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THE POWER OF BIDIAGONAL MATRICES∗

NICHOLAS J. HIGHAM†

Abstract. Bidiagonal matrices are widespread in numerical linear algebra, not least because of their use in the standard

algorithm for computing the singular value decomposition and their appearance as LU factors of tridiagonal matrices. We

show that bidiagonal matrices have a number of interesting properties that make them powerful tools in a variety of problems,

especially when they are multiplied together. We show that the inverse of a product of bidiagonal matrices is insensitive to small

componentwise relative perturbations in the factors if the factors or their inverses are nonnegative. We derive componentwise

rounding error bounds for the solution of a linear system Ax = b, where A or A−1 is a product B1B2 . . . Bk of bidiagonal

matrices, showing that strong results are obtained when the Bi are nonnegative or have a checkerboard sign pattern. We show

that given the factorization of an n× n totally nonnegative matrix A into the product of bidiagonal matrices, ∥A−1∥∞ can be

computed in O(n2) flops and that in floating-point arithmetic the computed result has small relative error, no matter how large

∥A−1∥∞ is. We also show how factorizations involving bidiagonal matrices of some special matrices, such as the Frank matrix

and the Kac–Murdock–Szegö matrix, yield simple proofs of the total nonnegativity and other properties of these matrices.

Key words. Bidiagonal matrix, Totally nonnegative matrix, Condition number, Matrix function, Vandermonde system,

Toeplitz matrix, the Frank matrix, the Pascal matrix, the Kac–Murdock–Szegö matrix.
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1. Introduction. Bidiagonal matrices

B =


b11 b12

b22
. . .

. . . bn−1,n

bnn

 ∈ Cn×n,

have 2n − 1 parameters, appearing on two diagonals. Despite their simplicity, bidiagonal matrices are

powerful tools in a variety of problems, especially when they are multiplied together. Their properties and

uses have been explained by various authors, but the full range of them may be underappreciated. Indeed, in

the 1139-page book Matrix Mathematics [4] the word “bidiagonal” appears on only one page and bidiagonal

matrices appear little in the Handbook of Linear Algebra [32] apart from in the chapter by Fallat [18].

The purpose of this work is to show the utility of bidiagonal matrices and in particular to show how

factorizations of matrices into bidiagonal factors can be exploited. Our main contributions are as follows,

where A = B1B2 . . . Bk with each Bi either upper bidiagonal or lower bidiagonal.

• We show that small componentwise perturbations in the Bi produce small componentwise pertur-

bations in A−1 if the Bi or the B−1
i are nonnegative (Theorem 2.3).

• We show that the condition number κ∞(A) = ∥A∥∞∥A−1∥∞ can be computed in O(kn) flops when

the Bi are nonnegative or have a checkerboard sign pattern, without explicitly forming A (section 3).
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• We give a unified derivation of backward error bounds and forward error bounds for the computed

solution of Ax = b when A or A−1 is a product of bidiagonal matrices and the system is solved using

the factors (section 4).

• We show that for a totally nonnegative n × n matrix A, κ∞(A) can be computed in O(n2) flops,

given a factorization of A into a product of bidiagonal matrices and that the computed solution is

highly accurate (Algorithm 5.5).

• We explore functions of bidiagonal matrices and show that the exponential of a totally nonnegative

bidiagonal matrix is totally nonnegative.

• We give new observations on how factorizations involving bidiagonal matrices can help us to under-

stand properties of some well-known matrices (section 8).

Bidiagonal matrices arise in some classical contexts in numerical linear algebra, which we briefly sum-

marize as they will not be the focus of our attention.

Computing the singular value decomposition (SVD). The first step of the Golub–Reinsch algorithm for

computing the SVD is a two-sided reduction by Householder transformations to upper bidiagonal form B,

as proposed by Golub and Kahan [23]. The SVD of B is then computed by the QR algorithm implicitly

applied to B∗B, and this can be done in a way that guarantees high relative accuracy in all the computed

singular values of B [10].

LU factorization of tridiagonal matrices. If A ∈ Cn×n is tridiagonal and has an LU factorization A = LU

then L is unit lower bidiagonal and U is upper bidiagonal.

Lanczos bidiagonalization. For large, sparse matrices the solution to a linear system or the least squares

solution to an overdetermined system can be computed using a method based on unitary reduction to

bidiagonal form by the Lanczos process [5, sec. 7.6], [23], [43].

In perturbation and rounding error analyses, products of terms of the form 1 + δi arise. Their distance

from 1 will be bounded using the following result [29, Lem. 3.1].

Lemma 1.1. If |δi| ≤ δ and ρi = ±1 for i = 1: n, and nδ < 1, then

(1.1)

n∏
i=1

(1 + δi)
ρi = 1 + θn, |θn| ≤

nδ

1− nδ
.

We also need a componentwise bound for perturbations in a matrix product [29, Lem. 3.8]. Here and

throughout, |A| = (|aij |) and inequalities between matrices hold componentwise.

Lemma 1.2. If Xj +∆Xj ∈ Cn×n satisfies |∆Xj | ≤ δj |Xj | for j = 1: m then

∣∣∣∣ m∏
j=1

(Xj +∆Xj)−
m∏
j=1

Xj

∣∣∣∣ ≤
(

m∏
j=1

(1 + δj)− 1

)
m∏
j=1

|Xj |.

We use the standard model of floating-point arithmetic [29, sec. 2.2] and denote by u the unit roundoff.

We need the constant, for nu < 1,

γn =
nu

1− nu
.
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We will make use of the one-parameter bidiagonal matrix

(1.2) Tn(θ) =


1 θ

1 θ

1
. . .
. . . θ

1

 ∈ Cn×n.

2. Basic properties of bidiagonal matrices. First we consider the inverse of a nonsingular bidiag-

onal matrix. It is instructive to look at the 4× 4 case:


a x 0 0

b y 0

c z

d


−1

=


1
a − x

a b
x y
a b c − x y z

a b c d

1
b − y

b c
y z
b c d

1
c − z

c d

1
d

 .

Notice that every element in the upper triangle is a product of off-diagonal elements of B and inverses of

diagonal elements, that the superdiagonals have alternating signs attached, and that there are no additions.

These properties hold for general n, as the explicit form of the inverse in the following result shows.

Lemma 2.1. If B ∈ Cn×n is nonsingular and upper bidiagonal then

(2.1) (B−1)ij =
1

bjj

j−1∏
k=i

(
−bk,k+1

bkk

)
, j ≥ i.

We will make use of the fact that when B has nonnegative elements, B−1 has a checkerboard (alternating)

sign pattern.

We introduce the comparison matrix M(A) of A ∈ Cn×n:

(
M(A)

)
ij
=

{
|aii|, i = j,

−|aij |, i ̸= j.

It is easy to show that (see [26, sec. 2& 8], [29, Chap. 8])

(2.2) |B−1| = M(B)−1,

an observation that we will need later.

Using the representation (2.1) of the inverse, we can bound the effect of a componentwise perturbation

of B. Let

(2.3) τ =
(2n− 1)δ

1− (2n− 1)δ
.

Theorem 2.2. If B ∈ Cn×n is a nonsingular bidiagonal matrix and ∆B is a perturbation satisfying

|∆B| ≤ δ|B| then

|(B +∆B)−1 −B−1
∣∣ ≤ τ |B−1|,

where τ is defined in (2.3).
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Proof. Assume, without loss of generality, that B is upper bidiagonal. Write ∆bij = δijbij , where

|δij | ≤ δ. From (2.1) we obtain

(B +∆B)−1
ij − (B−1)ij =

1

bjj(1 + δjj)

j−1∏
k=i

(
−bk,k+1(1 + δk,k+1)

bkk(1 + δkk)

)
− 1

bjj

j−1∏
k=i

(
−bk,k+1

bkk

)

= (B−1)ij

(
1

1 + δjj

j−1∏
k=i

(
1 + δk,k+1

1 + δkk

)
− 1

)
= (B−1)ijθ2(j−i)+1,

where |θk| ≤ γk = kδ/(1− kδ) by Lemma 1.1.

This result, which is essentially the same as [29, Prob. 22.8], shows that a componentwise relative

perturbation in B produces a componentwise relative perturbation in B−1 at most about 2n times larger: a

strong result that does not hold for triangular matrices in general.

We now extend this result to a product of bidiagonal matrices. In all the products of bidiagonal matrices

in this paper, each matrix can be upper bidiagonal or lower bidiagonal.

Theorem 2.3. Let B = B1B2 . . . Bk ∈ Cn×n, where the Bi are nonsingular bidiagonal matrices, and let

B +∆B = (B1 +∆B1)(B2 +∆B2) . . . (Bk +∆Bk), where |∆Bi| ≤ δ|Bi| for all i. Then

(2.4)
∣∣(B +∆B)−1 −B−1

∣∣ ≤ ((1 + τ)k − 1
)
|B−1

k ||B−1
k−1| . . . |B

−1
1 |,

where τ is defined in (2.3), and if the Bi or the B−1
i are all nonnegative then

(2.5)
∣∣(B +∆B)−1 −B−1

∣∣ ≤ ((1 + τ)k − 1
)
|B−1|.

Proof. We have

(B +∆B)−1 = (Bk +∆Bk)
−1(Bk−1 +∆Bk−1)

−1 . . . (B1 +∆B1)
−1

= (B−1
k + Ek)(B

−1
k−1 + Ek−1) . . . (B

−1
1 + E1),

where by Theorem 2.2, |Ei| ≤ τ |B−1
i |, i = 1: k. Hence by Lemma 1.2,

|(B +∆B−1)−B−1| ≤
(
(1 + τ)k − 1

)
|B−1

k ||B−1
k−1| . . . |B

−1
1 |.

The bound (2.5) is immediate if the B−1
i are all nonnegative. If the Bi are all nonnegative then (2.5) follows

from considering the checkerboard sign pattern of the inverses; see Theorem 3.2 below.

The bound (2.5) shows that if the Bi or the B−1
i are all nonnegative then componentwise relative

perturbations in the Bi produce componentwise relative perturbation in the inverse of the product at most

about a factor 2nk times larger.

Like the inverse, the singular values of a bidiagonal matrix are very well behaved under componentwise

perturbations. Let σi(B) denote the ith largest singular value of B.

Theorem 2.4. Let B ∈ Cn×n and B+∆B be upper bidiagonal and suppose that (B+∆B)ii = α2i−1bii
and (B +∆B)i,i+1 = α2ibi,i+1, where the αi are nonzero. Then

σi(B)

µ
≤ σi(B +∆B) ≤ µσi(B), i = 1: n,
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where

µ =

2n−1∏
i=1

max(|αi|, |α−1
i |).

Proof. We can write B +∆B = D1BD2, where

D1 = diag
(
α1,

α1α3

α2
,
α1α3α5

α2α4
, . . .

)
, D2 = diag

(
1,

α2

α1
,
α2α4

α1α3
,
α2α4α6

α1α3α5
, . . .

)
.

An extension for singular values of a result of Ostroswki for eigenvalues [15, Thm. 3.1] gives

σi(B)

∥D−1
1 ∥2∥D−1

2 ∥2
≤ σi(B +∆B) ≤ σi(B)∥D1∥2∥D2∥2.

Using ∥D1∥2∥D2∥2 = maxi |(D1)ii|maxi |(D2)ii| ≤ µ (taking account of cancellation in the product) and

∥D−1
1 ∥2∥D−1

2 ∥2 ≤ µ gives the result.

Theorem 2.4 is from Demmel and Kahan [10, Cor. 2] and the proof is from Eisenstat and Ipsen [15,

Cor. 4.2]. The theorem shows that relative perturbations of magnitude at most τ = maxi |1 − αi| ≪ 1 to

the elements on the diagonal and superdiagonal of an upper bidiagonal matrix produce relative changes of

at most (1− τ)2n−1 − 1 ≈ (2n− 1)τ in each singular value. This is a much stronger result than for general

perturbations of a general n×n matrix, where it is only the absolute changes in the singular values that are

bounded: |σk(A+∆A)− σk(A)| ≤ σ1(∆A) = ∥∆A∥2, k = 1: n [33, Cor. 7.3.5].

Theorem 2.4 does not extend to a product of bidiagonal matrices, as the following example shows. Let

A = I =

[
1 x

0 1

] [
1 −x

0 1

]
=: B1B2,

A+∆A =

[
1 2xδ

0 1

]
=

[
1 x(1 + δ)

0 1

] [
1 −x(1− δ)

0 1

]
=: (B1 +∆B1)(B2 +∆B2),

where δ > 0, x > 0, and xδ ≫ 1. Here, B1 and B2 have undergone a componentwise relative change δ.

The singular values of A are σ1 = 1 and σ2 = 1, and those of A + ∆A are approximately ŝ1 = 2xδ and

ŝ2 = (2xδ)−1 (since xδ ≫ 1). Hence, the relative change in σ1 is |σ1 − ŝ1|/σ1 ≈ 2xδ ≫ 1 and that in σ2 is

|σ2− ŝ2|/σ2 ≈ 1−1/(2xδ) ≈ 1. We conclude that relative changes in bidiagonal matrices B1, B2, . . . , Bk can

induce a much larger relative change in the singular values of their product. The situation is different for a

product of nonnegative bidiagonal matrices B1, B2, . . . Bk: small componentwise relative changes in the Bi

produce only small relative changes in the singular values of the product B1, B2, . . . Bk, as shown by Koev

[35, Cor. 7.3].

The next result reveals some further interesting properties of the singular values of a bidiagonal matrix.

Theorem 2.5. Let B ∈ Cn×n be bidiagonal.

(a) |B| = DBF , where D and F are unitary diagonal matrices. Hence, B and |B| have the same

singular values.

(b) If bii and bi,i+1 are nonzero for all i then the singular values of B are distinct.

Proof. (a): Let D = diag(di) and F = diag(fi) with f1 = 1. We take d1 = sign(b11)
∗, f2 = sign(d1b12)

∗,

d2 = sign(b22f2)
∗, f3 = sign(d2b23)

∗, and so on, where sign(z) = z/|z| if z ̸= 0 or 1 otherwise. Then
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|B| = DBF , whereD and F have diagonal elements of modulus 1 and so are unitary. Therefore if B = UΣV ∗

is an SVD of B then |B| = (DU)Σ(V ∗F ) is an SVD of |B|.

(b): The singular values of B are the square roots of the eigenvalues of T = |B|∗|B|, by (a). The matrix

T is symmetric tridiagonal with positive superdiagonal and subdiagonal elements, so the eigenvalues of T

are distinct [44, Lem. 7.7.1] and hence so are the singular values of B.

It is interesting to note that the SVD codes in both LINPACK [12] and LAPACK [3] reduce A ∈ Cm×n

to a real bidiagonal matrix, so that the QR iteration can be carried out in real arithmetic, but they do so in

different ways. LINPACK reduces A to bidiagonal form by Householder transformations and then explicitly

carries out the diagonal scaling given in part (a) of Theorem 2.5. LAPACK reduces A to bidiagonal form

using elementary unitary matrices of the form P = I−ρvv∗ with generally nonreal ρ that are chosen so that

the reduced bidiagonal matrix is real [37].

3. The condition number of a matrix product. Suppose a matrix X ∈ Cn×n is given in factored

form X = A1A2 . . . Ak, where Ai ∈ Cn×n for all i, and that we wish to compute or estimate the condition

number κ∞(X) = ∥X∥∞∥X−1∥∞ without explicitly forming X. Initially we will make no assumptions about

the Ai, but later we will specialize to bidiagonal Ai. For dense matrices, the cost of forming X is 2(k− 1)n3

flops, whereas we would like to compute or estimate κ∞(X) at the cost of a few matrix–vector products with

X, that is, in a small multiple of 2(k − 1)n2 flops.

The condition number estimation problem is well studied [29, Chap. 15]. Here we focus on the problem

of exactly computing the condition number. Recall that the ∞-norm satisfies

∥X∥∞ = ∥ |X| ∥∞ = ∥ |X|e ∥∞,

where e = [1, 1, . . . , 1]T .

In general we cannot compute ∥A1A2 . . . Ak∥∞ without forming the matrix product. However, if the

equality

(3.1) |A1A2 . . . Ak| = |A1||A2| . . . |Ak|,

holds then

(3.2) ∥A1A2 . . . Ak∥∞ = ∥ |A1||A2| . . . |Ak| ∥∞ = ∥ |A1||A2| . . . |Ak|e ∥∞,

and we can evaluate the right-hand side in O(kn2) flops as opposed to the O(kn3) flops that are required if

we explicitly form the product. If the Ai are bidiagonal then the costs are 3kn flops compared with up to

O(kn2) flops if the product is explicitly formed, since in general the product fills in.

The equality (3.1) obviously holds when the Bi are all nonnegative. It can also hold because all additions

in the product A1A2 . . . Ak are of like-signed numbers, so that there is no cancellation. Important such cases

are when the Ai are nonnegative and when each Ai has a checkerboard (alternating) sign pattern, which can

be expressed as

(3.3) Ai = ±Σ|Ai|Σ, i = 1: k,

where

(3.4) Σ = diag
(
1,−1, 1, . . . , (−1)n−1

)
.
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Theorem 3.1. If the matrices Ai, i = 1: k, satisfy (3.3) then

(3.5) A1A2 . . . Ak = ±Σ|A1||A2| . . . |Ak|Σ,

and hence

(3.6) |A1A2 . . . Ak| = |A1||A2| . . . |Ak|.

Proof. If the Ai satisfy (3.3) then

A1A2 . . . Ak = ±Σ|A1|Σ ·Σ|A2|Σ . . .Σ|Ak|Σ = ±Σ|A1||A2| . . . |Ak|Σ,

which is (3.5), and (3.6) follows immediately,

We conclude that if the Ai are nonnegative or have a checkerboard sign pattern then we can compute

∥A1A2 . . . Ak∥∞ in O(kn2) flops.

If B1, B2, . . . , Bk are bidiagonal and nonnegative then from Lemma 2.1 it is clear that B−1
i has a

checkerboard sign pattern, that is, it satisfies (3.3). Therefore by (3.6),

(3.7) |B−1
k B−1

k−1 . . . B
−1
1 | = |B−1

k ||B−1
k−1| . . . |B

−1
1 |.

The same is true if the Bi have a checkerboard sign pattern.

Theorem 3.2. Let B1, B2, . . . , Bk ∈ Rn×n be nonsingular bidiagonal matrices. If Bi is nonnegative for

all i or has a checkerboard sign pattern for all i then

(3.8) |B−1
k B−1

k−1 . . . B
−1
1 | = |B−1

k ||B−1
k−1| . . . |B

−1
1 | = M(Bk)

−1M(Bk−1)
−1 . . .M(B1)

−1.

Proof. For nonnegative Bi the result follows from (3.7) on recalling (2.2). From (2.1) it is clear that

Bi having a checkerboard sign pattern is equivalent to either B−1
i or −B−1

i being nonnegative and equal to

M(Bi)
−1, which gives the second part of the result.

From (3.8) we have

(3.9) ∥B−1
k B−1

k−1 . . . B
−1
1 ∥∞ = ∥M(Bk)

−1M(Bk−1)
−1 . . .M(B1)

−1e∥∞,

and the right-hand side can be computed in 3kn flops, whereas explicitly forming the product on the left

(using substitutions i.e., linear solves) costs 3kn2/2 flops. We conclude that when the Bi are nonnegative

for all i or all have a checkerboard sign pattern, κ∞(B1B2 . . . Bk) can be computed exactly in 6kn flops.

Since ∥A∥1 = ∥AT ∥∞, the 1-norm condition number can be computed at the same cost by working with the

transpose of the product.

In the case k = 1, (3.9) reduces to the result that ∥B−1∥∞ = ∥M(B)−1∥∞ = ∥M(B)−1e∥∞ [26, sec. 2].

We can also compute the condition number of Skeel [46],

cond(A, x) =
∥ |A−1||A||x| ∥∞

∥x∥∞
,

exactly in 6kn flops for A = B1B2 . . . Bk with nonnegative Bi:

cond(B1B2 . . . Bk, x) =
∥M(Bk)

−1 . . .M(B1)
−1B1 . . . Bk|x| ∥∞

∥x∥∞
.
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If the Bi have checkerboard sign patterns then the same formula holds with B1B2 . . . Bk replaced by

|B1||B2| . . . |Bk|.

We will make use of (3.9) for totally nonnegative matrices in Section 5.

4. Linear systems. We consider a linear system Ax = b in which A is either a product of bidiagonal

matrices or a product of inverses of bidiagonal matrices. Our interest is in what can be said about the

backward error and forward error when such a system is solved in floating-point arithmetic.

4.1. Product of bidiagonal matrices. Suppose A = B1B2 . . . Bk is a product of k bidiagonal ma-

trices. We can solve the system by solving k bidiagonal systems by substitution. Standard rounding error

analysis [29, Lem. 8.2] shows that the computed x̂ satisfies

(4.1) (B1 +∆B1)(B2 +∆B2) . . . (Bk +∆Bk)x̂ = b, |∆Bi| ≤ γ2|Bi|, i = 1: k.

Hence the residual is

|b−B1B2 . . . Bkx̂| =
∣∣((B1 +∆B1)(B2 +∆B2) . . . (Bk +∆Bk)−B1B2 . . . Bk

)
x̂
∣∣

≤
(
(1 + γ2)

k − 1
)
|B1||B2| . . . |Bk||x̂|,

by Lemma 1.2. If the Bi are all nonnegative or, by Theorem 3.1, if they have a checkerboard sign pattern,

then the bound becomes

(4.2) |b−Ax̂| ≤
(
(1 + γ2)

k − 1
)
|A||x̂| =

(
2ku+O(u2)

)
|A||x̂|,

which shows that the componentwise relative backward error is small—an ideal backward error result. We

note that this result has used the triangularity of the Bi but not their bidiagonal structure (except through

the constant in (4.1)).

To obtain a forward error bound, we rewrite (4.1) as

x̂ = (Bk +∆Bk)
−1(Bk−1 +∆Bk−1)

−1 . . . (B1 +∆B1)
−1b.

Then

|x̂− x| ≤
∣∣(Bk +∆Bk)

−1(Bk−1 +∆Bk−1)
−1 . . . (B1 +∆B1)

−1 −B−1
k B−1

k−1 . . . B
−1
1

∣∣|b|
≤
(
(1 + τ)k − 1

)
|B−1

k ||B−1
k−1| . . . |B

−1
1 ||b|(4.3)

by Theorem 2.3, where

(4.4) τ =
(2n− 1)γ2

1− (2n− 1)γ2
.

If the Bi are all nonnegative or have a checkerboard sign pattern then by Theorem 3.2 this inequality becomes

(4.5) |x̂− x| ≤
(
2k(2n− 1)u+O(u2)

)
|A−1||b|.

The bound (4.5) is a strong forward error bound because it is the same as a bound for the change in x

induced by a small componentwise relative perturbation of b: b → b+∆b with |∆b| ≤ 4knu|b| [29, Thm. 7.4].
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4.2. Product of inverses of bidiagonal matrices. Now suppose that it is A−1 rather than A that

is a product of bidiagonal matrices: A−1 = B1B2 . . . Bk. Now we solve Ax = b by forming x = A−1b =

B1B2 . . . Bkb and the computed x̂ satisfies

(4.6) x̂ = (B1 +∆B1)(B2 +∆B2) . . . (Bk +∆Bk)b, |∆Bi| ≤ γ2|Bi|, i = 1: k.

Then the forward error is

|x̂− x| =
∣∣((B1 +∆B1)(B2 +∆B2) . . . (Bk +∆Bk)−B1B2 . . . Bk)

)
b
∣∣,

≤
(
(1 + γ2)

k − 1
)
|B1||B2| . . . |Bk||b|,(4.7)

by Lemma 1.2. If the Bi are all nonnegative or have a checkerboard sign pattern then by Theorem 3.1,

|B1||B2| . . . |Bk| = |B1B2 . . . Bk|, so

(4.8) |x̂− x| ≤
(
(1 + γ2)

k − 1
)
|A−1||b|.

Now we turn to the residual. Note first that by (4.6),

b = (Bk +∆Bk)
−1(Bk−1 +∆Bk−1)

−1 . . . (B1 +∆B1)
−1x̂.

Hence

|b−Ax̂| =
∣∣[(Bk +∆Bk)

−1(Bk−1 +∆Bk−1)
−1 . . . (B1 +∆B1)

−1 −B−1
k B−1

k−1 . . . B
−1
1

]
x̂
∣∣

and by Lemma 1.2 and Theorem 2.3 we obtain, with τ given by (4.4),

|b−Ax̂| ≤
(
(1 + τ)k − 1

)
|B−1

k ||B−1
k−1| . . . |B

−1
1 ||x̂|

=
(
2k(2n− 1)u+O(u2)

)
|B−1

k ||B−1
k−1| . . . |B

−1
1 ||x̂|.

If the Bi are all nonnegative or have a checkerboard sign pattern then by Theorem 3.2 this bound can be

written

(4.9) |b−Ax̂| ≤
(
2k(2n− 1)u+O(u2)

)
|A||x̂|,

which again shows a small componentwise relative backward error.

Our conclusion is that whether it is A or A−1 that is a product of bidiagonal matrices we have the same

satisfactory form of forward error bounds (4.5) and (4.8) and residual bounds (4.2) and (4.9) when the Bi

are all nonnegative or have a checkerboard sign pattern.

4.3. Application to Vandermonde systems. An application of these results is to the Björck–Pereyra

algorithm for solving a Vandermonde system V y = b in O(n2) flops [6], where V = (xi−1
j ) ∈ Cn×n for given

points xi ∈ C. This algorithm uses a factorization of V −1 into a product of 2n − 2 bidiagonal matrices

B2n−2, . . . , B1 given in terms of the points xi. When 0 ≤ x1 < x2 < · · · < xn the bidiagonal factors have

positive diagonal and nonpositive off-diagonal elements. Therefore the Bi have a checkerboard sign pattern

and so |B2n−2| . . . |B1| = |B2n−2 . . . B1| = |A−1| by (3.7). From (4.8) and (4.9) we have

|ŷ − y| ≤
(
2(2n− 2)u+O(u2)

)
|V −1||b|,

|b− V ŷ| ≤
(
2(2n− 2)(2n− 1)u+O(u2)

)
|V ||ŷ|,
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Table 1: Relative errors for the computed solution to a linear system Pnx = b with Pn the n × n Pascal

matrix.

Relative errors

n Bidiagonal factorization P\b Error bound (4.5)

5 9.25e-17 9.25e-16 7.99e-15

10 1.50e-16 4.94e-9 3.80e-14

15 6.36e-17 1.05e-3 9.02e-14

20 1.34e-16 3.12e-12 1.65e-13

25 1.68e-16 2.76e-11 2.61e-13

which reproduce [27, Thm. 2.3] and the monomial case of [28, Cor. 4.1], respectively. Since V −1 has

a checkerboard sign pattern, if (−1)ibi ≥ 0 then |V −1||b| = |V −1b| = |y|, and ŷ therefore has a small

componentwise relative error. The analysis in [28] makes use of the bidiagonal factorization, but that in [27]

does not.

4.4. Application to Pascal systems. We give a numerical illustration of the use of the bidiagonal

factorization for solving the linear system Pnx = b, where Pn is the symmetric positive definite n×n Pascal

matrix with

(4.10) pij =

(
i+ j − 2

j − 1

)
=

(i+ j − 2)!

(i− 1)!(j − 1)!
,

and b = en/n, where en is the nth unit vector. The Pascal matrix has a known factorization as a product

of 2n − 1 bidiagonal matrices, as we explain in section 8.3. We solve the system using the bidiagonal

factorization, solving the bidiagonal systems by substitution. We also solve the system for the explicitly

formed P using the MATLAB backslash operator (which exploits the symmetric positive definiteness of Pn

but not its bidiagonal factorization). The working precision is double precision, with u ≈ 1.1×10−16. Table 1

shows the relative errors ∥x− x̂∥∞/∥x∥∞, for which we take as the exact solution x the solution computed

at a precision of 500 decimal digits using the Multiprecision Computing Toolbox [41] and then rounded to

double precision. We restrict to n ≤ 25 to ensure that P is exactly representable at the working precision.

We see that substitution with the bidiagonal factorization yields errors of O(u) that satisfy the bound (4.5),

whereas the MATLAB backslash function produces much larger errors, which usually exceed (4.5).

5. Totally nonnegative matrices. A matrix A ∈ Rn×n is totally nonnegative if every minor (deter-

minant of a square submatrix) is nonnegative and totally positive if every minor is positive. We will need

the following key result, which is a direct consequence of the Binet–Cauchy theorem on determinants [33,

sec. 0.8.7], [36, Prop. 1.1].

Theorem 5.1. If A,B ∈ Rn×n are totally nonnegative then so is AB.

Bidiagonal matrices play a key role in the theory of totally nonnegative matrices. Indeed a nonnegative

bidiagonal matrix is totally nonnegative. In the proof of this result we will need the elementary lower

bidiagonal matrix

(5.1) Lk(ℓk+1,k) = I + ℓk+1,kek+1e
T
k ,
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which differs from the identity matrix only in the (k + 1, k) position, which contains ℓk+1,k.

Theorem 5.2. A bidiagonal matrix B ∈ Rn×n with nonnegative elements is totally nonnegative.

Proof. Without loss of generality, we take B to be lower bidiagonal. We first assume that B is

nonsingular. Since 0 ̸= det(B) = b11b22 . . . bnn, the bii are all positive, so with D = diag(bii) and

ℓi+1,i = bi+1,i/bi+1,i+1 ≥ 0, i = 1: n− 1, we can write

(5.2) B = D



1

ℓ21 1

ℓ32
. . .

. . .
. . .

ℓn,n−1 1


≡ DL.

Since D is clearly totally nonnegative, by Theorem 5.1 it suffices to show that L is totally nonnegative.

For n = 4 we have

L =


1

ℓ21 1

ℓ32 1

ℓ43 1

 =


1

ℓ21 1

1

1



1

1

ℓ32 1

1



1

1

1

ℓ43 1

 ,

and this factorization clearly generalizes to

(5.3) L = L1(ℓ21)L2(ℓ32) . . . Ln−1(ℓn,n−1),

where Lk(ℓk+1,k) is the elementary lower bidiagonal matrix (5.1). It is easy to see that Lk(ℓk+1,k) is totally

nonnegative for all k, so L is totally nonnegative by Theorem 5.1.

If B is singular then consider the bidiagonal matrix B(ϵ) = B + ϵI, which is nonsingular for ϵ > 0.

By the argument above, B(ϵ) is totally nonnegative for ϵ > 0. Any minor of B(ϵ) is the determinant of a

submatrix of B(ϵ), which is a polynomial in ϵ, so it is continuous in ϵ. This minor is nonnegative for all

ϵ > 0 and so must remain nonnegative in the limit as ϵ → 0. Therefore B = B(0) is totally nonnegative.

Even if B is not totally nonnegative, there is a an associated totally nonnegative matrix.

Theorem 5.3. If B ∈ Rn×n is nonsingular and bidiagonal then M(B)−1 is totally nonnegative.

Proof. Assuming that B = L is lower bidiagonal, by (5.2) and (5.3),

M(B) = M(DL) = |D|M(L) = |D|L1(−|ℓ21|)L2(−|ℓ32|) . . . Ln−1(−|ℓn,n−1|),

and Lk(−|ℓk+1,k|)−1 = Lk(|ℓk+1,k|), so M(B)−1 = Ln−1(|ℓn,n−1|)Ln−2(|ℓn−1,n−2|) . . . L1(|ℓ21|)|D|−1, which

is a product of totally nonnegative matrices and hence is totally nonnegative.

The next result shows that any nonsingular totally nonnegative matrix can be written as a product of

nonnegative bidiagonal matrices.

Theorem 5.4. A nonsingular matrix A ∈ Rn×n is totally nonnegative if and only if it can be factorized

as

(5.4) A = Ln−1Ln−2 . . . L1DU1U2 . . . Un−1,
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where D is a diagonal matrix with positive diagonal entries and Li and Ui are unit lower and unit upper

bidiagonal matrices, respectively, with the first i− 1 entries along the subdiagonal of Li and UT
i zero and the

rest nonnegative.

The factorization (5.4) is essentially an LU factorization in which L and U have been factorized into a

product of specially structured nonnegative bidiagonal matrices.

Theorem 5.4 is from Gasca and Peña [22, Thm. 4.2]. Fallat and Johnson [20, sec. 2.0] summarize the

history of different forms of this factorization.

Since the bidiagonal matrices in the factorization (5.4) are all nonnegative, by (3.9) we have

(5.5) ∥A−1∥∞ = ∥M(Un−1)
−1 . . . M(U1)

−1D−1M(L1)
−1 . . . M(Ln−1)

−1e∥∞,

and so we can compute ∥A−1∥∞ by 2(n − 1) substitutions in O(n2) flops for any nonsingular totally non-

negative matrix given the factorization (5.4).

Let ĉ = fl(∥A−1∥∞). Taking ∞-norms in (4.5) with b = e gives, using the triangle inequality,

(5.6)
|ĉ− ∥A−1∥∞|

∥A−1∥∞
≤ dn2u,

for a modest constant d. Therefore ĉ is highly accurate, essentially because there is no cancellation in

evaluating (5.5): all additions are of nonnegative quantities. Standard methods for evaluating ∥A−1∥∞ for

general A only satisfy |ĉ − ∥A−1∥∞|/∥A−1∥∞ ≤ cn3κ∞(A)u, which is the best that can be expected in

general because the condition number of κ∞(A) is κ∞(A) [25].

To obtain κ∞(A) we need ∥A∥∞, which can either be computed from A if it is explicitly known, or from

∥A∥∞ = ∥Ln−1Ln−2 . . . L1DU1U2 . . . Un−1e∥∞ otherwise. We summarize the computations in an algorithm.

Algorithm 5.5. This algorithm computes c = κ∞(A) for a totally nonnegative matrix A given the

factorization (5.4).

1 If A is explicitly known

2 α = ∥A∥∞
3 else

4 α = ∥Ln−1Ln−2 . . . L1DU1U2 . . . Un−1e∥∞
5 end

6 Compute β = ∥M(Un−1)
−1 . . . M(U1)

−1D−1M(L1)
−1 . . . M(Ln−1)

−1e∥∞
by substitutions.

7 c = αβ

How do we obtain the parameters in the factorization (5.4)? In some cases they are known from the

construction of the matrix. Formulas are known for totally positive Vandermonde matrices and Cauchy

matrices [35, eqs. (3.5), (3.6)] and a variety of Vandermonde-type matrices [9], [38]. For totally positive

matrices determinantal formulas for the parameters are available [35, Prop. 3.1]. Assuming the determinants

can be computed accurately, in all these cases the parameters can be evaluated to high relative accuracy.

and so in view of Theorem 2.3 the errors in the evaluation of the parameters do not affect the form of the

bound (5.6).
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Table 2: Condition numbers and relative errors for the Hilbert matrix.

n κ∞(Hn) Relative error for Algorithm 5.5

4 2.84e4 1.28e-16

8 3.39e10 2.25e-16

16 5.06e22 3.67e-17

32 1.36e47 1.75e-15

64 1.10e96 1.77e-15

Table 3: Condition numbers and relative errors for the Pascal matrix.

Relative errors

n κ∞(Pn) Algorithm 5.5 cond(P_n,inf)

5 1.56e4 0.00 0.00

10 8.13e9 0.00 1.49e-11

15 5.77e15 0.00 2.19e-8

20 4.50e21 4.66e-17 3.41e-4

25 3.81e27 1.70e-17 3.17e-2

We give two numerical experiments in MATLAB to illustrate the accuracy of the condition number

evaluation. We take as the exact condition number the one computed at a precision of 500 decimal digits

using the Multiprecision Computing Toolbox [41] and then rounded to double precision.

First, in Table 2 we show the relative errors in computing the ∞-norm condition number of the Hilbert

matrix Hn, which has (i, j) element 1/(i+ j − 1) and is totally positive. The parameters in the bidiagonal

factorization (5.4) are computed using the function TNCauchyBD from the TNTool toolbox.1 We see that

even extremely large condition numbers are obtained to high accuracy.

Next we consider the Pascal matrix (4.10), which is totally positive [20, Ex. 0.1.6]. Since this matrix is

exactly representable at the working precision for n up to around 25, we can compare Algorithm 5.5 with

the MATLAB cond function. We see from the results in Table 3 that the MATLAB function loses accuracy

as n increases while Algorithm 5.5 returns a result correct to the working precision.

Another use of the factorization of Theorem 5.4 is to construct totally nonnegative matrices by choosing

the n2 parameters that make up the Li, D, and the Ui. The function call

A = anymatrix(’core/totally_nonneg’,X)

in the Anymatrix toolbox [31] constructs an n × n totally nonnegative matrix A from parameters given in

the n × n matrix X, whose format is as suggested in [35, sec. 4]. The Pascal matrix is generated when

X = ones(n). In a call

A = anymatrix(’core/totally_nonneg’,n)

1https://math.mit.edu/∼plamen/software/TNTool.html

https://math.mit.edu/~plamen/software/TNTool.html
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the parameters are chosen randomly, and this is a convenient way to generate random totally nonnegative

matrices.

Koev [35, sec. 7], [36] shows that small relative changes in the parameters in the factorization (5.4)

produce small relative changes in the determinant, the eigenvalues, and the singular values. In [35] he

develops algorithms for accurate computation of eigenvalues and the SVD of nonsingular totally nonnegative

matrices, given an accurate bidiagonal factorization, by carrying out transformations on the bidiagonal

factorization in such a way that no subtractions occur.

For later use, we note a useful theorem about the eigenvalues of a totally nonnegative matrix [19,

Thm. 3.3].

Theorem 5.6. If A ∈ Rn×n is totally nonnegative and irreducible then its eigenvalues are real and

nonnegative and the positive eigenvalues are distinct.

Note that the irreducibility requirement in the theorem means that it cannot be applied to triangular

matrices, so there is no contradiction to the fact that the totally nonnegative matrix
[
1 1
0 1

]
(for example) has

repeated nonzero eigenvalues.

6. Matrix functions and polynomial evaluation and interpolation. Bidiagonal matrices are

intimately connected with polynomial evaluation and interpolation. Horner’s method for evaluating a poly-

nomial at a point α can be expressed as the solution of a linear system with coefficient matrix Tn(−α)

[29, sec. 5.2], where Tn is defined in (1.2). Premultiplying a vector by Tn(−1)T corresponds to forming a

backward difference, and a subsequent multiplication by a diagonal matrix yields divided differences [29,

sec. 5.3]. In fact, an explicit formula for a function of a bidiagonal matrix is available in terms of divided

differences. Recall that divided differences of a function f at points xk are defined recursively by (see, e.g.

[7, Chap. 2] or [30, sec. B.16] )

f [xk] = f(xk),

f [x0, x1, . . . , xk+1] =


f [x1, x2, . . . , xk+1]− f [x0, x1, . . . , xk]

xk+1 − x0
, x0 ̸= xk+1,

f (k+1)(xk+1)

(k + 1)!
, x0 = xk+1,

(6.1)

where, since f [x1, x2, . . . , xk+1] does not depend on the order of its arguments, we assume without loss of

geniality that equal points are contiguous.

Theorem 6.1. If B ∈ Cn×n is upper bidiagonal then F = f(B) is upper triangular with fii = f(tii) and

(6.2) fij = bi,i+1bi+1,i+2 . . . bj−1,j f [bii, bi+1,i+1, . . . , bjj ], j > i.

Proof. The formula (6.2) is a special case of the formula for f(T ), where T is upper triangular, given in

Davis [8], Descloux [11], and Van Loan [47].

Lemma 2.1 is the special case of Theorem 6.1 with f(x) = 1/x. Since f [λ, λ, . . . , λ] = f (n−1)(λ)/(n−1)!,
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another special case is the formula for a function of an m×m Jordan block [30, sec. 1.2]

(6.3) f



λ 1

λ
. . .
. . . 1

λ


 =


f(λ) f ′(λ) . . .

f (m−1)(λ)

(m− 1)!

f(λ)
. . .

...
. . . f ′(λ)

f(λ)

 .

Yet another special case is

f



λ1 1

λ2
. . .
. . . 1

λn




1n

= f [λ1, λ2, . . . , λn],

which is a result of Opitz [42] and is used in computing divided differences of the exponential by McCurdy,

Ng, and Parlett [39].

A natural question is whether a function of a nonnegative bidiagonal matrix is totally nonnegative. For

the exponential, the answer is yes.

Theorem 6.2. If B ∈ Rn×n is a nonnegative bidiagonal matrix then eB is totally nonnegative.

Proof. Consider the formula [30, sec. 10.1] eA = limm→∞(I + A/m)m, valid for any A, where m ∈ Z.
For nonnegative bidiagonal B, I+B/m ≥ 0 for all m > 0, so by Theorem 5.2 I+B/m is totally nonnegative

and therefore Xm = (I + B/m)m is totally nonnegative for all m > 0 by Theorem 5.1. Suppose that

limm→∞ Xm is not totally nonnegative, so that some submatrix with indices (α, β) has negative determinant.

Let xm = det(Xm(α, β)). Then limm→∞ xm < 0 but xm > 0 for all m, which is a contradiction, so eB is

totally nonnegative.

Note that Theorem 6.2 does not generalize to wider bandwidths, as the example

exp

 1 1 1

1 1

1

 =

 e e 3e/2

e e

e


shows, since the (1: 2, 3: 4) submatrix has negative determinant.

7. Upper triangular Toeplitz matrices. Upper triangular Toeplitz matrices T ∈ Cn×n can be

written in the form

T =


t0 t1 . . . tn−1

t0
. . .

...
. . . t1

t0

 =

n∑
j=1

tj−1N
j−1,
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where N is upper bidiagonal with a superdiagonal of ones:

N =


0 1

0
. . .
. . . 1

0

 .

Note that Nn = 0. It follows that the product of two upper triangular Toeplitz matrices is again upper

triangular Toeplitz and that upper triangular Toeplitz matrices commute. Furthermore, since f(T ) is a

polynomial in T , it follows that f(T ) is also upper triangular and Toeplitz. Note that as a special case, if B

is a Toeplitz bidiagonal matrix with bii = b and bi,i+1 = c then Theorem 6.1 gives f(B)ij = cj−if [b, b, . . . , b] =

cj−if (j−i)(b)/(j − i)!, of which (6.3) is a special case.

8. Exploiting factorizations into products of bidiagonal matrices. In this section we show

how factorizations involving bidiagonal matrices or their inverses can provide valuable information about

particular matrices.

8.1. The Frank matrix. In 1958 Frank [21] reported that his algorithms had difficulty computing

accurately the smaller eigenvalues of the n× n upper Hessenberg matrix

Fn =



n n− 1 n− 2 . . . 2 1

n− 1 n− 1 n− 2 . . . 2 1

0 n− 2 n− 2 . . . 2 1
... 0

. . .
. . .

... 1
...

... . . . 2 2 1

0 0 . . . 0 1 1


.

Wilkinson [49, sec. 8] [50, pp. 92–93] showed that the difficulties are caused by the sensitivity of the eigenval-

ues to perturbations in the matrix, which can be measured by the condition number of a simple eigenvalue

λ: κ2(λ) = ∥y∥2∥x∥2/|y∗x|, where x and y are right and left eigenvectors, respectively, corresponding to

λ. The eigenvalues are known to be real and positive, and they can be expressed in terms of the zeros of

Hermite polynomials [13], [48]. However, in none of these references is it shown that the eigenvalues are

distinct, which is necessary for the eigenvalue condition numbers to be defined.

If we subtract row k + 1 from row k for k = 1: n − 1, we obtain a lower bidiagonal matrix. For n = 4

this transformation can be written
1 −1

1 −1

1 −1

1



4 3 2 1

3 3 2 1

2 2 1

1 1

 =


1

3 1

2 1

1 1

 ,

and in general we have

Fn = Tn(−1)−1


1

n− 1 1

n− 2 1
. . .

. . .

1 1

 ≡ Tn(−1)−1L,(8.1)
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where Tn is defined in (1.2). This is equivalent to a factorization noted by Rutishauser [45, sec. 9]. Note

that this is a UL factorization, not an LU factorization, and it takes advantage of the rank-1 nature of

the upper triangle of Fn. This factorization shows that the inverse F−1
n = L−1Tn(−1) is lower Hessenberg

with integer entries and that det(Fn) = 1. Furthermore, L is totally nonnegative by Theorem 5.2 and

Tn(−1)−1 = M(Tn(−1))−1 is totally nonnegative by Theorem 5.3, so Fn is the product of two totally

nonnegative matrices and so is totally nonnegative by Theorem 5.1—a property that to our knowledge

has not previously been noted. Since Fn is nonsingular, irreducible (being upper Hessenberg with nonzero

subdiagonal), and totally nonnegative, it follows from Theorem 5.6 that Fn has distinct eigenvalues. The

distinctness of the eigenvalues also follows from some rather lengthy analysis of the characteristic polynomial

in [40, Thm. 2.5].

Frank discussed two matrices in his paper. The other matrix is obtained from An = (min(i, j)) ∈ Rn×n

by taking the rows and columns in reverse order. We will focus on An. For example,

A4 =


1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4

 .

The determinant, the inverse, and the eigenvalues of An can all be easily found by constructing a factorization

involving a bidiagonal matrix. Consider subtracting row k − 1 from row k for k = n : −1 : 2. For A4 this

yields 
1

−1 1

−1 1

−1 1



1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4

 =


1 1 1 1

1 1 1

1 1

1

 .

In general, Tn(−1)TAn = U , where U is the upper triangular matrix of 1s. Hence An = Tn(−1)−TU , which

is a Cholesky factorization An = UTU since Tn(−1)−1 = U , which shows that An is symmetric positive

definite. Furthermore, det(A) = det(U)2 = 1 and A−1
n = U−1U−T = Tn(−1)Tn(−1)T , which is tridiagonal

since Tn is upper bidiagonal. Now Tn(−1)−1 is totally nonnegative, as noted above; hence An is the product

of two totally nonnegative matrices and therefore is totally nonnegative. By Theorem 5.6, the eigenvalues

of An are distinct. In fact, A−1
n is the almost-Toeplitz tridiagonal matrix

A−1
n =


2 −1

−1 2 −1

−1
. . .

. . .
. . . 2 −1

−1 1

 ,

and its eigenvalues are [16], [24, Chap. 7] (and as given by Frank)

µk = 2

(
1 + cos

(
2kπ

2n+ 1

))
, k = 1: n.

The eigenvalues of An are the reciprocals of the µk.
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8.2. The Kac–Murdock–Szegö matrix. The Kac–Murdock–Szegö matrix is the symmetric Toeplitz

matrix, depending on a single parameter ρ ∈ R,

(8.2) An(ρ) =



1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1
. . .

...
...

...
. . .

. . . ρ

ρn−1 ρn−2 . . . ρ 1


∈ Rn×n.

It was considered by Kac, Murdock, and Szegö [34, p. 784 ff.], who investigated its spectral properties. It

arises in the autoregressive AR(1) model in statistics and signal processing.

It is straightforward to verify that An has a factorization An = LDLT with

(8.3) L = Tn(−ρ)−T , D = diag(1, 1− ρ2, 1− ρ2, . . . , 1− ρ2).

This factorization reveals several properties.

(1) det(An(ρ)) = (1− ρ2)n−1.

(2) For ρ ̸= ±1, An is nonsingular and An(ρ)
−1 = Tn(−ρ)D−1Tn(−ρ)T is the tridiagonal (but not

Toeplitz) matrix

(8.4) An(ρ)
−1 =

1

1− ρ2



1 −ρ

−ρ 1 + ρ2 −ρ

−ρ 1 + ρ2
. . .

. . .
. . .

. . .

−ρ 1 + ρ2 −ρ

−ρ 1


.

(3) For 0 ≤ ρ ≤ 1, Tn(−ρ) = M(Tn(−ρ)) and so by Theorem 5.3 M(Tn(−ρ))−1 = Tn(−ρ)−1 = LT is

totally nonnegative, so An(ρ) is the product of three totally nonnegative matrices and is therefore totally

nonnegative. For 0 < ρ < 1, An(ρ) is also nonsingular and irreducible, so the eigenvalues are distinct by

Theorem 5.6. Since An(ρ) = ΣAn(−ρ)Σ for Σ in (3.4), An(ρ) is similar to An(−ρ) and therefore An(ρ) has

distinct eigenvalues for 0 ̸= ρ ∈ (−1, 1).

8.3. The Pascal matrix. The Pascal matrix Pn ∈ Rn×n, defined in (4.10), contains the rows of

Pascal’s triangle along the antidiagonals. For example:

P5 =


1 1 1 1 1

1 2 3 4 5

1 3 6 10 15

1 4 10 20 35

1 5 15 35 70

 .

This matrix is much-studied and most analyses involve the use of combinatorial identities. A number of key

properties can be obtained from a factorization of Pn into a product of bidiagonal matrices.
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The key observation is that Pn can be reduced to upper triangular form by repeatedly subtracting a

row from the row below. For n = 5, with Lk(−1) denoting the unit lower bidiagonal matrix with −1s in

subdiagonal elements (k + 1, k), . . . , (n− 1, n),

L4(−1)L3(−1)L2(−1)L1(−1)P5 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 −1 1




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 −1 1 0

0 0 0 −1 1



×


1 0 0 0 0

0 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1




1 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1

P5

=


1 1 1 1 1

0 1 2 3 4

0 0 1 3 6

0 0 0 1 4

0 0 0 0 1

 = R.

In general, we have

Pn = L1(−1)−1L2(−1)−1 . . . Ln−1(−1)−1Rn = LnRn,

where Ln is unit lower triangular and Rn is unit upper triangular. By the uniqueness of the LU and Cholesky

factorizations of a positive definite matrix, we must have Ln = RT
n , so Pn = RT

nRn, and it can be shown

that Rn = Ln−1(1)
TLn−2(1)

T . . . L1(1)
T , which contains the binomial coefficients downs its columns.

This is the factorization (5.4) in Theorem 5.4: all the parameters are equal to 1 [17].

We can make several deductions.

(1) Pn is symmetric positive definite.

(2) det(Pn) = 1.

(3) Pn and Rn are both totally nonnegative, since they are products of bidiagonal matrices Li(1), each

of which is totally nonnegative by Theorem 5.2. Hence the eigenvalues of Pn are distinct by Theorem 5.6.

(4) The matrix Sn = ΣRn (where Σ is defined in (3.4)) is involutory, that is, S2
n = I. This can be

proved with the aid of the bidiagonal factorization but we omit the rather tedious details. Since Pn = ST
n Sn,

we have P−1
n = S−1

n S−T
n = SnS

T
n = S−T

n PnS
T
n , so P−1

n is similar to Pn, which means that the eigenvalues of

Pn occur in reciprocal pairs. It follows, in particular, that ∥Pn∥2 = ∥P−1
n ∥2 and so κ2(Pn) = ∥Pn∥22.
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It is also interesting to note that, as an instance of Theorem 6.2, the Cholesky factor Rn is the exponential

of a bidiagonal matrix: Rn = eCn , where [2], [14]

Cn =


0 1

0 2
. . .

. . .

0 n− 1

0

 ∈ Rn×n.

The matrix Cn is called the creation matrix in [1], [2] because of its role in generating matrix representations

of polynomials and providing simple proofs of identities.

8.4. Tridiagonal matrices from partial differential equations. Consider a linear system Ax = b,

where A = D + L + U with D = diag(A) and L and U the strictly lower triangular and strictly upper

triangular parts of A, respectively. The powers of the matrix B = −(D + L)−1U govern the convergence of

the Gauss–Seidel iteration. Note that B is nonsymmetric and so in general can have complex eigenvalues.

Suppose A is tridiagonal with negative diagonal elements and nonnegative elements on the superdiagonal

and subdiagonal, as is frequently the case in discretizations of partial differential equations, in which A is

typically a Toeplitz matrix. For example,

A =


−2 1

1 −2 1

1 −2 1

1 −2

 ⇒ B =


0 1/2 0 0

0 1/4 1/2 0

0 1/8 1/4 1/2

0 1/16 1/8 1/4

 .

The matrix (−D − L)−1 is totally nonnegative by Theorem 5.3, because −D − L = M(−D − L), and

U is totally nonnegative by Theorem 5.2. Hence B = (−D − L)−1U is lower Hessenberg and totally

nonnegative. Furthermore, B is irreducible if the subdiagonal of L and the superdiagonal of U are nonzero.

Then Theorem 5.6 shows that the eigenvalues of B are real and nonnegative and the positive eigenvalues are

distinct. The eigenvalues of B can be deduced from the analysis of Young [51], [52, Chap. 5].

Acknowledgement. I thank Massimiliano Fasi and Xiaobo Liu for their helpful comments on a draft

manuscript, and the referee for pointing out additional references.

REFERENCES

[1] Lidia Aceto and Isabel Cação. A matrix approach to Sheffer polynomials. J. Math. Anal. Appl., 446(1):87–100, 2017.

[2] Lidia Aceto and Donato Trigiante. The matrices of Pascal and other greats. Amer. Math. Monthly, 108(3):232–245, 2001.

[3] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. J. Du Croz, A. Greenbaum, S. J.

Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’ Guide. Third edition. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, xxvi+407 pp., 1999. ISBN 0-89871-447-8.

[4] Dennis S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas. Second edition. Princeton University Press,

Princeton, NJ, USA, xxxix+1139 pp., 2009. ISBN 978-0-691-14039-1.

[5] Åke Björck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia,

PA, USA, xvii+408 pp., 1996. ISBN 0-89871-360-9.
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