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A NEW WEIGHTED SPECTRAL GEOMETRIC MEAN AND PROPERTIES∗
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Abstract. In this paper, we introduce a new weighted spectral geometric mean:

Ft(A,B) = (A−1]tB)1/2A2−2t(A−1]tB)1/2, t ∈ [0, 1],

where A and B are positive definite matrices. We study basic properties and inequalities for Ft(A,B). We also establish the

Lie–Trotter formula for Ft(A,B). Finally, we extend some of the results on Ft(A,B) to symmetric space of noncompact types.
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1. Introduction. Let P n be the set of all n×n positive definite matrices, H n be the space of all n×n
Hermitian matrices, and U(n) be the group of n× n unitary matrices. For A,B ∈ P n, the geometric mean

A]B = A1/2(A−1/2BA−1/2)1/2A1/2 was firstly defined by Pusz and Woronowicz [18] in 1975. They showed

that it is the unique positive definite solution to the Riccati equation:

XA−1X = B.

It is well known [3] that the geometric mean A]B is the midpoint of the geodesic

A]tB = A1/2(A−1/2BA−1/2)tA1/2, t ∈ [0, 1],

joining A and B under the Riemannian metric δR(A,B) = ‖ log(A−1/2BA−1/2)‖F , where ‖ · ‖F denotes the

Frobenius norm [4]. See [1, 5, 10, 11, 13] for more results on the geometric mean.

The spectral geometric mean of A,B ∈ P n was introduced by Fiedler and Pták in 1997 [6], and one of

its formulations is

(1.1) A\B := (A−1]B)1/2A(A−1]B)1/2.

It is called the spectral geometric mean because (A\B)2 is similar to AB and that the eigenvalues of their

spectral mean are the positive square roots of the corresponding eigenvalues of AB [6, Theorem 3.2].

In 2007, Kim and Lim [13] established a matrix exponential formula for the geometric and spectral

geometric means of positive definite matrices. In the same paper, they also defined the weighted spectral

geometric mean as:

(1.2) A\tB :=
(
A−1]B

)t
A
(
A−1]B

)t
, t ∈ [0, 1].
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It is obvious that A\tB is a curve joining A and B. In 2015, Kim and Lee [12] studied the relative operator

entropy by the spectral geometric mean. They also studied several properties similar to those of the Tsallis

relative operator entropy by the usual geometric mean. Recently, Gan, Liu, and Tam [8] and Gan and

Tam [9] studied A\tB and obtained some nice properties. A nice survey and new properties related to the

weighted spectral geometric mean A\tB can be found in the recent paper of Gan and Kim [7].

Note that in (1.2) the geometric mean A−1]B is a main component of the weighted spectral mean A\tB,

while the middle term is A, independent of t. We define a new weighted mean below.

Definition 1.1. Let A,B ∈ Pn. Define

(1.3) Ft(A,B) := (A−1]tB)1/2A2−2t(A−1]tB)1/2, t ∈ [0, 1].

It is obvious that F0(A,B) = A and F1(A,B) = B, and hence Ft(A,B) is a curve joining A and B. For

t = 1
2 , F 1

2
(A,B) is the spectral geometric mean (1.1). We call Ft(A,B) weighted F -mean and it is different

from (1.2).

From the Riccati equation, it is obvious that A]X = B if and only if X = BA−1B. Therefore, Ft(A,B) is

the unique positive definite solution X to

A2(t−1)]X = (A−1]tB)1/2.

Proposition 1.2 (See [2]). For any differentiable curve γ : (−ε, ε)→ P n with γ(0) = I,

eγ
′(0) = lim

t→0
γ1/t(t) = lim

n→∞
γn(1/n).

Notice that for X,Y ∈ H n and α ∈ [0, 1], the following curves are smooth and pass through the identity

matrix I at t = 0:

γ1(t) = et(1−α)X/2etαY et(1−α)X/2,

γ2(t) = (1− α)etX + αetY ,

γ3(t) = ((1− α)e−tX + αe−tY )−1,

γ4(t) = etX]αe
tY ,

γ5(t) = etX\αe
tY .

Applying Proposition 1.2 one obtains the following Lie–Trotter formulas:

e(1−α)X+αY = lim
n→∞

(et(1−α)X/2netαY/net(1−α)X/2n)n

= lim
n→∞

((1− α)etX/n + αetY/n)n

= lim
n→∞

((1− α)e−tX/n + αe−tY/n)−n

= lim
n→∞

(etX/n]αe
tY/n)n

= lim
n→∞

(etX/n\αe
tY/n)n.

We will establish in Theorem 3.1 the Lie–Trotter formula for Ft, namely,

lim
p→0

F
1/p
t (epA, epB) = e(1−t)A+tB ,

when A,B ∈ H n, and t ∈ [0, 1]. We study basic properties and inequalities for Ft(A,B) and extend some of

the results on Ft(A,B) to symmetric space of noncompact type.
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2. Properties and inequalities for Ft(A,B). In this section, we establish some basic properties

and inequalities for Ft(A,B). Given A,B ∈ H n, we denote by A ≤ B the Löwner order, that is, B −A ≥ 0,

that is, positive semidefinite. First, we recall some known properties [16] of the weighted geometric mean.

Lemma 2.1. Let A,B,C,D ∈ Pn and t ∈ [0, 1]. We have

1. A]tB = A1−tBt if A and B commute.

2. (aA)]t(bB) = a1−tbt(A]tB) for a, b > 0.

3. A]tB = B]1−tA.

4. (A]tB)−1 = A−1]tB
−1.

5. M∗(A]tB)M = (M∗AM)]t(M
∗BM) for any M ∈ GLn(C) which denotes the group of all invertible

matrices over C.

6. (Löwner–Heinz) A]tB ≤ C]tD if A ≤ C, B ≤ D.

7. (λA+ (1− λ)B)]t(λC + (1− λ)D) ≥ λ(A]tC) + (1− λ)(B]tD), for λ ∈ [0, 1].

8. ((1− t)A−1 + tB−1)−1 ≤ A]tB ≤ (1− t)A+ tB.

The following proposition lists some basic properties of Ft(A,B). Some properties are similar to those

of weighted geometric mean [16] and are not hard to prove. Proofs are presented here for the sake of

completeness.

Proposition 2.2. Let A,B ∈ P n. The following properties hold for all t ∈ [0, 1].

1. Ft(A,B) = A1−tBt if A and B commute.

2. Ft(aA, bB) = a1−tbtFt(A,B) for a, b > 0.

3. U∗Ft(A,B)U = Ft(U
∗AU,U∗BU) for U ∈ U(n).

4. F−1t (A,B) = Ft(A
−1, B−1).

5. detFt(A,B) = (detA)1−t(detB)t.

6. 2((1 − t)A + tB−1)−1/2 − A2(t−1) ≤ Ft(A,B) ≤ [2((1 − t)A−1 + tB)−1/2 − A−2(t−1)]−1, where the

second inequality holds when 2((1− t)A−1 + tB)−1/2 −A−2(t−1) is invertible.

7. TrFt(A,B) ≤ (TrA)1−t (TrB)t ≤ (1− t) TrA+ tTrB.

Proof. (1) Since A and B commute, so do A−1 and B. Thus, A−1]tB = (A−1)1−tBt and we have

Ft(A,B) = (A−1]tB)1/2A2−2t(A−1]tB)1/2 = (A−1+tBt)1/2A2−2t(A−1+tBt)1/2 = A1−tBt.

(2) For any a, b > 0, by Lemma 2.1 (2), we have

Ft(aA, bB) =
(

(aA)−1]t(bB)
)1/2

(aA)2−2t
(

(aA)−1]t(bB)
)1/2

= a1−tbt(A−1]tB)1/2A2−2t(A−1]tB)1/2

= a1−tbtFt(A,B).

(3) Note that U∗(A]tB)1/2U = (U∗(A]tB)U)
1/2

and U∗A2−2tU = (U∗AU)
2−2t

for any U ∈ U(n). Then

U∗Ft(A,B)U = U∗(A−1]tB)1/2A2−2t(A−1]tB)1/2U

= U∗(A−1]tB)1/2UU∗A2−2tUU∗(A−1]tB)1/2U

=
(
(U∗

(
A−1]tB

)
U
)1/2

(U∗AU)2−2t
(
U∗
(
A−1]tB

)
U
)1/2

= Ft(U
∗AU,U∗BU),
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where the last equality follows from U∗(A−1]tB)U = (U∗A−1U)]t(U
∗BU).

(4) By Lemma 2.1 (4), we have

Ft(A,B)−1 =
[(
A−1]tB

)1/2
A2−2t (A−1]tB)1/2]−1

=
(
A−1]tB

)−1/2
A2t−2 (A−1]tB)−1/2

=
(
A]tB

−1)1/2A2t−2 (A]tB−1)1/2
= Ft(A

−1, B−1).

(5) Since det(AB) = detA detB, we obtain

detFt(A,B) = det
(
A−1]tB

)
det
(
A2−2t) = (detA)t−1(detB)t(detA)2−2t = (detA)1−t(detB)t.

(6) Let X = Ft(A,B). By the Arithmetic–Geometric–Harmonic mean inequalities and the operator

monotonicity of the function X 7→ Xt when t ∈ [0, 1], we have

(2.4)

(
A−2(t−1) +X−1

2

)−1
≤ A2(t−1)]X = (A−1]tB)1/2 ≤

(
(1− t)A−1 + tB

)1/2
.

Then, we have

A−2(t−1) +X−1

2
≥
(

(1− t)A−1 + tB
)−1/2

.

Hence,

X−1 ≥ 2
(

(1− t)A−1 + tB
)−1/2

−A−2(t−1).

Consequently,

X ≤

[
2
(

(1− t)A−1 + tB
)−1/2

−A−2(t−1)
]−1

.

Since Ft(A,B) = (Ft(A
−1, B−1))−1, we obtain the first inequality.

Using the second inequality in (2.4) and similar arguments, one can prove the second inequality.

(7) Let ρ and σ be two density matrices. We show that

T = {t ∈ [0, 1] : TrFt(ρ, σ) ≤ 1} = [0, 1].

Since 0, 1 ∈ T , according to the continuity of the trace function it is enough to verify t = 1/2 ∈ T . We have

TrF 1
2
(ρ, σ) = Tr (ρ\σ) = Tr ((ρ1/2σρ1/2)1/2) ≤ 1.

Now, let ρ =
A

TrA
and σ =

B

TrB
. By the second property in this proposition, we have

Tr (Ft(ρ, σ)) = (TrA)t−1(TrB)−tTr (Ft(A,B)) ≤ 1.

Consequently, TrFt(A,B) ≤ (TrA)1−t(TrB)t.
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Remark 2.3. An analog of Lemma 2.1(3) for Ft(A,B) is not true, that is, the equality Ft(A,B) =

F1−t(B,A) does not hold. Indeed, from the last identity we have

(A−1]tB)1/2A2−2t(A−1]tB)1/2 = (A−1]tB)−1/2B2t(A−1]tB)−1/2,

or equivalently,

B2t = (A−1]tB)A2−2t(A−1]tB).

According to the Riccati equation, it implies that

A−1]tB = B2t]A2t−2,

which is not true.

3. The Lie–Trotter formula for Ft(A,B). In this section, we establish the Lie–Trotter formulas

for Ft(A,B). Let us start with the version for two positive definite matrices.

Theorem 3.1. Let A,B ∈ H n and t ∈ [0, 1]. Then

lim
p→0

F
1/p
t (epA, epB) = e(1−t)A+tB .

Proof. Since F−1t (A,B) = Ft(A
−1, B−1) we have

lim
p→0−

F
1/p
t

(
epA, epB

)
= lim
p→0−

F
−1/p
t

(
e−pA, e−pB

)
= lim
p→0+

F
1/p
t

(
epA, epB

)
.

So we only need to prove

lim
p→0+

Ft(e
pA, epB)1/p = e(1−t)A+tB .

For p ∈ (0, 1), we may express p = 1
m+s , where m ∈ N, and s ∈ (0, 1). Set

X(p) := Ft(e
pA, epB), Y (p) := ep[(1−t)A+tB].

We have

‖Ft(epA, epB)1/p − e(1−t)A+tB‖
= ‖X(p)1/p − Y (p)1/p‖
≤ ‖X(p)1/p −X(p)m‖+ ‖X(p)m − Y (p)m‖+ ‖Y (p)m − Y (p)1/p‖.(3.5)

By [17, Theorem 1.1],

epA]te
pB ≺log e

p[(1−t)A+tB],

so we have

‖epA]tepB‖ ≤ ‖Y (p)‖ ≤ ep[(1−t)‖A‖+t‖B‖].

Therefore,

‖X(p)‖ = ‖
(
e−pA]te

pB
) 1

2 ep(2−2t)A(e−pA]te
pB)

1
2 ‖

≤ ‖e−pA]tepB‖
1
2 ‖ep(2−2t)A‖ ‖e−pA]tepB‖

1
2

≤ e
p
2 [(1−t)‖A‖+t‖B‖]ep(2−2t)‖A‖e

p
2 [(1−t)‖A‖+t‖B‖]

= ep[(3−3t)‖A‖+t‖B‖].
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As pm ≤ 1, we have ‖X(p)‖m ≤ epm[(3−3t)‖A‖+2t‖B‖] ≤ e[(3−3t)‖A‖+t‖B‖] <∞. Consequently, the first term

in (3.5)

‖X(p)1/p −X(p)m‖ = ‖X(p)m+s −X(p)m‖ ≤ ‖X(p)‖m‖X(p)s − I‖ → 0 as p→ 0+,

since X(p)→ I as p→ 0+ by (1.3) and s ∈ (0, 1). Similarly, the third term in (3.5)

‖Y (p)m − Y (p)1/p‖ = ‖Y (p)m − Y (p)m+s‖ ≤ ‖Y (p)‖m‖I − Y (p)s‖ → 0 as p→ 0+.

Now the second term in (3.5)

‖X(p)m − Y (p)m‖ = ‖
m−1∑
j=0

X(p)m−1−j(X(p)− Y (p))Y (p)j‖ ≤ mMm−1‖X(p)− Y (p)‖,

where M := max{‖X(p)‖, ‖Y (p)‖}. As p(m− 1) ≤ 1, we have

Mm−1 ≤ max
{
ep(m−1)[(3−3t)‖A‖+t‖B‖, ep(m−1)[(1−t)‖A‖+t‖B‖]

}
≤ max

{
e(3−3t)‖A‖+t‖B‖, e(1−t)‖A‖+t‖B‖

}
<∞.

Using the power series expansion of the matrix exponential eA =
∞∑
k=0

Ak

k! , we have

e−pA]te
pB

= e
−pA

2

(
e

pA
2 epBe

pA
2

)t
e
−pA

2

=

∞∑
k=0

1

k!

(
−pA

2

)k [ ∞∑
k=0

1

k!

(
pA

2

)k ∞∑
k=0

(pB)k

k!

∞∑
k=0

1

k!

(
pA

2

)k] ∞∑
k=0

1

k!

(
−pA

2

)k
=

(
I − pA

2
+ o(p)

)[(
I +

pA

2
+ o(p)

)
(I + pB + o(p))

(
I +

pA

2
+ o(p)

)]t(
I − pA

2
+ o(p)

)
=

(
I − pA

2
+ o(p)

)
[I + p(A+B) + o(p)]

t

(
I − pA

2
+ o(p)

)
= I + p[−(1− t)A+ tB] + o(p),

and

ep(2−2t)A =

∞∑
k=0

1

k!
(p(2− 2t)A)k = I + p(2− 2t)A+ o(p).

Hence,

X(p) =
(
e−pA]te

pB
) 1

2 ep(2−2t)A
(
e−pA]te

pB
) 1

2

= [I + p(−(1− t)A+ tB) + o(p)]
1
2 [I + p(2− 2t)A+ o(p)] [I + p(−(1− t)A+ tB)]

1

2

=
[
I +

p

2
(−(1− t)A+ tB) + o(p)

]
[I + p(2− 2t)A+ o(p)]

[
I +

p

2
(−(1− t)A+ tB) + o(p)

]
= I + p((1− t)A+ tB) + o(p).
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As Y (p) := ep[(1−t)A+tB] = I + p((1− t)A+ tB) + o(p), we have ‖X(p)− Y (p)‖ ≤ cp2 for some constant c.

Then

‖X(p)m − Y (p)m‖ ≤ mMm−1cp2 ≤ m

(m+ s)
Mm−1cp→ 0 as p→ 0+,

since Mm−1 is bounded. Thus, all three terms in (3.5) converge to 0 as p → 0+ and hence the proof is

completed.

Theorem 3.2. Let (α1, ..., αm−1) ∈ Rm−1, and X1, X2, ..., Xm ∈ H n. The curve

γ(t) := Fαm−1

(
etXm , Fαm−2

(
etXm−1 , Fαm−3(...Fα1(etX2 , etX1)

))
,

is a differentiable curve with γ(0) = I and

γ′(0) =

m∑
k=1

m∏
i=k

αi (1− αk−1)Xk,

where α0 = 0 and αm = 1. In particular, if αk =
k

k + 1
, for k = 1, 2, . . . ,m− 1, then γ′(0) =

1

m

m∑
k=1

Xk.

Proof. Let

β(t) := Fα1

(
etX2 , etX1

)
=
(
e−tX2]α1

etX1

) 1
2

et(2−2α1)X2

(
e−tX2]α1

etX1

) 1
2

= ϕ(t)
1
2 et(2−2α1)X2ϕ(t)

1
2 ,

where ϕ(t) = e−tX2]α1e
tX1 = e−

tX2
2

(
e

tX2
2 etX1e

tX2
2

)α1

e−
tX2
2 . We have

d

dt
ϕ(t)

= −X2

2
e−

tX2
2

(
e

tX2
2 etX1e

tX2
2

)α1

e−
tX2
2 − e−

tX2
2

(
e

tX2
2 etX1e

tX2
2

)α1

e−
tX2
2
X2

2

+α1e
− tX2

2

(
e

tX2
2 etX1e

tX2
2

)α1−1 d

dt

(
e

tX2
2 etX1e

tX2
2

)
e−

tX2
2

= −X2

2
e−

tX2
2

(
e

tX2
2 etX1e

tX2
2

)α1

e−
tX2
2 − e−

tX2
2

(
e

tX2
2 etX1e

tX2
2

)α1

e−
tX2
2
X2

2

+α1e
− tX2

2

(
e

tX2
2 etX1e

tX2
2

)α1−1(X2

2
e

tX2
2 etX1e

tX2
2 + e

tX2
2 etX1e

tX2
2
X2

2
+ e

tX2
2 etX1X1e

tX2
2

)
e−

tX2
2 .

Therefore,
d

dt
ϕ(t)

∣∣∣∣
t=0

= −X2 + α1(X2 +X1) = (α1 − 1)X2 + α1X1.

On the other hand,

d

dt
β(t) =

1

2
ϕ(t)−

1
2
d

dt
ϕ(t)et(2−2α1)X2ϕ(t)

1
2 +

1

2
ϕ(t)

1
2 et(2−2α1)X2ϕ(t)−

1
2
d

dt
ϕ(t)

+(2− 2α1)ϕ(t)
1
2 et(2−2α1)X2X2ϕ(t)

1
2 .

Thus,

d

dt
β(t)

∣∣∣∣
t=0

= (α1 − 1)X2 + α1X1 + (2− 2α1)X2 = (1− α1)X2 + α1X1.
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Set

ξ(t) := Fαm

(
etXm+1 , γ(t)

)
= L(t)

1
2 et(2−2αm)Xm+1L(t)

1
2 ,

where L(t) = e−tXm+1]αm
γ(t). Since

d

dt
ξ(t) =

1

2
L(t)−

1
2
d

dt
L(t)et(2−2αm)Xm+1L(t)

1
2 +

1

2
L(t)

1
2 et(2−2αm)Xm+1L(t)−

1
2
d

dt
L(t)

+(2− 2αm)L(t)
1
2 et(2−2αm)Xm+1Xm+1L(t)

1
2 ,

by the previous argument, we have

d

dt
L(t)

∣∣∣∣
t=0

= −Xm+1 + αm(Xm+1 + γ′(0)).

Therefore,

d

dt
ξ(t)

∣∣∣∣
t=0

= (1− αm)Xm+1 +

m∑
k=1

m∏
i=k

αi (1− αk−1)Xk =

m+1∑
k=1

m+1∏
i=k

αi (1− αk−1)Xk,

where α0 = 0 and αm+1 = 1.

4. Generalizations to semisimple Lie groups. The readers are referred to [8, 9] regarding Lie

theoretic preliminaries and notations. Let G be a noncompact connected semisimple Lie group with Lie

algebra g. Let Θ : G→ G be a Cartan involution of G, and let K be the fixed point set of Θ, which is is an

analytic subgroup of G. Denote by θ the differential map dΘ of Θ. Then θ : g → g is a Cartan involution.

and g = k ⊕ p is a Cartan decomposition, where k is the eigenspace of θ corresponding to the eigenvalue

1 and p is the eigenspace of θ corresponding to the eigenvalue −1. For each X ∈ g, let eX = expX be

the exponential of X. Let P = {eX : X ∈ p}. The map p × K → G, defined by (X, k) 7→ eXk, is a

diffeomorphism. So each g ∈ G can be uniquely written as:

(4.6) g = pk,

with p = p(g) ∈ P and k = k(g) ∈ K. The decomposition G = PK is called a Cartan decomposition of

G. For example, when G = SLn(C), K = SU(n), and P ⊂ P n consisting of positive definite matrices of

determinant 1.

The mapping p 7→ p1/2K identifies P with G/K as a symmetric space of noncompact type. The t-

geometric mean of p, q ∈ P was defined in [17] as:

p]tq = p1/2
(
p−1/2qp−1/2

)t
p1/2, t ∈ [0, 1].

It is the unique geodesic in P from p (at t = 0) to q (at t = 1). It is known that p]tq = q]1−tp and

(p]tq)
−1 = p−1]tq

−1. When t = 1/2, we abbreviate p]1/2q as p]q.

Denote by ≺G the Kostant pre-order on G [14, 17, 8, 9]. Given f, g ∈ G, by setting f ≺G g means (see

[14, p. 426])

(4.7) A(f) ⊂ A(g),
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where

A(g) := exp conv (W (log h(g))) ⊂ A,

in which conv (·) denotes the convex hull of the underlying set, W is the Weyl group of (g, a), a is a fixed

maximal abelian subalgebra in p, with A as the analytic group, and h(g) is the hyperbolic component of g

in its complete multiplicative Jordan decomposition. It is known from [14, Theorem 3.1] that this pre-order

≺G is independent of the choice of a.

Let p, q ∈ P . Define

Ft(p, q) = (p−1]tq)
1/2p2−2t(p−1]tq)

1/2, t ∈ [0, 1].

Some properties in Proposition 2.2 can be extended to P .

Proposition 4.1. Let p, q ∈ P . The following properties hold for all t ∈ [0, 1].

1. Ft(p, q) = p1−tqt if p and q commute.

2. kFt(p, q)k
−1 = Ft(kpk

−1, kqk−1) for k ∈ K.

3. F−1t (p, q) = Ft(p
−1, q−1).

Proof. (1) When p and q commute, so do p−1 and q. Thus, p−1]tq = (p−1)1−tqt and hence

Ft(p, q) = (p−1]tq)
1/2p2−2t(p−1]tq)

1/2 = (p−1)1−tqtp2−2t(p−1)1−tqt = p1−tqt.

The proof of (2) and (3) are similar to Proposition 2.2 (3) and (4), respectively.

Similarly, Theorem 3.1 can be extended to P .

Theorem 4.2. For X,Y ∈ p and t ∈ [0, 1],

(4.8) lim
s→0
A(F

1/s
t (esX , esY )) = A(e(1−t)X+tY ).

Proof. We will first show that

(4.9) π(F
1/r
t (pr, qr)) = F 1/r((π(p))r, (π(q))r).

To show this, note that for finite dimensional representation π, there exists an inner product on V such that

π(z) is positive definite for all z ∈ P [14, p. 435]. As π(p−1]tq) = (π(p))−1]tπ(q), we have

π(F
1/r
t (pr, qr)) = (π(Ft(p

r, qr)))1/r

= (π[(p−1]tq)
1/2p2−2t(p−1]tq)

1/2])1/r

= ((π((p−1]tq))
1/2(π(p))2−2t(π((p−1]tq))

1/2)1/r

= ((π(p))−1]tπ(q))1/2(π(p))2−2t((π(p))−1]tπ(q))1/2)1/r

= F 1/r((π(p))r, (π(q))r).
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By (4.9) and the fact that π(eX) = edπ(X), where X ∈ p, for any finite dimensional representation π of

G, where dπ denotes the differential of π at the identity, we have

π(lim
s→0

F
1/s
t (esX , esY )) = lim

s→0
π(F

1/s
t (esX , esY ))

= lim
s→0

F
1/s
t (π(esX), π(esY ))

= lim
s→0

F
1/s
t (es dπ(X), es dπ(Y ))

= e(1−t)dπ(X)+tdπ(Y ) (by Theorem 3.1)

= π(e(1−t)X+tY ).

By [14, Theorem 3.1], the compact convex sets A(F
1/s
t (esX , esY )) ⊂ A converge to A(e(1−t)X+tY ) with

respect to the Hausdorff metric for convex sets, as s→ 0, that is, the limit (4.8) holds.

We conjecture that lim
s→0

F
1/s
t

(
esX , esY

)
= e(1−t)X+tY for X,Y ∈ p.
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