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POSITIVE DEFINITE SOLUTION OF THE MATRIX EQUATION

X = Q+ AH(I ⊗X − C)−δA∗

GUOZHU YAO† , ANPING LIAO‡ , AND XUEFENG DUAN§

Abstract. We consider the nonlinear matrix equation X = Q+AH (I⊗X−C)−δA (0 < δ ≤ 1),

where Q is an n× n positive definite matrix, C is an mn×mn positive semidefinite matrix, I is the

m×m identity matrix, and A is an arbitrary mn×n matrix. We prove the existence and uniqueness

of the solution which is contained in some subset of the positive definite matrices under the condition

that I ⊗Q > C. Two bounds for the solution of the equation are derived. This equation is related

to an interpolation problem when δ = 1. Some known results in interpolation theory are improved

and extended.

Key words. Nonlinear matrix equation, Positive definite solution, Interpolation theory.

AMS subject classifications. 15A24, 65H05.

1. Introduction. We consider the positive definite solution X of the nonlinear

matrix equation

X = Q+AH(I ⊗X − C)−δA, 0 < δ ≤ 1,(1.1)

where Q is an n × n positive definite matrix, A is an mn × n complex matrix, C

is an mn × mn positive semidefinite matrix, I is the m × m identity matrix, ⊗ is

the Kronecker product, and AH denotes the conjugate transpose of matrix A. When

δ = 1, (1.1) is connected to an interpolation problem (see [1]-[3]). The special cases

of this equation have many applications in various areas, including control systems,

ladder networks, dynamic programming, stochastic filtering, statistics (see [4]).

In recent years, many authors have been greatly interested in studying both the

theory and numerical aspects of the positive definite solutions of the nonlinear matrix

equations of the form (1.1) (see [1], [3]-[18]). Some special cases of (1.1) have been

investigated. When δ = 1, Ran et al [1] showed that (1.1) has a unique positive

definite solution by using a reduction method and Sun [3] obtained the perturbation
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bounds and the residual bounds for an approximate solution of (1.1). In addition,

Duan [17] proved that (1.1) always has a unique positive definite solution when C = 0.

Hasanov [11] obtained that (1.1) has a unique positive definite solution under rigorous

conditions when C = 0 and m = 1. In this article, we first claim that (1.1) always

has a unique positive definite solution and then use a new approach that is different

from [1] to prove our conclusions in Sections 2 and 3. We also obtain some bounds

for the unique positive definite solution of (1.1).

Throughout this paper, X > 0 (X ≥ 0) denotes that the matrix X is posi-

tive definite (semidefinite). B ⊗ C denotes the Kronecker product of B and C. If

B − C is positive definite (semidefinite), then we write B > C (B ≥ C). We use

λM (B) (σM (B)) and λm(B) (σm(B)) to denote the maximal and minimal eigenval-

ues (singular values) of an n × n positive definite matrix B, respectively. Let P (n)

denote the set of n × n positive definite matrices, ϕ(n) denote the matrix set de-

fined by {X ∈ P (n) | I ⊗ X > C}, [B,C] = {X ∈ P (n) | B ≤ X ≤ C} and

(B,C) = {X ∈ P (n) | B < X < C}. Unless otherwise stated, we suppose that

I ⊗ Q > C, the solutions of the matrix equations in this paper are positive definite

and the solution of (1.1) is in ϕ(n).

2. The existence of a unique solution. In this section, we prove that (1.1)

always has a unique solution. We begin with some lemmas.

Lemma 2.1. (1.1) is equivalent to the following nonlinear matrix equation

Y = Q̄+ ĀH(I ⊗ Y )−δĀ,(2.1)

where Y = I ⊗X − C, Q̄ = I ⊗Q− C, Ā = I ⊗A.

Proof. Taking the Kronecker product of I with both left sides of (1.1), we obtain

I ⊗X − I ⊗ [AH(I ⊗X − C)−δA] = I ⊗Q.

Then

I ⊗X − C − (I ⊗AH)[I ⊗ (I ⊗X − C)−δ](I ⊗A) = I ⊗Q − C.(2.2)

Noting that I⊗AH = (I⊗A)H and I⊗Y −δ = (I⊗Y )−δ, we get (2.1) by substituting

Y, Q̄ and Ā for I ⊗X −C, I ⊗Q−C and I ⊗A in (2.2), respectively. Furthermore,

(2.1) has a solution Ȳ = I ⊗ X̄ −C if X̄ is a solution of (1.1). For the converse, it is

easy to verify that (1.1) has a solution X̄ = Q+AH Ȳ −δA if Ȳ is a solution of (2.1).

Lemma 2.2. ([19, p.2]). If A ≥ B > 0 (or A > B > 0), then Aα ≥ Bα > 0

(or Aα > Bα > 0) for all 0 < α ≤ 1, and 0 < Aα ≤ Bα (or 0 < Aα < Bα) for all

−1 ≤ α < 0.
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To discuss the solution of (1.1), we define maps f and F as follows:

f(X) = Q+AH(I ⊗X − C)−δA, X ∈ ϕ(n),(2.3)

and

F (Y ) = Q̄+ ĀH(I ⊗ Y )−δĀ, Y ∈ P (mn).(2.4)

Observe that the solutions of (1.1) and (2.1) are fixed points of f in ϕ(n) and F in

P (mn), respectively. Let

fk(X) = f [fk−1(X)], F k(Y ) = F [F k−1(Y )], k = 2, 3, . . . .

Lemma 2.3. The map F has the following properties:

(1) If Y1 ≥ Y2 ≥ 0, then F (Y2) ≥ F (Y1) ≥ 0 and F 2(Y1) ≥ F 2(Y2) ≥ 0.

(2) For any matrix Y > 0, Q̄ ≤ F 2(Y ) ≤ F (Q̄), and the set {Y | Q̄ ≤ Y ≤ F (Q̄)}

is mapped into itself by F.

(3) The sequence {F 2k(Q̄)}∞k=0 is an increasing sequence of positive definite ma-

trices converging to a positive definite matrix Y −, which is a fixed point of

F 2, i.e., Y − = F 2(Y −), and the sequence {F 2k+1(Q̄)}∞k=0 is a decreasing

sequence of positive definite matrices converging to a positive definite matrix

Y +, which is also a fixed point of F 2, i.e., Y + = F 2(Y +).

(4) F maps the set {Y | Y − ≤ Y ≤ Y +} into itself. In particular, any solution

of (2.1) is in between Y − and Y +, and if Y − = Y +, then (2.1) has a unique

solution.

Proof. The proof is similar to that of Theorem 2.2 of [6] and is omitted here.

From (4) of Lemma 2.3, we know that (2.1) has a unique solution if Y − = Y +.

Next we will prove that Y − = Y +.

Lemma 2.4. Let η(t) = (1−t)λm(Q̄)

tλM [F (Q̄)]
. Then we have, for any Y > 0 and t ∈ (0, 1),

F 2(tY ) ≥ t[1 + η(t)]F 2(Y ).

Proof. By (2) of Lemma 2.3, for any Y > 0, we have

F 2(Y ) ≤ F (Q̄) ≤ λM [F (Q̄)]I.(2.5)

Hence

F 2(tY )− t[1 + η(t)]F 2(Y )

= Q̄+ ĀH [I ⊗ F (tY )]−δĀ− t[1 + η(t)][Q̄ + ĀH(I ⊗ F (Y ))−δĀ]
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= (1− t)Q̄ + ĀH [I ⊗ (Q̄+ t−δĀH(I ⊗ Y )−δĀ)]−δĀ

−tĀH [I ⊗ F (Y )]−δĀ− tη(t)F 2(Y )

= (1− t)Q̄ + tĀH [I ⊗ (t
1
δ Q̄+ t−δ+ 1

δ ĀH(I ⊗ Y )−δĀ)]−δĀ

−tĀH [I ⊗ F (Y )]−δĀ− tη(t)F 2(Y ).

Since 0 < t
1
δ < 1 and 0 < t−δ+ 1

δ < 1, we have

t
1
δ Q̄ < Q̄, t−δ+ 1

δ [ĀH(I ⊗ Y )−δĀ] < ĀH(I ⊗ Y )−δĀ.

From Lemma 2.2 it follows that

[t
1
δ Q̄+ t−δ+ 1

δ ĀH(I ⊗ Y )−δĀ]−δ ≥ [Q̄ + ĀH(I ⊗ Y )−δĀ]−δ,(2.6)

which implies that

[I ⊗ (t
1
δ Q̄+ t−δ+ 1

δ ĀH(I ⊗ Y )−δĀ)]−δ ≥ [I ⊗ (Q̄+ ĀH(I ⊗ Y )−δĀ)]−δ.(2.7)

Hence, combining (2.5), (2.6) and (2.7), we have

F 2(tY )− t[1 + η(t)]F 2(Y ) ≥ (1 − t)Q̄− tη(t)F 2(Y )

≥ (1 − t)λm(Q̄)I − tη(t)λM [F (Q̄)]I

= (1 − t)λm(Q̄)I − t
(1−t)λm(Q̄)

tλM [F (Q̄)]
λM [F (Q̄)]I

= 0,

i.e., F 2(tY ) ≥ t[1 + η(t)]F 2(Y ).

Lemma 2.5. For any Y1 ≥ 0 and Y2 ≥ 0, we have λM (Y1)Y2 ≥ λm(Y2)Y1.

Proof. For any Y1 ≥ 0 and Y2 ≥ 0, it follows that

Y2 ≥ λm(Y2)I, λM (Y1)I ≥ Y1.

Hence

λM (Y1)Y2 ≥ λM (Y1)λm(Y2)I ≥ λm(Y2)Y1.

Theorem 2.6. (1.1) always has a unique positive definite solution X̄ and the

sequence {fk(X0)}
∞

k=0 converges to X̄ for any X0 ∈ ϕ(n), where the map f is defined

by (2.3).

Proof. We first consider (2.1) since (1.1) is equivalent to (2.1) according to Lemma

2.1. From Lemma 2.3, we know that there exist positive definite matrices Y − ∈

P (mn) and Y + ∈ P (mn) such that Y + ≥ Y − and

lim
k→∞

F 2k(Q̄) = Y −, lim
k→∞

F 2k+1(Q̄) = Y +.
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We also know that the matrices Y − and Y + are fixed points of F 2, i.e.,

Y − = F 2(Y −)

and

Y + = F 2(Y +).

By Lemma 2.5, Y − ≥ λm(Y −)
λM (Y +)Y

+, we define

t0 = sup{t|Y − ≥ tY +}.

Evidently, 0 < t0 < +∞, we now prove that t0 ≥ 1. Assume that 0 < t0 < 1, Y − ≥

t0Y
+. By Lemmas 2.3 and 2.4, we have

Y − = F 2(Y −) ≥ F 2(t0Y
+) ≥ t0[1 + η(t0)]F

2(Y +) = t0[1 + η(t0)]Y
+.(2.8)

Since t0[1 + η(t0)] > t0, (2.8) is contradictory to the definition of t0, and therefore

t0 ≥ 1, Y − = Y +.

Let Ȳ = Y + (or Y −). We know that lim
k→∞

F k(Q̄) = Ȳ is the unique solution of

(2.1) by Lemma 2.3. Therefore, X̄ = Q+AH Ȳ −δA is the unique solution of (1.1) by

Lemma 2.1.

It remains to prove that the sequence {F k(Y0)}
∞

k=0 converges to Ȳ for any Y0 in

P (mn). From Lemma 2.3, we have

Q̄ ≤ F 2(Y0) ≤ F (Q̄).(2.9)

Taking F in (2.9) yields

F 2(Q̄) ≤ F 3(Y0) ≤ F (Q̄).

And taking F in (2.9) repeatedly yields

F 2k−2(Q̄) ≤ F 2k(Y0) ≤ F 2k−1(Q̄), k = 1, 2, 3, . . . ,

F 2k(Q̄) ≤ F 2k+1(Y0) ≤ F 2k−1(Q̄), k = 1, 2, 3, . . . .

It follows from the convergence of {F k(Q̄)}∞k=0 to the unique solution Ȳ that the

sequence {F k(Y0)}
∞

k=0 converges to Ȳ for any Y0 ∈ P (mn). From the maps f and F

defined by (2.3) and (2.4), we have

F k(Y0) = I ⊗ fk(X0)− C, k = 1, 2, . . . ,
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where X0 ∈ ϕ(n), Y0 = I ⊗X0 − C ∈ P (mn). Hence

lim
k→∞

[I ⊗ fk(X0)] = lim
k→∞

F k(Y0) + C

= Ȳ + C

= Q̄+ ĀH(I ⊗ Ȳ )−δĀ+ C

= I ⊗ (Q+AH Ȳ −δA)

= I ⊗ X̄,

i.e., lim
k→∞

fk(X0) = X̄.

3. Some bounds for the unique solution. In this section, we present two

bounds for the unique solution (1.1).

Theorem 3.1. Let X̄ be the unique positive definite solution of (1.1). Then

X̄ ∈ [f2(Q), f(Q)].

Proof. Let Ȳ = I ⊗ X̄ − C. We know that Ȳ is the unique positive definite

solution of (2.1) by Lemma 2.1, i.e.,

Ȳ = Q̄+ ĀH(I ⊗ Ȳ )−δĀ.

Thus

Ȳ ≥ Q̄,

which implies that

Ȳ −δ ≤ Q̄−δ.

Thus we have

Ȳ = Q̄+ ĀH(Im ⊗ Ȳ )−δĀ ≤ Q̄ + ĀH(Im ⊗ Q̄)−δĀ.

Hence

Q̄ ≤ Ȳ ≤ F (Q̄).(3.1)

From Lemma 2.2 it follows that

[F (Q̄)]−δ ≤ Ȳ −δ ≤ Q̄−δ,

which implies that

Q̄+ ĀH [I ⊗ F (Q̄)]−δĀ ≤ Q̄+ ĀH(I ⊗ Ȳ )−δĀ ≤ Q̄ + ĀH(I ⊗ Q̄)−δĀ,

i.e.,

Ȳ ∈ [F 2(Q̄), F (Q̄)].
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Since

F 2(Q̄) = I ⊗ f2(Q)− C, F (Q̄) = I ⊗ f(Q)− C,

we have

I ⊗ f2(Q)− C ≤ I ⊗ X̄ − C ≤ I ⊗ f(Q)− C,

i.e., X̄ ∈ [f2(Q), f(Q)].

Theorem 3.2. Let X̄ be the unique positive definite solution of (1.1). Then

I ⊗ X̄ ∈ [αI + C, βI + C],

where the pair (α, β) is a solution of the system

{

α = λm(Q̄) + σ2
m(A)β−δ,

β = λM (Q̄) + σ2
M (A)α−δ .

Proof. Let Ȳ = I⊗ X̄−C. We know that Ȳ is the unique solution of (2.1). From

Ā = I ⊗ A, we have σm
¯(A) = σm(A), σM

¯(A) = σM (A). Define the sequences {αs}

and {βs} as follows:

α0 = λm(Q̄),

β0 = λM (Q̄) + σ2
M

¯(A)λ−δ
m (Q̄),

αs = λm(Q̄) + σ2
m

¯(A)β−δ
s−1,

βs = λM (Q̄) + σ2
M

¯(A)α−δ
s−1, s = 1, 2, . . . .

We will prove that the sequences {αs} and {βs} are monotonically increasing and

monotonically decreasing, respectively. Obviously,

0 < α0 < β0.

Hence

α1 = λm(Q̄) + σ2
m

¯(A)β−δ
0 ≥ α0,

β1 = λM (Q̄) + σ2
M

¯(A)α−δ
0 = β0.

Suppose that αk ≥ αk−1, βk ≤ βk−1. Then

αk+1 = λm(Q̄) + σ2
m

¯(A)β−δ
k ≥ λm(Q̄) + σ2

m
¯(A)β−δ

k−1 = αk,

βk+1 = λM (Q̄) + σ2
M

¯(A)α−δ
k ≤ λM (Q̄) + σ2

M
¯(A)α−δ

k−1 = βk.

Therefore, we can get αs ≥ αs−1, βs−1 ≥ βs for s = 1, 2, . . . by induction.
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Next, we will prove that the unique solution Ȳ of (2.1) lies in [αsI, βsI], for

s = 0, 1, 2, . . .. It is easy to see that

Q̄ ≤ Ȳ ≤ Q̄+ ĀH(I ⊗ Q̄)−δĀ.(3.2)

By Q̄ ≥ σm(Q̄)I = α0I, we have Ȳ ≥ α0I and

Q̄+ ĀH(I ⊗ Q̄)−δĀ ≤ Q̄+ λ−δ
m (Q̄)ĀH Ā

≤ [λM (Q̄) + λ−δ
m (Q̄)σ2

M
¯(A)]I

= β0I.

(3.3)

Combining (3.2) and (3.3), we have Ȳ ∈ [α0I, β0I]. Suppose that Ȳ ∈ [αkI, βkI].

Then

Ȳ = Q̄+ ĀH(I ⊗ Ȳ )−δĀ

≥ Q̄+ β−δ
k ĀHĀ

≥ [λm(Q̄) + β−δ
k σ2

m
¯(A)]I

= αk+1I

and

Ȳ = Q̄+ ĀH(I ⊗ Ȳ )−δĀ

≤ Q̄+ α−δ
k ĀHĀ

≤ [λM (Q̄) + α−δ
k σ2

M
¯(A)]I

= βk+1I.

Consequently, the sequences {αs} and {βs} are convergent. Let α = lim
s→∞

αs, β =

lim
s→∞

βs. Then Ȳ ∈ [αI, βI]. Since Ȳ = I ⊗ X̄ − C, we have that Im ⊗ X̄ belongs to

[αI + C, βI + C].
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