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IDEMPOTENCE-PRESERVING MAPS BETWEEN MATRIX SPACES
OVER FIELDS OF CHARACTERISTIC 2*

JIN-LI XUt, XIAO-MIN TANG!, AND CHONG-GUANG CAOf

Abstract. Let My (F) be the space of all n X n matrices over a field F of characteristic 2 other
than Fo = {0, 1}, and let P, (F) be the subset of My (F) consisting of all n X n idempotent matrices.
Let m and n be integers with n > m and n > 3. We denote by ®, m (F) the set of all maps from
My, (F) to Mp, (F) satisfying that A—AB € Py, (F) implies ¢(A)—A¢(B) € P, (F) for all A, B € M, (F)
and X\ € F. In this paper, we give a complete characterization of ®y, m, (F).
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1. Introduction. Suppose F is an arbitrary field. Let M, (F) be the space of
all n x n matrices over F and P, (F) be the subset of M, (F) consisting of all n x n
idempotent matrices. Denote by E;; the n x n matrix which has 1 in the (7, j) entry
and has 0 elsewhere. For any positive integer k < n, let F* be the vector space of all
k x 1 matrices over F. Let eq,eo, ..., e, denote the vectors of the canonical basis of
F™. We denote by I and 0 the k X k identity matrix and zero matrix, respectively,
or simply I and 0, if the dimensions of these matrices are clear.

The problem of characterizing linear maps preserving idempotence belongs to
a large group of the so-called linear preserver problems (see [3] and the references
therein). The theory of linear preservers of idempotence is well-developed (see [1, 4]).
Some initial results on more difficult non-linear idempotence preserver problems have
been obtained [5, 2, 8]. We denote by S®,,(F) the set of all maps from M, (F) to itself
satisfying that A — AB € P, (F) <= ¢(A) — Ap(B) € P, (F) for all A, B € M, (F) and
A€ F. A map ¢ is called a strong idempotence-preserving map if ¢ € S®,,(F). Semrl
[5], Dolinar [2] and Zhang [8] characterize the set of strong idempotence-preserving
maps S, (F), where F is a field of characteristic other than 2.

Recently, Tang et. al. [6] improve the results mentioned above by characterizating
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of the set @, (F) of idempotence-preserving maps from M, (F) to itself satisfying that
A — AB € P,(F) implies ¢(A) — A\p(B) € P,(F) for all A,B € M,(F) and A € F.
However, they are still confined to the fields of characteristic other than 2. Tang et.
al. [7] studies the same problem over fields F of characteristic 2 except Fy = {0,1},
under the assumption that there exists an invertible matrix T' € M, (F) such that
T¢(Ep)T~t = Egy, for all k € {1,...,n}. In this paper, we consider the remaining
problem between spaces having different dimensions.

Let m and n be integers with n > m and n > 3. We denote by ®,, ,,(F) the set of
all maps from M, (F) to M,,(F) for which A — AB € P, (F) implies ¢(A) — Ap(B) €
P, (F) forall A, B € M, (F) and A € F. We will characterize the set ®,, ,,,(F) when the
field FF is of characteristic 2 and F # Fy. Hence, the result of this paper complements
the results of [6].

Since the field we consider is of characteristic 2, 2 does not have a multiplicative
inverse. Hence, the approach of the above mentioned references does not work. In
fact, if the field is of characteristic 2, then the problem is more complicated. To
overcome the difficulties, the following two new ideas are pivotal:

(i) We define a string of subsets A, i, ,, of M, (F). Then we use the subsets A, 1,
to prove some result by induction. The string of subsets A,, , is interesting
itself.

(ii) The images of E;; under ¢ are important for our purpose. But the cases of
¢(E;;) are complicated. We show that ¢(FE;;) may take one of three distinct
forms (see Lemma 3.3). This is different from the case of characteristic other
than 2.

2. Characterization of some subsets of M, (F). In the rest of this paper,
we always let m and n be integers with n > m and n > 3 unless otherwise stated,
and let F be a field of characteristic 2 other than Fy. For z € F™\ {0}, we denote
Sna = {P € P,(F) : Px # z}. Next, we define by induction on k a string of sets
Ay, k., as follows for every p € F*, where F* = F\ {0}.

(i) Anou = {0 € My (F)};

(ii) Apg = {A € M, (F) : there are B € A, 1, and A € F*\{u ™'} such that
M + B € P,(F)} for 1 < k < 2n?

The following lemma is useful for the proof of our main theorem.

LEMMA 2.1. ([7]) For any fized p € F*, we have M, (F) = UiizoAn,k,;r

3. Preliminary results. This section provides some preliminary results.
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LEMMA 3.1. ([7]) If ¢ € ©p o (F), then
(1) ¢(Pa(F)) C P (F);
(73) ¢ is homogeneous, i.e., p(AA) = A\p(A) for every A € M, (F) and X € F.

LEMMA 3.2. Suppose that ¢ € @, 1, (F) and A, B € P,(F) satisfy A+ B € P,(F).
Then

¢ (A+AB) = ¢ (A) + A\p(B) for every X € F.

Proof. For any A € F\{0, 1}, since (A+AB)+AB, (A+AB)+ (1+A)B, A"} (A+
AB) +A1A, AL A+ AB) + (1 4+ A1) A are idempotent, by ¢ € ®,, , (F) and (ii) of
Lemma 3.1, we deduce:

(3.1) G(A + AB) + Ap(B) € Py (F),

(3.2) $(A+AB) + (1 + N ¢(B) € P (F),
(3.3) ATHO(A +AB) + ¢(A)] € P (F),
(3.4) A TO(A+AB) + (1 + X 1g(A) € Py (F).

Applying Lemma 3.1 (i) to B € P, (F), we have ¢(B) € P,, (F), so we deduce
from (3.1) and (3.2) that

P(A+ AB)p(B) + ¢(B)p(A+ AB) = 0.
This, together with (3.1), gives that
(3.5) P(A+ AB)? = ¢(A+ AB) + A\ + 1)¢(B).

Similarly, one has by (3.3), (3.4) and ¢(A4)? = ¢(A) that
(3.6) (A + AB)? = Mp(A + AB) + (A + 1)g(A).

Using (3.5) and (3.6) and noticing that A # 1, we have
(3.7) P (A+ AB) = ¢ (A) + \p(B) for every A € F\{0,1}.

Since A # 0,1, we see that A+ 1 # 0,1. Also, we have A+ B, B, (A+ B) + B
are idempotent. This, together with (3.7), implies that
(38) ¢(A+AB)=9¢((A+B)+(A+1)B)=¢(A+B)+ (A +1)¢(B).
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It follows from (3.7) and (3.8) that ¢ (A + B) = ¢ (A4) + ¢(B). We get the desired

conclusion. O

LEMMA 3.3.  Suppose ¢ € @, .,(F). Then there exists an invertible matriz
T € M, (F) such that one of the following holds:

(a) m=n and TH(Ep)T ' = Egie for all k € {1,...,n};
(b) m=n and To(Exp)T ! = Epp + I, for all k€ {1,...,n};

(¢) There is an r € {0,1,...,m} such that T¢(Exe)T™' = I, & 0 for all
ke{l,....n} (here Iy ® 0py—yp = I, if r=m, or 0 if r =0).

Proof. The proof is divided into three steps.

Step 1. There are an invertible matric Qo € My, (F) and &;; € {0,1}, i =
1,2,....m, 5=1,2,...,n, such that

O(Err) = Qodiag(e1, e2k, - - - ,Emk)Qal forallk e {1,...,n}.

In fact, for any distinct 1 < 4,5 < n, because of E;;, Ej;, E; + Ej; € P,(F),
it follows from ¢ € @,,,(F) that ¢(Ei), ¢(E;j;), ¢(Eiu) + ¢ (E;;) € Po(F). Hence
O(Eii)d (Ejj) = ¢(E;;)¢ (Ey;). It is easy to see that the claim in Step 1 holds.

For convenience, we assume by Step 1 that ¢(Fxx) = diag(e1g, €2k, - - -, Emk) for
all k € {1,...,n}. Let E denote the m x n matrix [g;;] with entries for {0,1}. Let

Lk(E):{i:Eik:1}, Rk(E):{i:E‘ik:O}, kZl,Z,...,TL.
For m C {1,...,n} with |7| > 2, we define

Lg(E) = Lk(E) n (ﬁieﬂ.\{k}Ri(E)), RE(E) = Ry (E) N (ﬁieﬂ.\{k}Li(E)) for all k € .

Step 2. Suppose that m C {1,...,n} with |x| > 2. Then
(i) |IL7(E)| = |[LT (E)| for any i,j € m;
(i) | R (E)| = |R} (E)| for any i,j € 7.

Take distinct i,j € 7. For convenience, we let r1 = [LT(E)|, ro = |[LT(E)|,
s =|Nker Li(E)|, t = | Nker Rip(F)| and u = m — r; —ry — s — t. Then there are a
permutation matrix @ and (ip,...,Cup € {0,1}, p € 7 such that

(39) Q_l(b(Eu)Q = Ir1 S?) 07‘2 2] Is ® Ot 2] diag(CIia ceey Cui)u

(310) Q_1¢(Ejj)Q = Orl S I’I"2 ©Is ®0; D diag(clja cee ,Cuj)7
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and

Q '9(Fr)Q = 0,, 0., ® I, ® 0; D diag(Cun, - - -, Cur), for all k € 7\ {3, 5} if [x] > 2.

Take A £ 0, 1. Note that (1 + )\)_1 (E” + )‘EU) + (1 + A)_l)\Eii, FE;; and E;; + )\Eij
are idempotent. This, together with Lemma 3.1 and ¢ € ®,, ,,,(F), imply that

(3.11) @(Eii + AEij) = ¢0(Eii) + ¢(Eii)p(Eii + AEij) + &(Eii + AEij)o(Eii).

Let X denote the matrix ¢(Ey;)d(Ei; +AEi; )+ ¢(Eii+AEi;)p(Eii). By ¢(Ei), d(Eii+
ME;j) € P, (F) and (3.11), we deduce that

(3.12) X?2=0
and
(3.13) X = ¢(Ei) X + XP(Ei;).

Applying Lemma 3.2 to Ey;, E;;, E;; + Ej; € P, (F), we have
(3.14) O(Eii + Ejj) = ¢(Eii) + ¢(Ejj)-
Because of (Ey; + AE;;) + (Eii + Ej;) € Py(F), we have by (3.11), (3.14), Lemma
3.2 and ¢ € ®,, ,,, (F) that
®(Ej;) + ¢(Eii)p(Ei; + AEij) + ¢(Ei; + AEij)p(Ey;) € P (F).
This, together with (3.12) and the fact ¢(E;;) € P, (F), yields that

(3.15) X = ¢(Ej;)X + Xo(Ejj).

We now can assume by (3.9), (3.10), (3.13) and (3.15) that

07«1 X12 0 O X15
Xo1 OT2 0 0 Xos

QilXQ = 0 0 0 X34 X35 , where X555 € MU(F)
Xs51 Xs2 X5z Xsq Xss

If |7] = 2, then u = 0, so that

(3.16) O1XQ = [ Or,  X12 ] o { 0s  Xa4 }

X211 Op, Xz Oy
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In the other case, |w| > 3. We claim that X;5 = 0, X35 = 0, X517 = 0 and
X592 = 0.

In fact, if X15 # 0, then there is a (p, ¢) entry zpq # 0 of X15. And hence we see
by (3.13) and (3.15) that (s = 0 and (;; = 1. By the definition of L7(E), one can
conclude that there is a k € 7\ {i, j} such that (;x = 1. Note that Ex,+ (E;i+AE;;) €
P, (F). This, together with Lemma 3.2, (3.11), (3.12) and ¢ € ®,, ., (F), yields that

X = (¢(Ekx) + ¢(Eii)) X + X(¢(Egr) + ¢(Eii))-

By a direct computation, we get z,q, = 0, which is impossible. Similarly, we have
X25 = 0, X51 =0 and X52 =0. ThLIS7

0s Xzu Xazs
Xuz 0 Xys

(3.17) x|
X5z Xsa Xss

0r, Xi2 }
(5]
Xa1 Op,

By composing (3.9), (3.11) with (3.16) or (3.17), one can assume that

I, X2

(3.18) Q  o(Ei + \E;j)Q = [ Xo1 O,

} @Y, where Y € My, —r, (F).

Take 0 # 0,1 and A = o~ !(o+1). This, together with (3.18), allows us to assume
that

I, A
(3.19) Q 'o(0E; + (1 +0)E;;)Q = [ UB1 . } U,
T2
where U € My—py—ry (F).
By a similar argument, we can assume that
(3.20) Q (0B +(1+0)E)Q=| " ¢ BV
’ . D (o+1)I, !

where V € My, p,—r, (F).

Note that (0E; + (14 0)E;ij)+ (0Eji + (14 0)E;;) € P,(F). This, together with
(3.19), (3.20) and ¢ € D, ,,(F), yields that

ol A+C

(3:21) B+D (0+1)I,

] € Pryjr,y (F).

If 11 = 0 but ro # 0, then we have by (3.21) that (¢ + 1)I,, € P,.,(F), which is
a contradiction. So r; = 0 implies ro = 0. Similarly, 72 = 0 also implies 7; = 0. We
now consider the case 1 # 0 and 9 # 0. By (3.21) one has

olc+1)I,, =(A+C)(B+ D), o(c +1)I,, =(B+D)(A+C).
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This tells us that r1 = r2. Thus, |[L](E)| = [L](£)|. Similarly, we have |RT (E)| =
|R7(E)|. By the arbitrariness of i, j, we complete the proof of Step 2.

Let m = {l1,...,l;} C {1,...,n}, and let F' be the submatrix of F consisting only
of columns Iy, ...,Il; of E. Before Step 3, we state the following two remarks.

Remark I. Due to () of Step 2, we see that if there is an entry equal to 1 and all
others equal to 0 in a proper row of F', then F' consists a ¢ X ¢ permutation matrix as
its submatrix.

Remark II. Due to (i7) of Step 2, we see that if there is an entry equal to 0 and
all others equal to 1 in a proper row of F', then F' consists a submatrix W + J, where
W is a t x t permutation matrix and J is a ¢t X ¢ matrix in which all entries are 1.

Step 3. We will prove the conclusion based on the distribution of 0s and 1s in
E.

If all columns of F are the same, then we can easily check that (c¢) holds. Other-
wise, there is not only 0 but 1 in a certain row of E. Let r be the largest number of
zeros in a nonzero row; let e denote such a row. If r =n — 1, then let 7 = {1,...,n},
and so we see by Remark I that (a) holds. In the other case, we have n > 3. We can
obtain a matrix Fy from E by first making a row permutation so that e is its first
row, and then by making a finite number of column permutations, so that F; is of

the form
10 0 1 1
E1 = ’
where x denotes any matrix of the appropriate size. For Ey we take # = {1,...,r+1}.
1, B
Using Remark I, one can obtain a matrix Fy = { gl D } from FE; by a finite
number proper row permutations. Since r is the biggest, we see that all entries of B
are 1. Furthermore, consider the submatrix S of Es5 consisting of r + 1-th, ..., n-th

columns of Fy. Then it is clear that the first row of S has an entry equal to 0 and all
others equal to 1. For Fa, we take m = {r + 1,7 + 2,...,n}. Using Remark II, one
Ir+1 B

C'1 In—r—l +J
row permutations, where J € M,,_,_1(F) has all entries equal to 1 and C; has all

can obtain a matrix F3 = } from E5 by a finite number proper

entries of its last column equal to 1. By m < n, one has m = n. For F3 we take
m = {r+1,r+2}. It follows from |L7, (F)| = |L] ,(F)| that r = 1. This means
that in the first row of E there is an entry equal to 0 and all other entries are equal
to 1. Finally, it follows by Remark II that E is a sum of a permutation matrix and a
matrix in which all entries are 1, which implies (b). O

LEMMA 3.4. ([7]) Suppose that X € M, (F) and Y € Ms(F),1 < s < n satisfy
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(@) X +Y @©0,_s € P,(F);
(b) X+ (I +Y)®0,_, € P,(F).
Then there are U € Py(F) and V € P,_s(F) such that X = (Y +U)® V.

LEMMA 3.5. Suppose that ¢ € @y, (F), 1 < s <n—1 and r is a nonnegative
integer satisfying (a) ¢(Exk) = I ®0 for all k € {1,...,n}, and (b) ¢(A®0) =
(Tr A) L, &0 for all A € M(F), where Tr A denotes the trace of A. Then

HNZ®0)=(Tr Z)I, &0 for all Z € My, (F).

Proof. The proof is divided into the following four steps.

Step 1. (A pu®0)=(Tr A+ p) L ®0 for all A € Ms(F), pe€F*.

Fix any E € M(F). Note that

W ESue0)+u tE®0
and
P Eep®0)+ (b 'E4+1@0)®0
are both n x n idempotent matrices. We have by (b) and ¢ € ®,,,,(F) that
plo(Eopu®0)+pt (Tr E) I, ®0 € Py(F)

and

pe(E@pn®0)+ (I + p~ ' (Tr E) 1) @0 € Py, (F).

Applying Lemma 3.4 to X = p ¢ (E@p@0) and Y = p~ ! (Tr E) I, we see
that there are U (E, u) € P.(F) and V (E, u) € P,,_,(F) such that

(3.22) 6 (E® e 0) = (uU (B, 1) + (Tr B)I,) & uV’ (B, )
for all E € My(F) and p € F*.

We claim that U (E, p) = I, and V (E, ) =0 for all E € M (F) and p € F*.

In fact, (a) tells us U (0,u) = I, and V (0,) = O for all u € F*. Namely, the
claim holds for all £ € Ag, and p € F*. We assume that the claim is true for all
peF* and E € Ay 1, where 1 <k < 2n? Fix any p € F* and A € A,y ,. Then
there are A € F\ {O,u’l} and B € Ag 1, such that AA + B € P,(F). Hence one
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has A\(A® p®0)+ B®Ap®0 € P, (F). This, together with (3.22) and the induction
principle, yields that

AU (A, ) + A (T A) I, + (Tr B) I, + Aul,) & MV (A, ) € Py, (F).

As XA € F\{0,p7'} and A\Tr A+ Tr B € {0,1}, we get U (A,u) = I, and
V (4,1) = 0. Now we can complete the proof of Step 1 by Lemma 2.1 and the
induction principle.

A
([
Step 2. A for all A € My(F),a €

F\ {0} and p € F.
We only prove the first one, and the proof of the second is similar.

When s =1 and p = 0, we know by (a) and Lemma 3.2 that

(3.23) ¢ ((A+1) B+ Esz) = (A+1) ¢ (Enn) + ¢ (Ess) = AL ® 0.

Because[ a} 0 {A—i—l 0 gl ]GBO—I—{A—Fl 0]691@0

«
d
0 0 0 0 }@O o [ 0 0 0
are both n x n idempotent matrices, one can obtain by (a), (3.23) and ¢ € @, ,,, (F)

that

¢(['§ 3}@0>+(A+1)IT@OEPW(]F)

and

¢<{‘g ) ]®O>+AIT®Oer(]F).

This, together with Lemma 3.4, tells us that there are Uy € P.(F) and V; € P,,_(F)
such that

(3.24) ¢<{§ 3]@0>_(U1+AIT)®V1.

Take \ # 0, 1. Notetham[‘g 3‘]@01{? H@OGPH(F). We have

by (3.24), Step 1 and ¢ € @, ,,(F) that (AU + I,) ® AV} € P, (F). Thus, one has
U; =0 and Vi = 0, proving Step 2 in this case.
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When s =1 and p # 0, we know by Lemma 3.2 and (a) that

(3.25) ¢ (;J,_IAEH + E33) = (M_IA) o (Fn) + ¢ (E33) = (/L_IA + 1) I ®0.

Since

4 A «a putA 0
1
I {O u}@@—i—{ 0 O]@O

and

A « p A 0
1
+ 1
" [O }@O [ 0 O]@ ®0

are both n x n idempotent matrices, we can get by (a), (3.25) and ¢ € @, ,,,(F) that
-1 A « 1
uwoo 0 o @0 +u "AL-®0 € P, (F)
and

u1¢<[ ’g z ]@O) + (0 TA+1) I, ®0 € Py (F).

Using Lemma 3.4, we see that there are Uy € P.(F) and V, € P,,_.(F) such that

(3.26) ¢({§ Z]@o>=@mg+ALy9m@

A « AA 0
—1 .
Take X\ # 0, .S1nce/\{0 M]@O+[ 0 i+l

by (3.26), Step 1 and ¢ € @y, ,, (F) that (AuUsz + (Ap + 1) 1) ® AuVa € P, (F). Thus,
one has Uy = I, and V5 = 0, proving Step 2 in the case s = 1.

] @0 € P,(F), we have

When s > 2, it follows from « # 0 that there is an invertible matrix Q. € M(F)
satisfying a = Q,e;1. Since

{A a}@OJF{AjLQa(l@O)Q;l 0}@0
0 u 0 I
and

[A a}®0+{A+Qau@1@mQ3 O]@o
0 u 0 I
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are both n x n idempotent matrices, one can obtain by Step 1 and ¢ € ®,, ,,,(F) that

d)([g Z}®0>+(TrA+u+1)Ir®Oer(]F)

and

¢([’§ Z}EB())-I—(TFA—FM)ITEBOEP,,@(F).

Due to Lemma 3.4, there are Us € P.(F) and V3 € P,,_.(IF) such that

(3.27) ¢([‘3 Z}EBO>:(U3+(TYA+M)IT)®V3.

Take A # 0, 1. As)\[gl Z}@O—l— { )\64 )\,u(il—l } @0 € P,(F), we have by

(3.27), Step 1 and ¢ € P, ,,,(F) that (AUs + I,,) ® AV € P, (F). Further, we have
Us; =0 and V3 = 0. The proof of Step 2 is completed.

A «
proo

If we prove that for any A € M (F),a € F*\ {0}, there are U, € P.(F) and
Vi € Py (F) such that

Step 3. ¢ ({ ] 690) =(Tr A) I, ® 0 for all A € Ms(F),a, g € F?\ {0}.

(3.28) ¢’<[§ g}®0>—(U4+(TrA)IT)®V4

andthenwetake)\#o,l,by)\{;r g]@0+ [ )\(1)4 )\1a } ® 0 € P,(F), we can

use ¢ € P, ,, (F) with Step 2 and (3.28) to get Uy = 0 and V4 = 0, proving Step 3.

To prove (3.28), we first consider the case s = 1.

. A « A+l « A « A+1 «
Slnce[BT 0]@0—1—{ 0 O]GBOand[ﬁT O}EBO—F[ 0 0}@1@0

are n X n idempotent matrices, we can use Lemma 3.2, Step 2, Lemma 3.4 and
¢ € Dy (F) to get (3.28).

Consider the case s > 2. It follows from 5 # 0 that there is an invertible matrix
Qp € M,(F) satisfying 8 = Qgey. Since

T
{ f; a]@0+ A‘L(Qﬂ(l@o)le) “leo
gt 0 0 0



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 21, pp. 110-123, October 2010 E L A
Idempotence-preserving maps between matrix spaces 121
and
A A an
a 101 - )
{ 3 ]®O+ +(e100Q;") o
g0 0 0

are both n x n idempotent matrices, we see by Step 2, ¢ € @, (F) and Lemma 3.4
that (3.28) holds.

Step 4. ¢ ([ Bfflf z } @0) = (Tr A+ ) I, ®0 for all A € M,(F), a, 3 € F*\ {0}
and p € F*.

Note that

—1 A o 1 A «
u [BT u]@“” [BT O]EBOEPn(F)

and

_ A « 4| A+pd0 o
! ! P, (F).
8 {ﬂT u]@““ { aT 0}@06 ®)

This, together with ¢ € ®,, ,,(F) and Step 3, gives that

T <[ BAT z } @0) + (p'Tr A) I, ® 0 € P, (F)
and

ulcﬁ({ ;T z ]EBO>+(M1TrA+1)IT®Oer(IE‘).

A

ﬂT
see that there are Us € P.(F) and Vi € P,,,_(FF) such that

Applying Lemma 3.4 to X = p~ ¢ ([ @ ] ® O> and Y = (p~'Tr A) I,, we
U

(3.29) ¢<[ ﬂAT ﬂeao) = (uUs + (Tr A) L) @ pVs.

A « M A
-1
Take A # 0, u~ 1. Notethat)\[ 5T ]EBO—F[ 0 Au+l ]@OEPn(F). We

have by (3.29), Step 2 and ¢ € ®,,,,(F) that (AuUs + (A +1) L) @ AuVs € P, (F).
Thus, we get Us = I,. and V5 = 0. The proof of Lemma 3.5 is completed. O

LEMMA 3.6. Suppose that ¢ € @, (F). Define a map v from M, (F) to My, (F)
by ¥ (A) = ¢ (A) + (Tr A) Iy, for all A € M, (F). Then ¢ € &, (F).
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Proof. If A+ AB € P,(F), where A,B € M,(F) and A € F, then one has
d(A) +Xp(B) € Ppp(F) and Tr A+ ATr B = Tr (A+ AB) € {0,1}. We deduce
¢ (A)+ Ao (B) + (Tr A+ AXTr B) I, € P, (F). This implies that ¢ (A) + M\ (B) €
Py (F). O

4. The main result and remark. Our main result is the following.

THEOREM 4.1. Suppose F # Fo is any field of characteristic 2, n and m are
integers with n > m andn > 3. Then ¢ € @y, ., (F) if and only if there is an invertible
matriz T € M,,(F) such that one of the following cases holds.

a) m=mn and ¢ (A) = TAT! for all A € M, (F);

(

(b) m=mn and ¢ (A
(c)
(

(A) =TATT=! for all A€ M, (F);
c)m=mn and ¢ (A) = TAT 1 + (TrA) I,,, for all A € M,, (F);

d)m=mn and ¢ (A) = TATT=! + (Tr A) I,,, for all A € M, (F);

(€) p(A) =T (Tr A) L ® 0y—,) T~ for all A € M,, (F), where r € {0,1,...,m}
is an integer.

Proof. The proof of the “if” part is obvious. Now we prove the “only if” part.

By Lemma 3.3, we know that there exists an invertible matrix T' € M,,(FF) such
that ¢ satisfies one of the condition in Lemma 3.3. If ¢ satisfies the Condition (a) of
Lemma 3.3, then [7] tells us that ¢ is of the form (a) or (b). Similarly, if ¢ satisfies
the condition (¢) of Lemma 3.3, then we see by the induction principle and Lemma
3.5 that ¢ is of the form (e).

Now we assume that ¢ satisfies the condition (b) of Lemma 3.3. Define a map
¥ from M, (F) to M, (F) is given by ¢ (A) = ¢ (A) + (Tr A) I,, for all A € M, (F).
Then we have from Lemma 3.6 that ¢ € ®,,,,(F). But it is not difficult to check
that ¢ satisfies the condition (a) of Lemma 3.3. So 4 is of the form (a) or (b). This
implies that ¢ has the forms (c) or (d). O

REMARK 4.2. We give an example for which n = 2 and ¢ € ®,, ,,(F). Let ¢ be
a map from My (F) to itself given by

10) (A) = (TI‘ A) FEi1+ f(A)E12 for all A € MQ(F),
where f is a map from M(F) to F satisfying

a b b, ifc=0,
f = b2 .
c d =, ife#0.
Then it is easy to see that ¢ € Py o(F), but ¢ is not linear. In fact, we see by Theorem
4.1 that ¢ is linear if n > 3. This shows that the same problem in the case of n = 2
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is complicated.
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