕ 0 ∈ Pm(F).

Applying Lemma 3.4 to X = µ−1φ

([

A α

βT µ

]

⊕ 0

)

and Y =
(

µ−1Tr A
)

Ir, we

see that there are U5 ∈ Pr(F) and V5 ∈ Pm−r(F) such that

φ

([

A α

βT µ

]

⊕ 0

)

= (µU5 + (Tr A) Ir)⊕ µV5.(3.29)

Take λ 6= 0, µ−1. Note that λ

[

A α

βT µ

]

⊕ 0+

[

λA λα

0 λµ+ 1

]

⊕ 0 ∈ Pn(F). We

have by (3.29), Step 2 and φ ∈ Φn,m(F) that (λµU5 + (λµ+ 1) Ir) ⊕ λµV5 ∈ Pm(F).

Thus, we get U5 = Ir and V5 = 0. The proof of Lemma 3.5 is completed.

Lemma 3.6. Suppose that φ ∈ Φn,m(F). Define a map ψ from Mn (F) to Mm (F)

by ψ (A) = φ (A) + (Tr A) Im for all A ∈Mn(F). Then ψ ∈ Φn,m(F).
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Proof. If A + λB ∈ Pn(F), where A,B ∈ Mn(F) and λ ∈ F, then one has

φ (A) + λφ (B) ∈ Pm(F) and Tr A + λTr B = Tr (A+ λB) ∈ {0, 1}. We deduce

φ (A) + λφ (B) + (Tr A+ λTr B) Im ∈ Pm(F). This implies that ψ (A) + λψ (B) ∈

Pm(F).

4. The main result and remark. Our main result is the following.

Theorem 4.1. Suppose F 6= F2 is any field of characteristic 2, n and m are

integers with n ≥ m and n ≥ 3. Then φ ∈ Φn,m(F) if and only if there is an invertible

matrix T ∈Mm(F) such that one of the following cases holds.

(a) m = n and φ (A) = TAT−1 for all A ∈Mn (F) ;

(b) m = n and φ (A) = TATT−1 for all A ∈Mn (F) ;

(c) m = n and φ (A) = TAT−1 + (TrA) Im for all A ∈Mn (F) ;

(d) m = n and φ (A) = TATT−1 + (Tr A) Im for all A ∈Mn (F) ;

(e) φ (A) = T ((Tr A) Ir ⊕ 0m−r)T
−1 for all A ∈Mn (F), where r ∈ {0, 1, . . . ,m}

is an integer.

Proof. The proof of the “if” part is obvious. Now we prove the “only if” part.

By Lemma 3.3, we know that there exists an invertible matrix T ∈ Mm(F) such

that φ satisfies one of the condition in Lemma 3.3. If φ satisfies the Condition (a) of

Lemma 3.3, then [7] tells us that φ is of the form (a) or (b). Similarly, if φ satisfies

the condition (c) of Lemma 3.3, then we see by the induction principle and Lemma

3.5 that φ is of the form (e).

Now we assume that φ satisfies the condition (b) of Lemma 3.3. Define a map

ψ from Mn (F) to Mm (F) is given by ψ (A) = φ (A) + (Tr A) Im for all A ∈ Mn(F).

Then we have from Lemma 3.6 that ψ ∈ Φn,m(F). But it is not difficult to check

that ψ satisfies the condition (a) of Lemma 3.3. So ψ is of the form (a) or (b). This

implies that φ has the forms (c) or (d).

Remark 4.2. We give an example for which n = 2 and φ ∈ Φn,m(F). Let φ be

a map from M2(F) to itself given by

φ (A) = (Tr A)E11 + f(A)E12 for all A ∈M2(F),

where f is a map from M2(F) to F satisfying

f

([

a b

c d

])

=

{

b, if c = 0,
b2

c
, if c 6= 0.

Then it is easy to see that φ ∈ Φ2,2(F), but φ is not linear. In fact, we see by Theorem

4.1 that φ is linear if n ≥ 3. This shows that the same problem in the case of n = 2
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is complicated.
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