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INVERSE OF THE SQUARED DISTANCE MATRIX OF A COMPLETE

MULTIPARTITE GRAPH∗

JOYENTANUJ DAS† AND SUMIT MOHANTY‡

Abstract. Let G be a connected graph on n vertices and dij be the length of the shortest path between vertices i and j

in G. We set dii = 0 for every vertex i in G. The squared distance matrix ∆(G) of G is the n × n matrix with (i, j)th entry

equal to 0 if i = j and equal to d2ij if i 6= j. For a given complete t-partite graph Kn1,n2,··· ,nt on n =
∑t

i=1 ni vertices, under

some condition we find the inverse ∆(Kn1,n2,··· ,nt )−1 as a rank-one perturbation of a symmetric Laplacian-like matrix L with

rank(L) = n− 1. We also investigate the inertia of L.
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1. Introduction and motivation. Let G be a connected graph on vertices 1, 2, . . . , n and d(i, j) be

the length of the shortest path between vertices i and j. We set d(i, i) = 0 for i = 1, 2, . . . , n. The distance

matrix of a graph G on n vertices is an n×n matrix D(G) = [dij ], where dij = d(i, j). In the literature, the

Hadamard product D(G) ◦D(G) is called the squared distance matrix of G and is defined as ∆(G) = [d2ij ].

Thus, ∆(G) is a real symmetric matrix, and the eigenvalues of ∆(G) are real.

Before proceeding further, we now introduce a few notations. Let In and 1n denote the identity matrix

and the column vector of all ones, respectively. We use 0m×n to represent zero matrix of order m× n. We

simply write 1, I, and 0 if there is no scope of confusion with respect to the order. Further, Jm×n denotes

the m × n matrix of all ones, and if m = n, we use the notation Jm. Given a matrix A, we write At to

denote the transpose of the matrix A. For a symmetric matrix A, the inertia of A, denoted by In(A), is the

triplet (n+(A),n0(A),n−(A)), where n+(A),n0(A), and n−(A) denote the number of positive eigenvalues

of A, the number of zero eigenvalue of A, and the number of negative eigenvalues of A, respectively.

A well-known result is due to Graham and Pollak [9]; if T is a tree with n vertices, then the determinant

of the distance matrix D(T ) is given by detD(T ) = (−1)n−1(n − 1)2n−2. Thus, the determinant does

not depend on the structure of the tree but only on the number of vertices. Later in [10], the inverse of

D(T ) is obtained by Graham and Lovász as a rank-one perturbation of the Laplacian matrix of T . These

two results invoke significant interest, and several extensions and generalizations have been obtained (e.g.,

see [2, 6, 15, 18]). Given a graph G, the primary objective of these results is to define a matrix L called

Laplacian-like matrix satisfying L1 = 0 and 1tL = 0 and find the inverse of the D(G) as a rank-one

perturbation of L.
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In [3, 4], Bapat and Sivasubramanian first studied the squared distance matrix of a tree. To be specific,

Bapat and Sivasubramanian proved a formula for the determinant of the squared distance matrix ∆(T ) of a

tree T in [3]. Later, in [4], they obtained the inverse ∆(T )−1 (whenever it exists) as a rank-one perturbation

of a matrix and also computed the inertia of ∆(T ). Bapat, in [4], studied the determinant and the inverse

of the squared distance matrix of a weighted tree. In [7], Das and Mohanty studied the squared distance

matrix of a complete multipartite graph Kn1,n2,··· ,nt
. To be precise, in [7], authors first computed the inertia,

energy of ∆(Kn1,n2,··· ,nt
). Next, for fixed values of n and t, they discussed the existence and the uniqueness

of graphs for which the spectral radius and the energy of ∆(Kn1,n2,··· ,nt
) attained its maximum and minimum

value. In [13], Mahato and Kannan obtained the determinant and the inverse of the squared distance matrix

of a tree with matrix weights. In [12], Howell, Kempton, Sandall, and Sinkovic gave an alternative proof to

obtain the inertia of the squared distance matrix of a tree due to Bapat and Sivasubramanian in [4] and also

studied the inertia for a unicyclic graph. In the literature, the spectral properties and the inverse of complete

multipartite graphs have been studied with respect to the distance matrix and the adjacency matrix (e.g.,

see [6, 8, 14, 16]).

In this article, we obtain a Laplacian-like matrix L with rank(L) = n − 1 for a given complete multi-

partite graph Kn1,n2,··· ,nt
and prove that the inverse of ∆(Kn1,n2,··· ,nt

) (whenever it exists) is a rank-one

perturbation of L. In this process, we find a few interesting recurrence-type relations involving n1, n2, · · · , nt.
We also observe a few properties of L, compute the In(L) if det ∆(Kn1,n2,··· ,nt

) 6= 0, and give a conjecture

about the In(L) if det ∆(Kn1,n2,··· ,nt) = 0.

This article is organized as follows. In Section 2, we prove a few preliminary results that are necessary for

the subsequent sections. In Section 3, we compute the inverse of the squared distance matrix ∆(Kn1,n2,··· ,nt)

(whenever it exists). Finally, in Section 4, we obtain a few properties of L and investigate the inertia In(L).

2. Some preliminary results. Let A be an n× n matrix. Let A(i | j) be the submatrix obtained by

deleting the ith row and the jth column and for 1 ≤ i, j ≤ n, the cofactor c(i, j) is defined as (−1)i+j detA(i |
j). We use the notation cof A to denote the sum of all cofactors of A and state the following result.

Lemma 2.1. [1] Let A be an n×n matrix. Let M be the matrix obtained from A by subtracting the first

row from all other rows and then subtracting the first column from all other columns. Then

cof A = detM(1|1).

The following is a standard result on computing the determinant of block matrices.

Proposition 2.2. [17] Let A11 and A22 be square matrices. Then

det

[
A11 0
A21 A22

]
= detA11 detA22.

We will prove a lemma, which will help us to compute the cof ∆(Kn1,n2,··· ,nt).

Lemma 2.3. Let Cm be an m×m matrix of the following form:

Cm =


n1 −4(n1 − 1) −4(n1 − 1) · · · −4(n1 − 1)

n2 2(n2 − 2) −n2 · · · −n2

n3 −n3 2(n3 − 2) · · · −n3

...
...

...
. . .

...

nm −nm −nm · · · 2(nm − 2)

 .
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The determinant of the above matrix is given by:

detCm =

m∑
i=1

ni m∏
j=1
j 6=i

(3nj − 4)

 .

Proof. Adding the first column to all the remaining columns of Cm yields the following matrix:
n1 −3n1 + 4 −3n1 + 4 · · · −3n1 + 4

n2 3n2 − 4 0 · · · 0

n3 0 3n3 − 4 · · · 0
...

...
...

. . .
...

nm 0 0 · · · 3nm − 4

 .

Now, expanding along the first row, we get

detCm = n1

m∏
j=2

(3nj − 4) + (3n1 − 4)

m∑
i=2

ni m∏
j=2
j 6=i

(3nj − 4)

 ,

and the desired result follows.

Let ∆(Kn1,n2,··· ,nt
) be the squared distance matrix of the complete t-partite graph

Kn1,n2,··· ,nt . Then ∆(Kn1,n2,··· ,nt) can be expressed in the following block form:

(2.1) ∆(Kn1,n2,··· ,nt) =


4(Jn1

− In1
) Jn1×n2

· · · Jn1×nt

Jn2×n1 4(Jn2 − In2) · · · Jn2×nt

... · · ·
. . .

...

Jnt×n1
Jnt×n2

· · · 4(Jnt
− Int

)

 .

Throughout this article, we assume that the vertices of ∆(Kn1,n2,··· ,nt
) are indexed as in equation (2.1).

Theorem 2.4. Let ∆(Kn1,n2,··· ,nt) be the squared distance matrix of the complete t-partite graph

Kn1,n2,··· ,nt
on n =

∑t
i=1 ni vertices. Then, the sum of the cofactors of the squared distance matrix is

given by:

cof ∆(Kn1,n2,··· ,nt
) = (−4)n−t

 t∑
i=1

ni t∏
j=1
j 6=i

(3nj − 4)


 .

Proof. For complete t-partite graph Kn1,n2,··· ,nt
with ni = 1 for all 1 ≤ i ≤ t, we have Kn1,n2,··· ,nt

= Kt.

Then, ∆(Kt) = D(Kt) = Jn − In and the result is true as cof ∆(Kt) = cof D(Kt) = (−1)t−1t. For

other cases, without loss of generality, let n1 > 1 and M be the matrix obtained from ∆(Kn1,n2,··· ,nt) by

subtracting the first row from all other rows and then subtracting the first column from all other columns.

Then the block form of the matrix M(1|1) is given by:
−4(Jn1−1 + In1−1) −4J(n1−1)×n2

· · · −4J(n1−1)×nt

−4Jn2×(n1−1) 2Jn2
− 4In2

· · · −Jn2×nt

... · · ·
. . .

...

−4Jnt×(n1−1) −Jnt×n2
· · · 2Jnt

− 4Int

 .
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First, for each partition of M(1|1), we subtract the first column from all other columns and then add all the

rows to the first row. Further, we shift the first column of each of the t-partitions to the first t columns and

repeat the same operation for the rows. Then, the resulting matrix is of the following block form:[
C̃t 0

∗ −4In−(t+1)

]
,

where

C̃t =


−4n1 −4(n1 − 1) −4(n1 − 1) · · · −4(n1 − 1)

−4n2 2(n2 − 2) −n2 · · · −n2
−4n3 −n3 2(n3 − 2) · · · −n3

...
...

...
. . .

...

−4nt −nt −nt · · · 2(nt − 2)

 .

Using the Proposition 2.2 and Lemma 2.3, the result follows.

We now recall a result that gives a formula to obtain the determinant of ∆(Kn1,n2,··· ,nt).

Theorem 2.5. [7, Corollary 3.5] Let ∆(Kn1,n2,··· ,nt) be the squared distance matrix of complete t-partite

graph Kn1,n2,··· ,nt
on n =

∑t
i=1 ni vertices. Then, the determinant of the squared distance matrix is given

by:

det ∆(Kn1,n2,··· ,nt
) = (−4)n−t

 t∑
i=1

ni t∏
j=1
j 6=i

(3nj − 4)

+

t∏
i=1

(3ni − 4)

 .

The following result discusses the cases in which the determinant and the sum of the cofactors of the

squared distance matrix of Kn1,n2,··· ,nt are zero.

Theorem 2.6. Let G be a complete t-partite graph Kn1,n2,··· ,nt
on n =

∑t
i=1 ni vertices and ∆(G) be

the squared distance matrix of G. If h = |{i : ni = 1}|, then the following results hold:

(i) det ∆(G) = 0 only if
t

4
+

3

4
< h ≤ t

2
+

1

2
. Furthermore, let t = s+ h such that ni ≥ 2 for 1 ≤ i ≤ s

and ni = 1 for s+ 1 ≤ i ≤ t = s+ h. Then, det ∆(G) = 0 if and only if h− 1 =

s∑
i=1

ni
3ni − 4

.

(ii) cof ∆(G) = 0 only if
t

4
< h ≤ t

2
. Furthermore, let t = s + h such that ni ≥ 2 for 1 ≤ i ≤ s and

ni = 1 for s+ 1 ≤ i ≤ t = s+ h. Then, cof ∆(G) = 0 if and only if h =

s∑
i=1

ni
3ni − 4

.

Proof. By Theorems 2.4 and 2.5, it is easy to see that det ∆(G) and cof ∆(G) are nonzero if ni ≥ 2 for

1 ≤ i ≤ t. Thus, det ∆(G) and cof ∆(G) are 0 only if some of the ni’s are 1. Let t = s+h and n1, n2, · · · , nt
be positive integers such that ni ≥ 2 for 1 ≤ i ≤ s and ni = 1 for s+ 1 ≤ i ≤ t = s+ h.

Now substituting ni = 1 for s + 1 ≤ i ≤ t = s + h in Theorem 2.5, the determinant of the squared

distance matrix ∆(G) is given by:
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det ∆(G) = (−4)n−t

 t∑
i=1

(
ni

t∏
j=1
j 6=i

(3nj − 4)

)
+

t∏
i=1

(3ni − 4)


= (−4)n−t

(−1)h
s∑
i=1

(
ni

s∏
j=1
j 6=i

(3nj − 4)

)
+ (−1)h−1h

s∏
i=1

(3ni − 4) + (−1)h
s∏
i=1

(3ni − 4)


= (−4)n−t(−1)h−1

(h− 1)

s∏
i=1

(3ni − 4)−
s∑
i=1

(
ni

s∏
j=1
j 6=i

(3nj − 4)

)
= (−4)n−t(−1)h−1

[
(h− 1)−

s∑
i=1

ni
3ni − 4

]
s∏
i=1

(3ni − 4).

Since ni ≥ 2 for 1 ≤ i ≤ s, so
∏s
i=1(3ni − 4) > 0. Thus, det ∆(G) = 0 if and only if h − 1 =

s∑
i=1

ni
3ni − 4

.

Further, h−1 =

s∑
i=1

ni
3ni − 4

=
s

3
+

4

3

s∑
i=1

1

3ni − 4
=
t− h

3
+

4

3

s∑
i=1

1

3ni − 4
, which implies that

s∑
i=1

1

3ni − 4
=

h− t+ 3

4
. Using ni ≥ 2 for 1 ≤ i ≤ s, we have 0 <

s∑
i=1

1

3ni − 4
≤ s

2
=
t− h

2
. Therefore, 0 < h− t+ 3

4
≤ t− h

2

and hence
t

4
+

3

4
< h ≤ t

2
+

1

2
. This proves part (i).

Next, substituting ni = 1 for s + 1 ≤ i ≤ t = s + h in Theorem 2.4, the sum of the cofactors of the

squared distance matrix ∆(G) is given by:

cof ∆(G) = (−4)n−t

(−1)h
s∑
i=1

(
ni

s∏
j=1
j 6=i

(3nj − 4)

)
+ (−1)h−1h

s∏
i=1

(3ni − 4)


= (−4)n−t(−1)h−1

[
h−

s∑
i=1

ni
3ni − 4

]
s∏
i=1

(3ni − 4).

Since ni ≥ 2 for 1 ≤ i ≤ s, cof ∆(G) = 0 if and only if h =

s∑
i=1

ni
3ni − 4

. Moreover, arguing similar

to part (i), h =

s∑
i=1

ni
3ni − 4

yields that

s∑
i=1

1

3ni − 4
= h − t

4
. Using ni ≥ 2 for 1 ≤ i ≤ s, we have

0 <

s∑
i=1

1

3ni − 4
≤ s

2
=
t− h

2
implies that 0 < h − t

4
≤ t− h

2
and hence

t

4
< h ≤ t

2
. This completes the

proof.

3. Inverse of ∆(Kn1,n2,··· ,nt
). In this section, we first find the inverse of the squared distance ma-

trix ∆(Kn1,n2,··· ,nt
) as a rank-one perturbation of a Laplacian-like matrix subject to the condition that

cof ∆(Kn1,n2,··· ,nt
) 6= 0. Notice that by [6, Lemma 4.13], it is known that cof ∆(Kn1,n2,··· ,nt

) 6= 0 is a neces-

sary condition to present the inverse of ∆(Kn1,n2,··· ,nt) (whenever it exists) as a rank-one perturbation of a

matrix. Next, whenever it exists, we provide a formula for the inverse of ∆(Kn1,n2,··· ,nt
). Before proceeding



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 475-490, July 2024.

J. Das and S. Mohanty 480

further, we introduce a few notations useful for the subsequent results. Let ni ∈ N for 1 ≤ i ≤ t and t ≥ 2,

and we denote

(3.2)



Φn1,n2,··· ,nt
=

t∏
i=1

(3ni − 4),

Φn̂i
= Φn1,n2,···ni−1,ni+1,··· ,nt

=

t∏
k=1
k 6=i

(3nk − 4),

Φn̂i,nj
= Φn1,n2,···ni−1,ni+1,··· ,nj−1,nj+1,··· ,nt =

t∏
k=1
k 6=i,j

(3nk − 4),

(3.3)



Ψn1,n2,··· ,nt =

t∑
i=1

ni t∏
j=1
j 6=i

(3nj − 4)

 ,

Ψn̂i
= Ψn1,n2,···ni−1,ni+1,··· ,nt

=

t∑
k=1
k 6=i

nk t∏
l=1
l 6=i

(3nl − 4)

 ,

Ψn̂i,nj
= Ψn1,n2,···ni−1,ni+1,··· ,nj−1,nj+1,··· ,nt =

t∑
k=1
k 6=i,j

nk t∏
l=1
l 6=i,j

(3nl − 4)

 ,

and

(3.4)

{
Θn1,n2,··· ,nt

= Φn1,n2,··· ,nt
+ Ψn1,n2,··· ,nt

,

Θn̂i
= Φn̂i

+ Ψn̂i
.

Next, we state a few identities based on the notations from equations (3.2)–(3.4) and are useful for our

subsequent calculations. The proofs of these identities are mostly computational and hence omitted (for

details of the proofs, see Appendix A).

Lemma 3.1. Let ni ∈ N for 1 ≤ i ≤ t and t ≥ 2. Then, we have the following identities:

(a) Θn1,n2,··· ,nt = (3ni − 4)Φn̂i
+

t∑
k=1

nkΦn̂k
.

(b) Θn1,n2,··· ,nt
= (3ni − 4)Θn̂i

+ niΦn̂i
.

(c) Ψn1,n2,··· ,nt = (3ni − 4)Ψn̂i
+ niΦn̂i

.

(d) Ψn̂i
=

t∑
k=1
k 6=i

nkΦn̂i,nk
= (3nj − 4)Ψn̂i,nj

+ njΦn̂i,nj
.

Let G = (V,E) be a complete t-partite graph Kn1,n2,··· ,nt on n =
∑t
i=1 ni vertices such that the vertex

V is partitioned into t subsets Vi for 1 ≤ i ≤ t and |Vi| = ni. Let ∆(G) be the squared distance matrix of G.

Using notations in equations (3.2)–(3.4), by Theorem 2.5, we have det ∆(G) = 0 if and only if Θn1,n2,··· ,nt
= 0

and by Theorem 2.4, we have cof ∆(G) = 0 if and only if Ψn1,n2,··· ,nt
= 0. With the above notations and

observations, we define a few parameters useful to find the inverse of ∆(G). If cof ∆(G) 6= 0, then we define
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the constant and an n-dimensional column vector ν as follows:

(3.5) λ =
det ∆(G)

cof ∆(G)
=

Θn1,n2,··· ,nt

Ψn1,n2,··· ,nt

,

and

(3.6) ν(v) =
1

Ψn1,n2,··· ,nt

(
t∑
i=1

∑
v∈Vi

Φn̂i

)
, where v ∈ V.

Next, we define the Laplacian-like matrix L satisfying L1 = 0 and 1tL = 0 with respect to the squared

distance matrix ∆(G) with cof ∆(G) 6= 0 as follows: Let L = [Luv]u,v∈V , where

(3.7) Luv =



1

2Ψn1,n2,··· ,nt

[
ni − 1

2
Θn̂i

+ (ni − 3)Ψn̂i

]
= ai if u = v and u, v ∈ Vi,

− 1

2Ψn1,n2,··· ,nt

[
1

2
Θn̂i

+ Ψn̂i

]
= bi if u 6= v and u, v ∈ Vi,

1

Ψn1,n2,··· ,nt

Φn̂i,nj
= cij if u 6= v, u ∈ Vi and v ∈ Vj .

In view of equations (2.1) and (3.7), the product of matrices L and ∆(G) is given by L∆(G) =

[(L∆(G))uv]u,v∈V , where

(3.8) (L∆(G))uv =



4(ni − 1)bi +

t∑
k=1
k 6=i

nkcik if u = v and u, v ∈ Vi,

4ai + 4(ni − 2)bi +

t∑
k=1
k 6=i

nkcik if u 6= v and u, v ∈ Vi,

ai + (ni − 1)bi + 4(nj − 1)cij +

t∑
k=1
k 6=i,j

nkcik if u 6= v, u ∈ Vi and v ∈ Vj .

Lemma 3.2. Let G be a complete t-partite graph Kn1,n2,··· ,nt
. Let ∆(G) be the squared distance matrix

of G and cof ∆(G) 6= 0. Then ∆(G)ν = λ1, where λ and ν are defined in equations (3.5) and (3.6),

respectively.

Proof. Let G = (V,E) be the complete t-partite graph Kn1,n2,··· ,nt
on n =

∑t
i=1 ni vertices such that

the vertex V is partitioned into t subsets Vi for 1 ≤ i ≤ t and |Vi| = ni. Let η = ∆(G)ν. We will show

η(v) = λ for all v ∈ V. For v ∈ Vi, we have

η(v) = 4(ni − 1)
Φn̂i

Ψn1,n2,··· ,nt

+

t∑
k=1
k 6=i

nk
Φn̂k

Ψn1,n2,··· ,nt

=
1

Ψn1,n2,··· ,nt

[
(3ni − 4)Φn̂i

+
t∑

k=1

nkΦn̂k

]

=
Θn1,n2,··· ,nt

Ψn1,n2,··· ,nt

= λ.

This completes the proof.
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Lemma 3.3. Let G be a complete t-partite graph Kn1,n2,··· ,nt . Let ∆(G) be the squared distance matrix

of G and cof ∆(G) 6= 0. If L is the Laplacian-like matrix defined in equation (3.7), then L∆(G) + I = ν1t,

where ν is as defined in equation (3.6).

Proof. Let G = (V,E) be the complete t-partite graph Kn1,n2,··· ,nt
on n =

∑t
i=1 ni vertices such that

the vertex set V is partitioned into t subsets Vi for 1 ≤ i ≤ t and |Vi| = ni. We will use equations (3.2)–(3.4),

identities of Lemma 3.1, equation (3.8), and consider the following cases to complete the proof.

Case 1: Let u = v, where u, v ∈ Vi for 1 ≤ i ≤ t.

(L∆(G) + I)uv = 1 + 4(ni − 1)bi +

t∑
k=1
k 6=i

nkcik

= 1− ni − 1

Ψn1,n2,··· ,nt

[Θn̂i
+ 2Φn̂i

] +
Ψn̂i

Ψn1,n2,··· ,nt

= 1− (ni − 1) [3Ψn̂i
+ Φn̂i

] + Ψn̂i

Ψn1,n2,··· ,nt

= 1− [(3ni − 4)Ψn̂i
+ niΦn̂i

]− Φn̂i

Ψn1,n2,··· ,nt

= 1− Ψn1,n2,··· ,nt
− Φn̂i

Ψn1,n2,··· ,nt

=
Φn̂i

Ψn1,n2,··· ,nt

= ν(u).

Case 2: Let u 6= v, where u, v ∈ Vi for 1 ≤ i ≤ t.

(L∆(G) + I)uv = 4ai + 4(ni − 2)bi +

t∑
k=1
k 6=i

nkcik

=
(ni − 1)Θn̂i

+ 2(ni − 3)Ψn̂i

Ψn1,n2,··· ,nt

− (ni − 2)Θn̂i
+ 2(ni − 2)Ψn̂i

Ψn1,n2,··· ,nt

+
Ψn̂i

Ψn1,n2,··· ,nt

=
Θn̂i

+ [2(ni − 3)− 2(ni − 2) + 1]Ψn̂i

Ψn1,n2,··· ,nt

=
Θn̂i
−Ψn̂i

Ψn1,n2,··· ,nt

=
Φn̂i

Ψn1,n2,··· ,nt

= ν(u).

Case 3: Let u ∈ Vi and v ∈ Vj for 1 ≤ i, j ≤ t with i 6= j.

(L∆(G) + I)uv = ai + (ni − 1)bi + 4(nj − 1)cij +

t∑
k=1
k 6=i,j

nkcik

=
(ni − 1)Θn̂i

+ 2(ni − 3)Ψn̂i

4Ψn1,n2,··· ,nt

− (ni − 1)Θn̂i
+ 2(ni − 1)Ψn̂i

4Ψn1,n2,··· ,nt

+
4(nj − 1)Φn̂i,nj

Ψn1,n2,··· ,nt

+
(3nj − 4)Ψn̂i,nj

Ψn1,n2,··· ,nt

= − Ψn̂i

Ψn1,n2,··· ,nt

+
4(nj − 1)Φn̂i,nj

Ψn1,n2,··· ,nt

+
(3nj − 4)Ψn̂i,nj

Ψn1,n2,··· ,nt
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= − Ψn̂i

Ψn1,n2,··· ,nt

+

[
(3nj − 4)Ψn̂i,nj

+ njΦn̂i,nj

]
+ (3nj − 4)Φn̂i,nj

Ψn1,n2,··· ,nt

= − Ψn̂i

Ψn1,n2,··· ,nt

+
Ψn̂i

+ Φn̂i

Ψn1,n2,··· ,nt

=
Φn̂i

Ψn1,n2,··· ,nt

= ν(u).

This completes the proof.

We now show that if ∆(Kn1,n2,··· ,nt
) is invertible, then we find the inverse of the squared distance

matrix ∆(Kn1,n2,··· ,nt
) as a rank-one perturbation of a Laplacian-like matrix L subject to the condition that

cof ∆(Kn1,n2,··· ,nt
) 6= 0.

Theorem 3.4. Let G be the complete t-partite graph Kn1,n2,··· ,nt and ∆(G) be the squared distance

matrix of G. If det ∆(G) 6= 0 and cof ∆(G) 6= 0, then

∆(G)−1 = −L+
1

λ
ννt,

where L is the Laplacian-like matrix defined in equation (3.7), λ and ν are defined in equations (3.5)

and (3.6), respectively.

Proof. Using Lemma 3.2, we have νt∆(G) = λ1t, which implies that ννt∆(G) = λν1t. By equa-

tion (3.5), det ∆(G) 6= 0 if and only if λ 6= 0, and hence using Lemma 3.3, we get L∆(G) + I = ν1t =
1

λ
ννt∆(G). Therefore, ∆(G)−1 = −L+

1

λ
ννt.

We conclude this section with the result that gives a block matrix form for the inverse of ∆(Kn1,n2,··· ,nt),

whenever it exists.

Theorem 3.5. Let G be a complete t-partite graph Kn1,n2,··· ,nt
and ∆(G) be the squared distance matrix

of G. If det ∆(G) 6= 0, then the inverse in t× t block form is given by ∆(G)−1 = [Xij ], where

(3.9) Xij =



(
3Θn̂i

+ Φn̂i

4Θn1,n2,··· ,nt

)
Jni −

1

4
Ini if i = j,

−
Φn̂i,nj

Θn1,n2,··· ,nt

Jni×nj if i 6= j.

Proof. Let ∆(G) = [∆ij ] be the t × t block form of the squared distance matrix of G in equation (2.1)

and X = [Xij ] be a t × t block matrix, where Xij is defined in equation (3.9). Consider the block matrix

Y = ∆(G)X = [Yij ], where Yij =
∑t
k=1 ∆ikXkj for 1 ≤ i, j ≤ t. We will use equations (3.2)–(3.4) and

identities of Lemma 3.1 to show that Y = I to complete the proof.

Case 1: For i = j; 1 ≤ i ≤ t.

Yii = (Jni
− Ini

)

[(
3Θn̂i

+ Φn̂i

Θn1,n2,··· ,nt

)
Jni
− Ini

]
−

t∑
k=1
k 6=i

Φn̂kni

Θn1,n2,··· ,nt

Jni×nk
Jnk×ni

=
3Θn̂i

+ Φn̂i

Θn1,n2,··· ,nt

× niJni
− Jni

− 3Θn̂i
+ Φn̂i

Θn1,n2,··· ,nt

× Jni
+ Ini

−
t∑

k=1
k 6=i

Φn̂kni

Θn1,n2,··· ,nt

× nkJni
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=

[
3niΘn̂i

+ niΦn̂i

Θn1,n2,··· ,nt

− 3Θn̂i
+ Φn̂i

Θn1,n2,··· ,nt

− 1

]
Jni

+ Ini
−

t∑
k=1
k 6=i

nkΦn̂kni

Θn1,n2,··· ,nt

Jni

=

[
3niΘn̂i

+ niΦn̂i

Θn1,n2,··· ,nt

− 3Θn̂i
+ Φn̂i

Θn1,n2,··· ,nt

− 1

]
Jni + Ini −

Ψn̂i

Θn1,n2,··· ,nt

Jni

=

[
3niΘn̂i

+ niΦn̂i

Θn1,n2,··· ,nt

− 3Θn̂i
+ Φn̂i

Θn1,n2,··· ,nt

− 1

]
Jni + Ini −

Θn̂i
− Φn̂i

Θn1,n2,··· ,nt

Jni

=

[
3niΘn̂i

+ niΦn̂i

Θn1,n2,··· ,nt

− 3Θn̂i
+ Φn̂i

Θn1,n2,··· ,nt

− Θn̂i
− Φn̂i

Θn1,n2,··· ,nt

− 1

]
Jni

+ Ini

=

[
(3ni − 4)Θn̂i

+ niΦn̂i
−Θn1,n2,··· ,nt

Θn1,n2,··· ,nt

]
Jni

+ Ini
= Ini

.

Case 2: For i 6= j; 1 ≤ i, j ≤ t.

Yij = 4(Jni
− Ini

)

[
−

Φn̂i,nj

Θn1,n2,··· ,nt

Jni×nj

]
+ Jni×nj

[(
3Θn̂j

+ Φn̂j

4Θn1,n2,··· ,nt

)
Jnj
− 1

4
Inj

]
−

t∑
k=1
k 6=i,j

Φn̂k,nj

Θn1,n2,··· ,nt

Jni×nk
Jnk×nj

=

[
−

4niΦn̂i,nj

Θn1,n2,··· ,nt

+
4Φn̂i,nj

Θn1,n2,··· ,nt

+
nj(3Θn̂j

+ Φn̂j
)

4Θn1,n2,··· ,nt

− 1

4

]
Jni×nj −

t∑
k=1
k 6=i,j

nkΦn̂k,nj

Θn1,n2,··· ,nt

Jni×nj

=

[
−

3niΦn̂i,nj

Θn1,n2,··· ,nt

+
4Φn̂i,nj

Θn1,n2,··· ,nt

+
3njΘn̂j

+ njΦn̂j

4Θn1,n2,··· ,nt

− 1

4

]
Jni×nj

−
t∑

k=1
k 6=j

nkΦn̂k,nj

Θn1,n2,··· ,nt

Jni×nj

=

[
−

(3ni − 4)Φn̂i,nj

Θn1,n2,··· ,nt

+
3njΘn̂j

+ njΦn̂j

4Θn1,n2,··· ,nt

− 1

4

]
Jni×nj

−
Ψn̂j

Θn1,n2,··· ,nt

Jni×nj

=

[
−

Φn̂j

Θn1,n2,··· ,nt

+
3njΘn̂j

+ njΦn̂j
−Θn1,n2,··· ,nt

4Θn1,n2,··· ,nt

−
Ψn̂j

Θn1,n2,··· ,nt

]
Jni×nj

=

[
−

Φn̂j

Θn1,n2,··· ,nt

+
3njΘn̂j

+ njΦn̂j
−Θn1,n2,··· ,nt

4Θn1,n2,··· ,nt

−
Θn̂j
− Φn̂j

Θn1,n2,··· ,nt

]
Jni×nj

=

[
(3nj − 4)Θn̂j

+ njΦn̂j
−Θn1,n2,··· ,nt

4Θn1,n2,··· ,nt

]
Jni×nj = 0ni×nj .

In the next section, we will discuss a few properties of the Laplacian-like matrix L defined in equa-

tion (3.7) and also investigate the inertia In(L).

4. A few properties of the Laplacian-like matrix. For a complete t-partite graph Kn1,n2,··· ,nt

on n =
∑t
i=1 ni vertices, it is known that 0 is an eigenvalue of the Laplacian-like matrix L defined in

equation (3.7). In the next result, we prove that 0 is a simple eigenvalue and also compute the cofactor of

any two elements of L if det ∆(G) 6= 0.

Theorem 4.1. Let G = (V,E) be a complete t-partite graph Kn1,n2,··· ,nt
on n =

∑n
i=1 ni vertices

with cof ∆(G) 6= 0. If L is the Laplacian-like matrix defined in equation (3.7), then rank (L) = n − 1.

Furthermore, if det ∆(G) 6= 0, then the cofactors of any two elements of L are equal to
(−1)n−1

cof ∆(G)
.
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Proof. Let G = (V,E) be a complete t-partite graph Kn1,n2,··· ,nt on n =
∑n
i=1 ni vertices with cof ∆(G)

6= 0. By equation (3.7), we have that Laplacian-like matrix L is a symmetric matrix and L1 = 0 and

1tL = 0. Thus, 0 is an eigenvalue of L and 1 is a corresponding eigenvector. Furthermore, L and ∆(G) are

symmetric matrices, and 1 is an eigenvector of L∆(G) corresponding to the eigenvalue 0.

Let x be an eigenvector of L∆(G) corresponding to the eigenvalue 0, that is, xtL∆(G) = 0. Assume that

x is not in the span of {1}. By Lemma 3.3, we have xt(L∆(G) + I) = xtν1t and hence using xtL∆(G) = 0,

we get xt = xtν1t. Which is a contradiction to our assumption. Therefore, rank(L) = n− 1.

Next, let det ∆(G) 6= 0. Then, by Theorem 3.4, we get ∆(G)−1 = −L + 1
λνν

t. Thus, using the

determinant property det(A+ uvt) = det(A) + vtadj(A)u, we have

det(∆(G)−1) = det(−L) +
1

λ
νtadj(−L)ν.

Using rank(L) = n−1, we have det(∆(G)−1) =
1

λ
νtadj(−L)ν =

(−1)n−1

λ
νtadj(L)ν. Since L is a symmetric

matrix and L1 = 0, using [1, Lemma 4.2] the cofactors of any two elements of L are equal, say, c. Then,

(4.10) det(∆(G)−1) =
(−1)n−1

λ
νt(cJ)ν =

(−1)n−1c

λ
νtJν =

(−1)n−1c

λ

(∑
v∈V

ν(v)

)2

.

Using equation (3.6), we have

∑
v∈V

ν(v) =
∑
v∈V

[
1

Ψn1,n2,··· ,nt

(
t∑
i=1

∑
v∈Vi

Φn̂i

)]

=
1

Ψn1,n2,··· ,nt

t∑
i=1

niΦn̂i

=
1

Ψn1,n2,··· ,nt

t∑
i=1

ni

t∏
j=1
j 6=i

(3nj − 4) = 1.(4.11)

Substituting equations (3.5) and (4.11) in equation (4.10), we get c =
(−1)n−1

cof ∆(G)
. This completes the proof.

We now calculate a few eigenvalues of the Laplacian-like matrix L.

Proposition 4.2. Let G be a complete t-partite graph Kn1,n2,··· ,nt on n =
∑n
i=1 ni vertices with

cof ∆(G) 6= 0 and L be the Laplacian-like matrix defined in equation (3.7). Then, the following holds:

(i)
1

4
is an eigenvalue of L with multiplicity at least n− t.

(ii) If h = |{i : ni = 1}| and h ≥ 2, then 1 is an eigenvalue of L with multiplicity at least h− 1.

Proof. Let G = (V,E) be a complete t-partite graph Kn1,n2,··· ,nt
on n =

∑t
i=1 ni vertices such that the

vertex V is partitioned into t subsets Vi for 1 ≤ i ≤ t and |Vi| = ni. Suppose h = |{i : ni = 1}| and t = s+h

such that ni ≥ 2 for 1 ≤ i ≤ s and ni = 1 for s+ 1 ≤ i ≤ t = s+ h.

Let e(p, q) be an n-dimensional column vector whose pth entry is 1, qth entry is −1 and 0 otherwise.

Suppose the vertices of G are indexed as in equation (2.1). Consider the set of column vectors
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E = {e(1, j) | j = 2, · · · , n1} ∪ {e(n1 + 1, n1 + j) | j = 2, · · · , n2}

∪ · · · ∪ {e

(
s−1∑
k=1

nk + 1,

s−1∑
k=1

nk + j

)
| j = 2, · · · , ns}.

Let E1 = {e(1, j) | j = 2, · · · , n1} and Ei = {e

(
i−1∑
k=1

nk + 1,

i−1∑
k=1

nk + j

)
| j = 2, · · · , ni} for i = 2, 3, . . . , s.

Then E = ∪si=1Ei. Using the definition of L as in equation (3.7), it is easy to see

(4.12) Lx = (ai − bi)x for all x ∈ Ei; 1 ≤ i ≤ s.

For 1 ≤ i ≤ s, we have

ai − bi =
1

2Ψn1,n2,··· ,nt

[
ni − 1

2
Θn̂i

+ (ni − 3)Ψn̂i

]
+

1

2Ψn1,n2,··· ,nt

[
1

2
Θn̂i

+ Ψn̂i

]
=

1

2Ψn1,n2,··· ,nt

[ni
2

Θn̂i
+ (ni − 2)Ψn̂i

]
=

1

2Ψn1,n2,··· ,nt

[ni
2

Φn̂i
+
ni
2

Ψn̂i
+ (ni − 2)Ψn̂i

]
=

1

4Ψn1,n2,··· ,nt

[niΦn̂i
+ (3ni − 4)Ψn̂i

] =
1

4
.

Thus, from equation (4.12), we get Lx =
1

4
x for all x ∈ E , and hence

1

4
is an eigenvalue of L with multiplicity

at least |E| =
s∑
i=1

ni − s. Since ni = 1 for s+ 1 ≤ i ≤ t = s+ h, n− t =

t∑
i=1

ni − t =

s∑
i=1

ni − s. This proves

part (i).

To prove part (ii), let us assume h = |{i : ni = 1}| and h ≥ 2. Let Ẽ = {e(s+ i, t) : i = 1, 2, . . . , h− 1}.
For s+ 1 ≤ i < t = s+ h, using the definition of L as in equation (3.7), we have

Lx = (ai − cit)x for all x ∈ Ẽ .

Since nt = 1, Φn̂i
= (3nt − 4)Φn̂i,nt

= −Φn̂i,nt
. Thus, for s+ 1 ≤ i < t = s+ h, we have

ai − cit =
1

2Ψn1,n2,··· ,nt

[
ni − 1

2
Θn̂i

+ (ni − 3)Ψn̂i

]
− 1

Ψn1,n2,··· ,nt

Φn̂i,nt

=
1

2Ψn1,n2,··· ,nt

[
−2Ψn̂i

− 2Φn̂i,nt

]
=

1

Ψn1,n2,··· ,nt

[
−Ψn̂i

− Φn̂i,nt

]
=

1

Ψn1,n2,··· ,nt

[−Ψn̂i
+ Φn̂i

]

=
1

Ψn1,n2,··· ,nt

[(3ni − 4)Ψn̂i
+ niΦn̂i

] = 1.

Hence, Lx = x for all x ∈ Ẽ , and this completes the proof.

Given a real symmetric matrix M of order n×n, we use the following convention where the eigenvalues

of M are in decreasing order:

(4.13) λ1(M) ≥ λ2(M) ≥ · · · ≥ λn−1(M) ≥ λn(M).
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We now state the Weyls inequality that gives interlacing inequalities of a rank-one perturbation to a real

symmetric matrix.

Theorem 4.3. [11, Corollary 4.3.9] Let A and B be real symmetric matrices of order n × n with

eigenvalues ordered as in equation (4.13) such that B = A+ ααt, where α is a column vector. Then,

λ1(B) ≥ λ1(A) ≥ λ2(B) ≥ λ2(A) ≥ · · · ≥ λn(B) ≥ λn(A).

In the following theorem, we compute the inertia of the Laplacian-like matrix L subject to the condition

det ∆(Kn1,n2,··· ,nt
) 6= 0.

Theorem 4.4. Let G be a complete t-partite graph Kn1,n2,··· ,nt on n =
∑n
i=1 ni vertices with cof ∆(G) 6=

0 and L be the Laplacian-like matrix defined in equation (3.7). Then, the following holds:

(i) If ni ≥ 2 for 1 ≤ i ≤ t, then In(L) = (n− t, 1, t− 1).

(ii) Let t = s+ h and h = |{i : ni = 1}|. If ni ≥ 2 for 1 ≤ i ≤ s and ni = 1 for s+ 1 ≤ i ≤ s+ h, then

(4.14) In(L) =


(n− s− 1, 1, s) if h− 1 >

s∑
i=1

ni
3ni − 4

,

(n− s, 1, s− 1) if h− 1 <

s∑
i=1

ni
3ni − 4

.

Proof. Let G be a complete t-partite graph Kn1,n2,··· ,nt
on n =

∑n
i=1 ni vertices and ni ≥ 2 for 1 ≤ i ≤ t.

From the proof of [7, Theorem 4.1], it is known that −4 is the only negative eigenvalue of the squared distance

matrix ∆(G) with multiplicity of n − t and In(∆(G)) = (t, 0, n − t). Thus, if det ∆(G) 6= 0, − 1
4 is the only

negative eigenvalue of ∆(G)−1 with multiplicity of n− t, and In(∆(G)−1) = (t, 0, n− t). Furthermore, under

the assumption det ∆(G) 6= 0 and cof ∆(G) 6= 0, using Theorem 3.4, the inverse of ∆(G) can be written as:

∆(G)−1 = −L+
1

λ
ννt.

Therefore, using the fact that 0 is a simple eigenvalue of L due to Theorems 4.1 and 4.3, we get

λt−1(−L) ≥ λt(∆(G)−1) ≥ λt(−L) ≥ λt+1(∆(G)−1) ≥ λt+1(−L),

(+ve) (+ve) (0) (-ve) (-ve)

that is, λt(∆(G)−1) > 0 and λt+1(∆(G)−1) = − 1
4 < 0 implies that λi(−L) > 0 for 1 ≤ i ≤ t− 1, λt(−L) =

0 and λi(−L) = − 1
4 for t+ 1 ≤ i ≤ n. Hence, In(−L) = (t− 1, 1, n− t), and this proves part (i).

Let t = s+h and h = |{i : ni = 1}| with ni ≥ 2 for 1 ≤ i ≤ s and ni = 1 for s+1 ≤ i ≤ s+h. From part

(i) of Theorem 2.6, det ∆(G) 6= 0 if and only if h− 1 6=
s∑
i=1

ni
3ni − 4

. Similar to part (i), we prove part (ii)

using 0 is a simple eigenvalue of L and the form ∆(G)−1 = −L+
1

λ
ννt.

Let h − 1 >

s∑
i=1

ni
3ni − 4

. From [7, Lemma 4.4 and Theorem 4.5], λi(∆(G)) > 0 for 1 ≤ i ≤ s + 1,

λi(∆(G)) < 0 for s + 2 ≤ i ≤ n, and In(∆(G)) = (s + 1, 0, n − s − 1). Using 0 is a simple eigenvalue of L
and Theorem 4.3, we get
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λs(−L) ≥ λs+1(∆(G)−1) ≥ λs+1(−L) ≥ λs+2(∆(G)−1) ≥ λs+2(−L),

(+ve) (+ve) (0) (-ve) (-ve)

which implies that In(−L) = (s, 1, n− s− 1). Hence, In(L) = (n− s− 1, 1, s).

Next, let h − 1 <

s∑
i=1

ni
3ni − 4

. From [7, Lemma 4.4 and Theorem 4.5], λi(∆(G)) > 0 for 1 ≤ i ≤ s,

λi(∆(G)) < 0 for s+ 1 ≤ i ≤ n, and In(∆(G)) = (s, 0, n− s). Using Theorem 4.3, we get

λs−1(−L) ≥ λs(∆(G)−1) ≥ λs(−L) ≥ λs+1(∆(G)−1) ≥ λs+1(−L).

(+ve) (+ve) (0) (-ve) (-ve)

Hence, In(L) = (n− s, 1, s− 1). This completes the proof.

Corollary 4.5. Let G be a complete t-partite graph Kn1,n2,··· ,nt on n =
∑n
i=1 ni vertices with

cof ∆(G) 6= 0 and L be the Laplacian-like matrix defined in equation (3.7). If det ∆(G) 6= 0, then the

following holds:

(i)
1

4
is an eigenvalue of L with multiplicity n− t.

(ii) If h = |{i : ni = 1}| and h ≥ 2, then 1 is an eigenvalue of L with multiplicity h− 1.

Proof. Let G be a complete t-partite graph Kn1,n2,··· ,nt
on n =

∑n
i=1 ni vertices. We complete the proof

by considering the following cases.

Let ni ≥ 2 for 1 ≤ i ≤ t. From the proof of part (i) of Theorem 4.4, it is follows that 1
4 is an eigenvalue

of L with multiplicity at most n− t. Thus, the result follows from Proposition 4.2.

Next, let t = s + h with ni ≥ 2 for 1 ≤ i ≤ s and ni = 1 for s + 1 ≤ i ≤ t = s + h. From part (iii)

of [7, Lemma 4.4], −4 is an eigenvalue of ∆(G) with multiplicity n − t and −1 is an eigenvalue of ∆(G)

with multiplicity h− 1. Therefore, the result follows from the interlacing of eigenvalues of ∆(G)−1 and −L
arguments used in the proof of Theorem 4.4.

We conclude the article with a conjecture. Given a complete t-partite graph Kn1,n2,··· ,nt
, by part (i) of

the Theorem 2.6 det ∆(Kn1,n2,··· ,nt
) = 0 if and only if h− 1 =

s∑
i=1

ni
3ni − 4

, where t = s+ h with ni ≥ 2 for

1 ≤ i ≤ s and ni = 1 for s+1 ≤ i ≤ t = s+h. Based on the examples encountered during the preparation of

this manuscript, we believe the following holds true. If det ∆(Kn1,n2,··· ,nt) = 0 and L be the Laplacian-like

matrix defined in equation (3.7), then

(i) 1
4 and 1 are the only positive eigenvalues of L with multiplicity n− t and h− 1, respectively.

(ii) The inertia In(L) = (n− s− 1, 1, s).
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Appendices.

A. Proof of the Lemma 3.1. Let ni ∈ N for 1 ≤ i ≤ t and t ≥ 2. We complete the proof with

repeated application of equations (3.2)–(3.4). Thus,

Θn1,n2,··· ,nt
= Φn1,n2,··· ,nt

+ Ψn1,n2,··· ,nt

= (3ni − 4)Φn̂i
+

t∑
k=1

nk t∏
j=1
j 6=k

(3nj − 4)


= (3ni − 4)Φn̂i

+

t∑
k=1

nkΦn̂k
.

This proves part (a) of the lemma. Similarly, to prove part (b),

Θn1,n2,··· ,nt
= Φn1,n2,··· ,nt

+ Ψn1,n2,··· ,nt

= (3ni − 4)Φn̂i
+

t∑
k=1

nk t∏
j=1
j 6=k

(3nj − 4)


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= (3ni − 4)Φn̂i
+ (3ni − 4)

t∑
k=1
k 6=i

nk t∏
j=1

j 6=i,k

(3nj − 4)

+ ni

t∏
j=1
j 6=i

(3nj − 4)

= (3ni − 4)Φn̂i
+ (3ni − 4)Ψn̂i

+ ni

t∏
j=1
j 6=i

(3nj − 4)

= (3ni − 4) (Φn̂i
+ Ψn̂i

) + niΦn̂i

= (3ni − 4)Θn̂i
+ niΦn̂i

.

Next,

Ψn1,n2,··· ,nt
=

t∑
k=1

nk t∏
j=1
j 6=k

(3nj − 4)


= (3ni − 4)

t∑
k=1
k 6=i

nk t∏
j=1

j 6=i,k

(3nj − 4)

+ ni

t∏
j=1
j 6=i

(3nj − 4)

= (3ni − 4)Ψn̂i
+ niΦn̂i

.

This establish the part (c). Finally, to prove part (d),

Ψn̂i
=

t∑
k=1
k 6=i

nkΦn̂i,nk

= (3nj − 4)

t∑
k=1
k 6=i,j

nk t∏
l=1

l 6=i,j,k

(3nl − 4)

+ ni

t∏
l=1
l6=i,j

(3nl − 4)

= (3nj − 4)Ψn̂i,nj
+ njΦn̂i,nj

.

This completes the proof.
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