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SOME SYMMETRIC SIGN PATTERNS REQUIRING UNIQUE INERTIA∗

PARTHA RANA† AND SRIPARNA BANDOPADHYAY†

Abstract. A sign pattern is a matrix whose entries are from the set {+,−, 0}. A sign pattern requires unique inertia if

every matrix in its qualitative class has the same inertia. For symmetric tree sign patterns, several necessary and sufficient

conditions to require unique inertia are known. In this paper, sufficient conditions for symmetric tree sign patterns to require

unique inertia based on the sign and position of the loops in the underlying graph are given. Further, some sufficient conditions

for a symmetric sign pattern to require unique inertia if the underlying graph contains cycles are determined.
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1. Introduction. An n× n matrix P = [pij ] whose entries belong to the set {+,−, 0} is called a sign

pattern matrix or a sign pattern. The set of all n × n sign patterns is denoted by Qn. The set of all real

matrices

Q(P) = {A = [aij ] ∈ Rn×n| sign(aij) = pij for all i, j = 1, 2, ..., n},

is called the qualitative class of the sign pattern P ∈ Qn.

(+) + (−) is called an ambiguous entry and is denoted by #. Let P1 = [p1ij ], P2 = [p2ij ] be two sign

patterns of order n. Then, P1 +P2 is defined unambiguously if p1ijp
2
ij 6= − for all i, j and the product P1P2

is defined unambiguously if, for all i, j;
∑n

k=1 p
1
ikp

2
kj does not contain opposite signed terms.

A sign pattern P ∈ Qn is said to be sign nonsingular if every A ∈ Q(P) is nonsingular. Thus, P is sign

nonsingular if and only if det(P) = + or det(P) = −, that is, in the standard expansion of det(P) into n!

terms, there is at least one nonzero term and all the nonzero terms have the same sign.

The directed graph D of an n× n sign pattern matrix P = [pij ] is the directed graph having n vertices

{1, 2, ..., n}, such that there is a directed edge in D from i to j, denoted by (i, j), if and only if pij 6= 0. The

arc (i, j) is associated with the sign + or − if and only if pij = + or −. If i = j, the arc (i, j) is called a

loop. The degree deg(v) of a vertex v in D is the number of edges of D incident with v, each loop counting

as two edges. The underlying graph of P is a simple graph denoted by G with n vertices, and the edge (i, j)

is defined if and only if pij 6= 0. If P is symmetric and the underlying graph G of P is a tree, with possible

loops, then P is referred to as a symmetric tree sign pattern.

A product of the form γ = pi1i2pi2i3 · · · pikik+1
, where all the elements are nonzero and the index set

{i1, i2, ..., ik, ik+1} consists of distinct indices, is called a path of length k from i1 to ik+1. We say that

the position of il corresponding to the path γ = pi1i2pi2i3 · · · pikik+1
is odd (even) when l ≤ k + 1 and

the cardinality of the set {i1, i2, ..., il} is odd (even). Further, ik1
, ik2

are said to be in ascending position

corresponding to the path γ = pi1i2pi2i3 · · · pikik+1
if k1, k2 ∈ {1, 2, ..., k + 1} and ik1 < ik2 . Also ik1 , ik2 and
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ik1 , ik2 , ik3 are in odd-even and odd-even-odd ascending positions, respectively, if k1, k2, k3 ∈ {1, 2, ..., k+ 1}
and ik1

< ik2
< ik3

, ik1
is odd, ik2

is even, and ik3
is odd. Similarly, we can define for all other combinations

of sequence of odd, even ascending positions. For example, in the following graph G given in Fig. 1, indices

2, 3, and 5 are in even-odd-even ascending position corresponding to the path γ : p12p23p35. Also, indices 2,

3, and 5 are in odd-even-odd ascending position corresponding to the path γ1 : p23p35.

0

1

+

2

+

3

4

0

+

5

Figure 1. G.

If i1 = ik+1 and the index set {i1, i2, ..., ik} consists of distinct indices, then γ is called a simple cycle

of length k. Suppose that γi is a simple cycle of length ki, i = 1, 2, .., l, then the product of simple cycles,

γ = γ1γ2 · · · γl is called a composite cycle of length
∑l

i=1 ki. Throughout this paper, we assume all the cycles

to be simple unless otherwise mentioned.

The inertia of a real symmetric matrix A is the triple of nonnegative numbers (i+(A), i−(A), i0(A)) and

could be denoted as In(A), where i+(A), i−(A), i0(A) denotes the number of positive, negative, and zero

eigenvalues of A, respectively, counted with their algebraic multiplicity.

An n×n sign pattern P = [pij ] is called symmetric if pij = pji for all i, j. For a symmetric sign pattern

P ∈ Qn, the inertia set is denoted by In(P) and defined as In(P) = {In(A) : A = AT ∈ Q(P)}. The

symmetric sign pattern P is said to require unique inertia if In(A1) = In(A2) for all real symmetric matrices

A1, A2 ∈ Q(P).

If P1 and P2 are two sign patterns, then the matrices are called equivalent if one can be produced from

the other through a series of permutation similarity, signature similarity, negation, and transposition. Being

equivalent, P1 requires unique inertia if and only if P2 requires unique inertia.

In 2001, Hall et al. [1], proved that a symmetric sign pattern P requires unique inertia if and only if

smr(P) = SMR(P), where smr(P) = min{rank(A) : A = AT , A ∈ Q(P)} and SMR(P) = max{rank(A) :

A = AT , A ∈ Q(P)}. They further characterized symmetric sign patterns requiring unique inertia in terms

of the sum of all the maximum cycle lengths. Hall et al. in [1] characterized symmetric tree sign patterns

with no loops and symmetric star sign patterns with loops that require unique inertia in terms of the position

and sign of the loops. For symmetric sign patterns such that the underlying graph is a simple cycle with no

loops, Hall et al. in [1] obtained the following result,

Theorem 1.1. [1, Theorem 4.6] Let A ∈ Qn be a symmetric sign pattern with all diagonal entries equal

to 0, and suppose G(A) is a simple cycle of length n. If n is odd, then A is sign nonsingular, and hence,

A requires unique inertia. If n is even, then A requires unique inertia if and only if A is sign nonsingular.

More specifically, for even n, A requires unique inertia if and only if 1
2n is odd (respectively, even) and the

number of − entries on a simple n-cycle in A is even (respectively, odd).
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In Section 2, we consider symmetric tree sign patterns with loops in the underlying graph. Hall and

Li [2] showed that symmetric tri-diagonal sign patterns with no loops require unique inertia. They also

characterized the inertia of symmetric tri-diagonal sign patterns with nonnegative diagonal entries in terms

of the position of the loops. Also in [3], Lin et al. showed that under certain conditions P requires unique

inertia if and only if P ′ require unique inertia, where P ′ is a principal subpattern of P. In Section 2, Theorem

2.13 gives a sufficient condition for a symmetric tree sign pattern to require unique inertia in terms of the

position of the loops. In Theorems 2.15 and 2.16, we characterize all symmetric tri-diagonal sign patterns

that require unique inertia.

In Section 3, we consider symmetric sign patterns with cycles in the underlying graphs. We obtain

some sufficient conditions for such sign patterns to require unique inertia. In Theorems 3.10 and 3.13, we

consider nonnegative sign patterns with cycles of order 4k+ 2, k ∈ N, whereas in Theorem 3.17 we consider

nonnegative sign patterns with cycles of order 4k + 1, k ∈ N, and give sufficient conditions for such sign

patterns to require unique inertia.

2. Inertia of a symmetric tree sign pattern. This section looks into symmetric tree sign patterns

that require unique inertia. Assume that P ∈ Qn is a symmetric sign pattern such that the maximum cycle

length is m in the underlying graph G. Let B = BT ∈ Q(P) and the characteristic polynomial of B is given

by

f(B) = λn − E1(B)λn−1 + E2(B)λn−2 − · · ·+ (−1)mEm(B)λn−m,

where Ek(B) for 1 ≤ k ≤ m is the sum of all cycles (simple or composite) of length k in B properly signed.

Hall et al. [1] obtained the following two results:

Theorem 2.1. [1, Theorem 3.5] Let A ∈ Qn be a symmetric sign pattern, with the maximum length of

the (composite) cycles in A equal to m ≥ 1. Then, A requires unique inertia if and only if Em(B) has the

same sign for all B = BT ∈ Q(A). In particular, if all the terms in Em(B) have the same sign for any

B ∈ Q(A), then A requires unique inertia.

Theorem 2.2. [1, Theorem 4.5] Let A be a symmetric tree sign pattern, with the maximum length of

the cycles in A equal to m ≥ 1. Then, A requires unique inertia if and only if all the terms in Em(B) have

the same sign for any B ∈ Q(A). In this case, A requires rank m.

The following results are by Hall and Li [2] for a nonnegative symmetric tri-diagonal sign pattern that

requires unique inertia.

Proposition 2.3. [2, Proposition 3.3] For the n× n symmetric tri-diagonal pattern

A =



∗ + 0 . . . . . . 0

+ ∗ + 0 . . . 0

0 + ∗ +
. . .

...
...

...
. . .

. . .
. . .

...

0 0 . . . + ∗ +

0 0 . . . 0 + ∗


,

where each diagonal entry is either 0 or +, we have the following.

(a) For even n, A is sign nonsingular if and only if there are no two + diagonal entries in A in odd-even

ascending positions, respectively. In this case, In(A) = (n
2 ,

n
2 , 0).
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(b) For odd n, A is sign nonsingular if and only if there is at least one + diagonal entry in an odd

position, and there are not three + diagonal entries in odd-even-odd ascending positions, respectively.

In this case, In(A) = (n+1
2 , n−12 , 0).

Corollary 2.4. [2, Corollary 3.4] For the n × n symmetric tri-diagonal pattern A as in Proposition

2.4, where each diagonal entry is 0 or +, we have the following.

(a) For even n, A requires unique inertia if and only if there are no two + diagonal entries in A in

odd-even ascending positions, respectively. In this case, In(A) = (n
2 ,

n
2 , 0).

(b) For odd n where there is at least one + diagonal entry in an odd position, A requires unique inertia

if and only if there are not three + diagonal entries in odd-even-odd ascending positions, respectively.

In this case, In(A) = (n+1
2 , n−12 , 0).

(c) For odd n where there are no + diagonal entries in odd positions, A requires the unique inertia

(n−1
2 , n−12 , 1).

Since for any symmetric sign pattern P, In(P) = {In(A) : A = AT ∈ Q(P)}. Therefore, we have the

following lemmas.

Lemma 2.5. Let P be an n× n symmetric sign pattern whose underlying graph is G. If G has a leaf u

with pu,u = 0 and v is its unique neighbour, then

In(P) = (1, 1, 0) + In(P ′),

where P ′ is the (n− 2)× (n− 2) principal subpattern with rows and columns u and v deleted.

Proof. If the underlying graph G is a tree, then the result follows from Lemma 4.3 in [3]. If G is not a

tree, then since P is a symmetric sign pattern and the underlying graph G has a leaf with no loop, we can

similarly conclude by following the proof of Lemma 4.3 in [3] that

In(P) = (1, 1, 0) + In(P ′),

where P ′ is the (n− 2)× (n− 2) principal subpattern with rows and columns u and v deleted.

Lemma 2.6. Let P be a symmetric sign pattern whose underlying graph is G. If G has a leaf u with

pu,u = + and v is its unique neighbour with pv,v ∈ {0,−}, then

In(P) = (1, 0, 0) + In(P ′),

where P ′ is obtained from P by removing the row and column corresponding to u and setting pv,v = −. If G

has a leaf u with pu,u = − and v is its unique neighbour with pv,v ∈ {0,+}, then

In(P) = (0, 1, 0) + In(P ′),

where P ′ is obtained from P by removing the row and column corresponding to u and setting pv,v = +.

Proof. If the underlying graph G is a tree, then the result follows from Lemma 4.4 in [3]. If G is not a

tree, then since P is a symmetric sign pattern and the underlying graph G has a leaf with a loop and the

unique neighbour of the leaf either has no loop or has a loop with opposite sign, we can similarly obtain the

above result by following the proof of Lemma 4.4 in [3].

Suppose that P is a symmetric tree sign pattern containing loops. We now specify certain sufficient

conditions on the underlying graph G of P such that P requires unique inertia.
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Lemma 2.7. Let P be an n× n symmetric tree sign pattern, whose underlying graph is G. Suppose that

the number of loops in G is strictly less than 2. Then P requires unique inertia.

Proof. We prove this theorem by using induction on n where n is the order of P. For n = 1, P is a 1× 1

sign pattern; therefore, inertia of P is unique. For n = 2, the only possible forms of P up to equivalence

are

[
+ +

+ 0

]
,

[
0 +

+ 0

]
. In both cases, P has unique inertia, which is (1, 1, 0). Therefore, P requires unique

inertia.

Suppose that the statement holds for all n ≤ k − 1, k ≥ 3. For n = k, since the number of loops in G

is strictly less than 2, G has a leaf u such that pu,u = 0. Let v be the unique neighbour of u. By applying

Lemma 2.5 to u, v, we have

In(P) = (1, 1, 0) + In(P ′),

where P ′ is the (k− 2)× (k− 2) principal subpattern of P with rows and columns corresponding to u and v

deleted. Therefore, the underlying graph of P ′ is a forest with connected components G1, G2, ..., Gs for some

s. Thus, P ′ = P1

⊕
P2

⊕
· · ·
⊕
Ps, where the underlying graph corresponding to Pi is Gi, i = 1, 2, ..., s.

Since Gi is a tree with the number of vertices strictly less than k and with at most one loop, by the induction

hypothesis Pi requires unique inertia for all i = 1, 2, ..., s. Therefore, P ′ and P require unique inertia.

The following examples show that if P is an n × n symmetric sign pattern whose underlying graph G is a

tree and if the number of loops in G is equal to 2, then P may not require unique inertia.

Example 2.8. Consider the symmetric sign pattern P =

[
+ +

+ +

]
whose underlying graph is G given

in Fig. 2, then B1 =

[
1 1

1 1

]
and B2 =

[
2 1

1 2

]
∈ Q(P). Since In(B1) = (1, 0, 1) and In(B2) = (2, 0, 0),

therefore P does not require unique inertia.

+ +

Figure 2. G.

Lemma 2.9. Let P be an n × n symmetric tree sign pattern, whose underlying graph is G with exactly

two positive loops and no negative loops. If no odd length path from a leaf to another leaf of G has loops in

odd-even ascending positions, respectively, then P requires unique inertia.

Proof. We prove this by using induction on n, the order of P. Since G has two loops and no odd length

path from one leaf to another leaf of G has loops in odd-even ascending positions, respectively, n > 2. For

n = 3, by Corollary 2.4, P requires unique inertia.

Now suppose that the statement holds for all n ≤ k − 1, k ≥ 4. For n = k, if P is a symmetric tri-

diagonal sign pattern then by Corollary 2.4, P requires unique inertia. If P is not a symmetric tri-diagonal

sign pattern then G has leaf u such that pu,u = 0. Let v be the unique neighbour of u. By applying Lemma

2.5 to u, v, we get

In(P) = (1, 1, 0) + In(P ′),

where P ′ is the (k − 2)× (k − 2) principal subpattern of P with rows and columns corresponding to u and

v deleted. Let G′ be the underlying graph of P ′ with the connected components G1, G2, ..., Gs for some s.

Thus, P ′ = P1

⊕
P2

⊕
· · ·
⊕
Ps, where the underlying graph corresponding to Pi is Gi, i = 1, 2, ..., s. If any
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component Gi of G′ for i ∈ {1, 2, ..., s} contains less than 2 loops, then by Lemma 2.7, Pi requires unique

inertia. If Gi for some i ∈ {1, 2, ..., s} contains two loops, consider if possible an odd length path P̄ in Gi

from a leaf x to a leaf y containing both the loops.

Case-1: Both x and y are leaves of G. Then, P̄ has odd length in G, and by assumption, the loops are

not in odd-even ascending positions, respectively.

Case-2: Either x or y is not a leaf of G. Suppose that x is not a leaf of G, then {(u, v), (v, x)} ∪ P̄ is a

path in G from u to y. Since {(u, v), (v, x)}∪ P̄ has odd length, by assumption, the loops are not in odd-even

ascending positions, respectively, which is true for P̄ as well.

Thus in both cases, each Gi satisfies the stated conditions and the order of each Gi is strictly less than

k; therefore, by the induction hypothesis and Lemma 2.7, Pi requires unique inertia for all i = 1, 2, ..., s.

Therefore, P ′ and P require unique inertia.

The following example shows that the converse of the previous result is not true.

Example 2.10. Let P be the symmetric nonnegative sign pattern. From left to right, let P, P ′ be the

sign patterns corresponding to the graphs G, G′, respectively, given in Fig. 3.

0

v1

0

v2

+

v3

0

v4

+

v5

0

v1

0

v2

+

v5

Figure 3. Using Lemma 2.5 to determine the inertia.

By using Lemma 2.5 to the edge (v4, v3), we have In(P) = (1, 1, 0) + In(P ′). Clearly, P ′ and P require

unique inertia. But G contains the odd length path γ : pv1v2pv2v3pv3v5 from a leaf to another leaf which

contains loops in odd-even ascending positions, respectively.

Also, the conclusion of Lemma 2.9 is not true if the underlying graph G of P has more than two loops.

Example 2.11. Let P be the symmetric nonnegative sign pattern associated with the graph is G given

in Fig. 4.

+ + +

Figure 4. G.

By Corollary 2.4, P does not require unique inertia.

Hall and Li [2] obtained necessary and sufficient conditions for path sign patterns with nonnegative

diagonal entries to require unique inertia. In the following results, we derived similar conditions for symmetric

tree sign patterns with nonnegative diagonal entries to require unique inertia.
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Lemma 2.12. Let P be an n× n symmetric tree sign pattern, whose underlying graph is G with positive

loops and no negative loops. If every path from one leaf to another leaf of G has an even length and no such

path contains loops in odd-even-odd ascending positions, respectively, then P requires unique inertia.

Proof. If the number of loops is less than or equal to, 2 then the result follows from Lemmas 2.7 and

2.9. Let us assume that the number of loops in G is greater than or equal to 3. We prove the theorem by

using induction on n, the order of P. Since G has at least 3 loops and every path from one leaf to another

leaf of G has an even length which does not contain loops in odd-even-odd ascending positions, respectively,

hence n ≥ 4.

For n = 4, then P is either a symmetric tri-diagonal pattern or a symmetric star sign pattern. If P is

a symmetric tri-diagonal sign pattern then by Corollary 2.4, P requires unique inertia. If P is a symmetric

star sign pattern, then without loss of generality let,

P =


0 + + +

+ + 0 0

+ 0 + 0

+ 0 0 +

 .
By Theorem (4.3) [1], P requires unique inertia, which is (3, 1, 0).

Now suppose that the statement holds for all n ≤ k − 1, where k ≥ 5. For n = k, we have the following

cases.

Case-1: G has a leaf without a loop. Let u be the leaf of G, such that pu,u = 0. Let v be the unique

neighbour of u. By applying Lemma 2.5 to u, v, we get

In(P) = (1, 1, 0) + In(P ′),

where P ′ is the (k − 2)× (k − 2) principal subpattern of P with rows and columns corresponding to u and

v deleted. Let G′ be the underlying graph of P ′ with the connected components G1, G2, ..., Gs for some s.

Thus P ′ = P1

⊕
P2

⊕
· · ·
⊕
Ps, where the underlying graph corresponding to Pi is Gi, for all i = 1, 2, ..., s.

If there is no path in Gi with more than 2 loops then since any path from one leaf to another leaf of Gi

has an even length, by Lemmas 2.7 and 2.9, Pi requires unique inertia for all i = 1, 2, ..., s. If a component

Gi of G′, i ∈ {1, 2, ..., s} contains three or more loops but there is no path from a leaf to another leaf in Gi

with more than 2 loops then the result follows by the induction hypothesis. Otherwise, let P̄ be a path from

a leaf x to a leaf y of Gi which contains at least three loops. Then, we have the following cases.

Case-1a: Both x and y are leaves of G. If P̄ has an even length then by assumption, the loops are not

in odd-even-odd ascending positions, respectively.

Case-1b: Either x or y is not a leaf of G. Suppose that x is not a leaf of G, then {(u, v), (v, x)} ∪ P̄
is a path in G from u to y. Therefore, {(u, v), (v, x)} ∪ P̄ has an even length and the loops are not in

odd-even-odd ascending positions, respectively, which is true for P̄ as well. Thus, Gi satisfies the conditions

stated and the order of Gi is strictly less than k; therefore by the induction hypothesis, Pi requires unique

inertia. Therefore P ′ and P require unique inertia.

Case 2: Every leaf of G has a loop. Suppose that R : uvr1r2...r2s−1 is a path from a leaf u to another

leaf r2s−1 of G, such that 2s is the maximum length of any path in G. Since pu,u = +, pr2s−1,r2s−1 = + and

G does not contain loops in odd-even-odd ascending positions, respectively, pv,v = 0. Since R is a maximum
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length path, all vertices adjacent to v other than r1 (if there is one) are leaves. Let u, u1, ..., um be the leaves

adjacent to v. Now, pu,u = +, pui,ui
= + for i = 1, 2, ...,m and pv,v = 0. By recursively applying Lemma

2.6 to u, v and ui, v, we get

In(P) = (m+ 1, 0, 0) + In(P ′),

where P ′ is obtained from P by removing the rows and columns corresponding to u, u1, ..., um from P and

setting pv,v = −. Again in P ′, we have p′v,v = − and p′r1,r1 ∈ {0,+}, where r1 is the unique neighbour of v

in P ′. By applying Lemma 2.6, to v, r1,

In(P ′) = (0, 1, 0) + In(P ′′),

where P ′′ is obtained from P ′ by removing the row and column corresponding to v and setting p′r1,r1 = +.

Since P ′′ has order strictly less than k, similarly as in case-1, it can be shown that P ′′ requires unique inertia.

Since

In(P) = (m+ 1, 1, 0) + In(P ′′),

P requires unique inertia.

Theorem 2.13. Let P be an n× n symmetric tree sign pattern, whose underlying graph G has positive

loops and no negative loops. If no odd length path from a leaf to another leaf of G contains loops in odd-even

ascending positions, respectively, and no even length path from a leaf to another leaf of G contains loops in

odd-even-odd ascending positions, respectively, then P requires unique inertia.

Proof. If G has an odd length path from a leaf to another leaf then by assumption the loops are not in

odd-even ascending positions, respectively, G must have a leaf which does not have a loop. Then, similarly

as in the proof of Lemma 2.9, by using Lemma 2.5 and induction it can be shown that P requires unique

inertia. Otherwise, there is no path from any leaf to another leaf of odd length, then the results follow from

Lemmas 2.7 and 2.12.

However, the converse of the above theorem is not true as the following example shows.

Example 2.14. Let P =


+ + + +

+ + 0 0

+ 0 + 0

+ 0 0 0

 be a nonnegative symmetric sign pattern whose underlying

graph G given in Fig. 5.

+ +

+

+

0

Figure 5. G.

By Theorem 4.3 [1], P requires unique inertia but the underlying graph of P does not satisfy the conditions

stated in the previous theorem.

The following theorems generalize the results in Proposition 2.3 by Hall and Li [2], for a symmetric tree

sign pattern where the loops in the underlying graph are not necessarily positively signed.
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Theorem 2.15. If P is a symmetric sign pattern whose underlying graph G is a path of odd length, then

P requires unique inertia if and only if one of the following conditions holds,

• there exist no loops with odd-even ascending positions, respectively,

• if there are loops in odd-even ascending positions, respectively, then all such pairs have either the

sign +,− in this order, or the sign −,+ in this order.

Proof. Let G have n vertices. Since G is a path of odd length, n is even. Suppose that there are no

loops in the odd-even ascending positions, respectively, then the result follows from Proposition 2.3. Now

suppose that G has loops in odd-even ascending positions, respectively, and without loss of generality let

the sign of all such pairs be +,−, in this order. Then, all possible composite cycles of length n are one of

the following:

i. n
2 distinct 2-cycles,

ii. 2k loops (i1, i1), (i2, i2), ..., (i2k, i2k), k ∈ N, where i1, i3, ..., i2k−1 are odd, i2, i4, ..., i2k are even and

i1 < i2 < · · · < i2k and n−2k
2 distinct 2-cycles which do not contain i1, i2, ..., i2k.

The sign of any nonzero term in det(P) is (−)
n
2 , so by Theorem 2.1, P requires unique inertia.

For the converse part, suppose there is a path in G which does not satisfy the above two conditions.

Then, G must have two loops in odd-even ascending positions, respectively, with the same sign and by

Corollary 2.4, P does not require unique inertia.

Theorem 2.16. If P is a symmetric sign pattern whose underlying graph G is a path of even length,

then P requires unique inertia if and only if one of the following conditions holds,

1. there exist no loops with odd-even-odd ascending positions, respectively, and any two loops in odd

positions have the same sign,

2. all loops in odd positions have the same sign and if there are loops in odd-even-odd ascending po-

sitions, respectively, then all such triplets have either the sign +,−,+, in this order, or the sign

−,+,−, in this order.

Proof. Let G have n vertices. Since the length of G is even, n is odd. First, suppose there are no loops

in odd-even-odd ascending positions, respectively. If there is no loop in the odd position, the maximum

length of the composite cycles in G is n − 1, formed by n−1
2 distinct 2-cycles. Hence by Theorem 2.2, P

requires unique inertia. If G has a loop in an odd position and no loops in odd-even-odd ascending positions,

respectively, then the only composite cycle of length n is formed by a loop in an odd position and n−1
2

distinct 2-cycles. Since all loops in odd positions have the same sign, P is sign nonsingular and requires

unique inertia.

Now suppose that G has loops in odd-even-odd ascending positions, respectively, and without loss of

generality assume that any such combination of loops has the sign +,−,+, in this order. Then, all possible

composite cycles of length n are one of the following:

i. 2k + 1 loops (i1, i1), (i2, i2), ..., (i2k+1, i2k+1), for some k ∈ N ∪ {0} where i1, i3, ..., i2k+1 are odd,

i2, i4, ..., i2k are even and i1 < i2 < · · · < i2k+1 together with n−(2k+1)
2 distinct 2-cycles which does

not contain i1, i2, ..., i2k1+1.

Since the sign of all the nonzero terms in det(P) is (−)
n−1
2 , P requires unique inertia.

For the converse part, suppose that there is a path G which does not satisfy the above conditions. Then,
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either G has two loops in odd positions with opposite signs or if not then G has loops in odd-even-odd

ascending positions, respectively, with the same sign. If G has two loops in odd positions with opposite

signs, then G has two composite cycles of length n which are of opposite signs formed by the loops in odd

positions and n−1
2 distinct 2-cycles. Therefore, P does not require unique inertia. If G has loops in odd-

even-odd ascending positions, respectively with the same sign, then by Corollary 2.4, P does not require

unique inertia.

3. Inertia of a symmetric sign pattern with cycles in the underlying graph. In this section, we

consider symmetric sign patterns such that the underlying graphs have cycles and derive sufficient conditions

for such sign patterns to require unique inertia.

Theorem 3.1. Let P be an n × n nonnegative symmetric sign pattern whose underlying graph G is a

cycle. Suppose that n is even, then the following is true:

(a) If n = 4k for some k ∈ N and G has no loops, then P does not require unique inertia.

(b) If n = 4k + 2 for some k ∈ N and the number of loops in G is at most 1, then P requires unique

inertia.

(c) If n = 4k + 2 for some k ∈ N and the number of loops in G is more than 1, then P requires unique

inertia if and only if the loops are not in odd-even ascending positions, respectively in any path in

G.

Proof. Since the underlying graph of P is a simple cycle and P is nonnegative, without loss of generality

let

P =



∗ + 0 . . . . . . +

+ ∗ + 0 . . . 0

0 + ∗ +
.. .

...
...

...
. . .

. . .
. . .

...

0 0 . . . + ∗ +

+ 0 . . . 0 + ∗


,

where the nonzero diagonal elements are +.

(a) For all A = AT ∈ Q(P),

det(A) = (−1)n/2a212a
2
34 · · · a2n−1n + (−1)n/2a223a

2
45 · · · a2n1 − 2a12a23 · · · an1

= (a12a34 · · · an−1n − a23a45 · · · an1)2.
(3.1)

By symmetrically emphasizing the entries ai,i+1 and ai+1,i for odd i, we get det(A) > 0. Again if

we take A such that a12a34 · · · an−1n = a23a45 · · · an1, then det(A) = 0. So by Theorem 2.1, P does

not require unique inertia.

(b) If the number of loops in G is at most 1, then for all A = AT ∈ Q(P),

det(A) = (−1)n/2a212a
2
34 · · · a2n−1n + (−1)n/2a223a

2
45 · · · a2n1 − 2a12a23 · · · an1

= −(a12a34 · · · an−1n + a23a45 · · · an1)2.
(3.2)

Therefore, sign(det(A)) = − for all A = AT ∈ Q(P). By Theorem 2.1, P requires unique inertia.

(c) Suppose there is a path in G which contains two loops in odd-even ascending positions, respectively.

Let pii = + and pkk = +, i is odd and k is even. Now by symmetrically emphasizing the entries
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ps,s+1, ps+1,s for s = 1, 3, ..., i − 2, i + 1, i + 3..., k − 2, k + 1, k + 3..., n − 1, and pii, pkk, we get

A = AT ∈ Q(P) such that sign(det(A)) = (−)
n
2−1 = +. Again by symmetrically emphasizing the

entries ps,s+1 and ps+1,s for odd s, we get B = BT ∈ Q(P) such that sign(det(B)) = (−)
n
2 = −. So

by Theorem 2.1, P does not require unique inertia.

Conversely, suppose that there are no paths in G with loops in odd-even ascending positions, re-

spectively, then for all A = AT ∈ Q(P)

det(A) = (−1)n/2a212a
2
34 · · · a2n−1n + (−1)n/2a223a

2
45 · · · a2n1 − 2a12a23 · · · an1

= −(a12a34 · · · an−1n + a23a45 · · · an1)2.
(3.3)

Therefore, sign(det(A)) = − for all A = AT ∈ Q(P). By Theorem 2.1, P requires unique inertia.

Theorem 3.2. Let P be an n × n nonnegative symmetric sign pattern whose underlying graph G is a

cycle. Suppose that n is odd, then the following is true:

(a) If G has no loops, then P requires unique inertia.

(b) If n = 4k + 3 for some k ∈ N and G have at least one loop, then P does not require unique inertia.

(c) If n = 4k + 1 for some k ∈ N and the number of loops in G is at most 2, then P requires unique

inertia.

(d) If n = 4k + 1 for some k ∈ N and the number of loops in G is more than 2, then P requires unique

inertia if and only if the loops are not in odd-even-odd ascending positions, respectively, in any path

in G.

Proof. Since the underlying graph of P is a simple cycle with loops and P is nonnegative, without loss

of generality let

P =



∗ + 0 . . . . . . +

+ ∗ + 0 . . . 0

0 + ∗ +
.. .

...
...

...
. . .

. . .
. . .

...

0 0 . . . + ∗ +

+ 0 . . . 0 + ∗


,

where the nonzero diagonals are +.

(a) For A = AT ∈ Q(P), we have

det(A) = 2a12a23 · · · an1.(3.4)

Therefore, sign(det(A)) = + for all A = AT ∈ Q(P). By Theorem 2.1, P requires unique inertia.

(b) Without loss of generality, let p11 = +. By symmetrically emphasizing the entries ps,s+1, ps+1,s

for even s and p11, we get A = AT ∈ Q(P) such that sign(det(A)) = (−)
n−1
2 = −. Again by

symmetrically emphasizing the entries ps,s+1 and ps+1,s for all s, we get B = BT ∈ Q(P) such that

sign(det(B)) = +. So by Theorem 2.1, P does not require unique inertia.

(c) Since the number of loops in G is at most 2 and n is odd so the composite cycles of length n in G

are one of the following:

i. a loop and n−1
2 , 2-cycles,

ii. a simple cycle of length n.

Thus, for all A = AT ∈ Q(P), sign(det(A)) = +. By Theorem 2.1, P requires unique inertia.
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(d) Suppose there is a path in G which has three loops in odd-even-odd ascending positions, respectively.

Without loss of generality, let p11, pkk and pll be in odd-even-odd ascending positions, respectively,

such that 1 < k < l. Now by symmetrically emphasizing the entries ps,s+1, ps+1,s for s = 2, 4, ..., k−
2, k + 1, k + 3, ..., l − 2, l + 1, l + 3, ..., n − 1, p11, pkk and pll, we get A = AT ∈ Q(P) such that

sign(det(A)) = (−)
n−3
2 = −. Again by symmetrically emphasizing the entries p11, ps,s+1 and ps+1,s

for s = 2, 4, ..., n− 1, we get B = BT ∈ Q(P) such that sign(det(B)) = (−)
n−1
2 = +, so P does not

require unique inertia.

Conversely, suppose that there are no paths in G such that three loops are in odd-even-odd ascending

positions, respectively. So the possible composite cycles of length n are one of the following:

i. a loop and n−1
2 , 2-cycles,

ii. a simple cycle of length n.

Thus for all A = AT ∈ Q(P), sign(det(A)) = +. By Theorem 2.1, P requires unique inertia.

Note that for any sign pattern P, the inertia is the sum of the inertia of its irreducible components. So it

is enough to consider the inertia of irreducible sign patterns. Consider irreducible symmetric sign patterns

P, such that the underlying graph G is connected but is not necessarily a tree with at least one leaf. We

obtain sufficient conditions for such sign patterns P to require unique inertia. The following result follows

from Lemma 2.5.

Theorem 3.3. Let P = [pij ] be a nonnegative symmetric sign pattern such that the underlying graph G

is connected and has exactly one cycle C and no loops. If the order of C is either 4k + 2, 4k + 1 or 4k + 3

for some k ∈ N, then P requires unique inertia.

Proof. We prove this theorem by using induction on m where m is the number of leaves in G. If m = 0,

then by Theorems 3.1 and 3.2, P requires unique inertia. If m = 1, suppose that u is the leaf of G and

R : uu1u2 · · ·utut+1 be the path from u to a vertex ut+1 of C where u1, u2, ..., ut /∈ C. Since u is a leaf of G

with pu,u = 0 and u1 its unique neighbour, by applying Lemma 2.5 to u1, u2, ..., ut recursively, we get that

P requires unique inertia if and only if P ′ requires unique inertia where P ′ is a principal subpattern of P
and the underlying graph of P ′ is either a cycle or a tree with no loops. So by Lemma 2.7 and Theorems

3.1 and 3.2, P ′ and P require unique inertia.

Suppose that the statement is true for all m ≤ l − 1 where l ≥ 2. For m = l, let w be a leaf of G and

R′ : ww1w2 · · ·wrur+1 be the path from w to a vertex ur+1 of C, where w1, w2, ..., wr /∈ C. Since w is a leaf

of G with pw,w = 0 and w1 its unique neighbour, by applying Lemma 2.5 to w, w1, we have

In(P) = (1, 1, 0) + In(P1),

where P1 is the (n− 2)× (n− 2) principal subpattern of P with rows and columns corresponding to w and

w1 deleted. Let G1 be the underlying graph of P1 with the connected components G1, G2, ..., Gs for some s.

Thus, P1 = P1

⊕
P2

⊕
· · ·
⊕
Ps, where the underlying graph corresponding to Pi is Gi, for all i = 1, 2, ..., s.

If no Gi for i ∈ {1, 2, ..., s} contain a cycle C, then Gi is a tree for all i = 1, 2, ..., s. Therefore, Pi, P1 requires

unique inertia, which implies P requires unique inertia.

Otherwise without loss of generality, let G1 be the component of G1, which contains the cycle C. Then,

P requires unique inertia if and only if P1 requires unique inertia. If w2 is not a leaf of G1, then G1 has

less than l leaves. So by the induction hypothesis P1, P requires unique inertia. If w2 is a leaf of G1, then

w3 is its unique neighbour in G1. Then, repeat the above processes in P1 in place of P. Continuing in this

way, we finally get a principal subpattern Pk of P such that the underlying graph Pk has less than equal to
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l − 1 leaves. Then by the induction hypothesis, Pk requires unique inertia which implies P requires unique

inertia.

The following result is a generalization of a similar result Lemma 2.5.

Theorem 3.4. Let P = [pij ] be an n× n symmetric sign pattern whose underlying graph is G. Suppose

that G has a positive edge (u, v) with deg(u) = deg(v) = 2 where u is adjacent with u1, u1 6= v, v is adjacent

with v1, v1 6= u, u1.

If pu,u1 = pv,v1 and pu1,v1 ∈ {0,−}, then

In(P) = (1, 1, 0) + In(P ′),

where P ′ is obtained from P by deleting the rows and columns corresponding to u, v and setting pu1,v1
=

pv1,u1 = −.

If pu,u1
6= pv,v1 and pu1,v1

∈ {0,+}, then

In(P) = (1, 1, 0) + In(P ′),

where P ′ is obtained from P by deleting the rows and columns corresponding to u, v and setting pu1,v1
=

pv1,u1
= +.

Proof. Without loss of generality, assume u = 1, v = 2, u1 = 3 and v1 = 4. Here we prove the case with

pu,u1
= pv,v1 . Let A = AT ∈ Q(P), then A can be written as

A =



0 a12 a13 0 · · · 0

a12 0 0 a24 · · · 0

a13 0

0 a24
...

... B

0 0


=

[
A11 CT

C B

]
(say).

Then, A is congruent to

[
A11 0T

0 B − CA−111 C
T

]
=

[
I2 0T

−CA−111 In−2

][
A11 CT

C B

][
I2 −(CA−111 )T

0 In−2

]
.

Since A−111 =

[
0 1

a12
1

a12
0

]
, B′ = B−CA−111 C

T is obtained from B by adding −a13a24

a12
to its (1, 2) and (2, 1)

entries, all other entries of B′ are same as that of B. Also since −a13a24

a12
< 0 and pu1v1 ∈ {0,−}, B′ ∈ Q(P ′).

Since the inertia of A11 is (1, 1, 0) for any nonzero a12, it follows that

In(P) ⊆ (1, 1, 0) + In(P ′).

Since A = AT ∈ Q(P) can be arbitrary, and any B′ ∈ Q(P ′) can be realized by some A, equality follows.

From Theorem 3.4, we get the following corollary.
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Corollary 3.5. Let P = [pij ] be an n×n symmetric sign pattern whose underlying graph is G. Suppose

that G has a negative edge (u, v) with deg(u) = deg(v) = 2 and u adjacent with u1, u1 6= v, v adjacent with

v1, v1 6= u, u1.

If pu,u1
= pv,v1 and pu1,v1 ∈ {0,+}, then

In(P) = (1, 1, 0) + In(P ′),

where P ′ is obtained from P by deleting the rows and columns corresponding to u, v and setting pu1,v1 =

pv1,u1 = +.

If pu,u1 6= pv,v1 and pu1,v1 ∈ {0,−}, then

In(P) = (1, 1, 0) + In(P ′),

where P ′ is obtained from P by deleting the rows and columns corresponding to u, v and setting pu1,v1
=

pv1,u1
= −.

Corollary 3.6. Let P = [pij ] be an n×n symmetric sign pattern whose underlying graph is G. Suppose

that G has a positive edge (u, v) with deg(u) = deg(v) = 2 and u, v are adjacent with w.

If pu,w = pv,w and pw,w ∈ {0,−}, then

In(P) = (1, 1, 0) + In(P ′),

where P ′ is obtained from P by deleting the rows and columns corresponding to u, v and setting pw,w = −.

If pu,w 6= pv,w and pw,w ∈ {0,+}, then

In(P) = (1, 1, 0) + In(P ′),

where P ′ is obtained from P by deleting the rows and columns corresponding to u, v and setting pw,w = +.

Proof. Similar to the proof of Theorem 3.4.

The above theorem can be used to give an alternate proof of part (a) of Theorem 3.2.

Example 3.7. Consider the symmetric sign pattern P = [pij ], pij ∈ {0,+}.

0

0

0

0
u

0
v

+

+

+

0

0u1

0v1

++

−
+

Figure 6. Using Theorem 3.4 and Corollary 3.6 to determine the inertia.

From left to right, let P, P1 and P2 be the sign patterns corresponding to each of the graphs given in

Fig. 6. By using Theorem 3.4 to the edge (u, v) and using Corollary 3.6 to the edge (u1, v1), it follows that

In(P) = (1, 1, 0) + In(P1) = (1, 1, 0) + (1, 1, 0) + In(P2).

Since In(P2) = {(1, 0, 0)}, therefore, the sign pattern P requires the unique inertia (3, 2, 0).
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We use the following results to obtain sufficient conditions for symmetric sign patterns whose underlying

graph contains cycles, to require unique inertia.

Lemma 3.8. Let G be a connected graph such that none of the cycles in G share an edge. Suppose γ1,

γ2, γ3 are three distinct cycles in G such that P1 : u1u2 · · ·um1
is a path from γ1 to γ2 where u2, u3,...,um1−1

is neither in γ1 nor in γ2 and P2 : v1v2 · · · vm2
is a path from γ1 to γ3 where v2, v3,...,vm2−1 is neither in

γ1 nor in γ3. If u1 6= v1, then every path from γ2 to γ3 must intersect γ1.

Proof. Suppose that P1, P2 intersect and k1 = min{s ∈ {1, 2, ...,m1} : us lie in both P1, P2}.
Then, there exists k2 ∈ {1, 2, ...,m2} such that uk1 = vk2 . Consider the paths P ′1 : u1u2 · · ·uk1 and

P ′2 = vk2vk2−1 · · · v1 and let C1 be a path in γ1 from u1 to v1. The cycle in G formed by P ′1, P ′2 and

C1 share an edge with γ1, which is a contradiction. Thus, P1, P2 do not intersect.

If possible, let P3 be a path from γ2 to γ3 which does not intersect γ1. Let P4 : w1w2 · · ·wm3 for some

m3 ∈ N be a path from γ2 to γ3 obtained from P3 such that w2, w3, ..., wm3−1 is neither in γ2 nor in γ3. If

um1
6= w1 let C2 be a path from um1

to w1 along the cycle γ2 and if vm2
6= wm3

let C3 be a path from wm3

to vm2
along the cycle γ3, then P5 : C2P4C3 is a path from um1

to vm2
. Note that P5 = P4 if um1

= w1,

vm2 = wm3 and P5 = C2P4 if vm2 = wm3 , um1 6= w1, etc. Suppose,

k1 = min{s ∈ {1, 2, ...,m1} : us is in both P1, P5},

k2 = min{s ∈ {1, 2, ...,m2} : vs is in both P2, P5}.
Since P1, P2 do not intersect, uk1 6= vk2 . Consider P̄1 the path segment of P1 from u1 to uk1 , P̄2 the path

segment of P2 from v1 to vk2 and P̄5 the path segment of P5 from uk1 to vk2 . Then, C1, P̄1, P̄5, P̄2 forms a

cycle in G distinct from γ1 and sharing an edge with γ1, which is a contradiction. Therefore, any path from

γ2 to γ3 must intersect γ1.

Theorem 3.9. Let G be a connected graph such that none of the cycles in G share an edge. Then, there

exists a cycle γ and a vertex u of γ such that every path from γ to any other cycle of G contains u.

Proof. If the number of cycles in G is strictly less than 3, then the theorem is true. Suppose that G has

m cycles, where m ≥ 3. Let γ1 be a cycle in G. Since G is connected, so there exists another cycle γ2 and a

path P1 : u1v
1
1v

1
2 · · · v1k1

u2 from γ1 to γ2 for some k1 ∈ N, where v1i 6∈ γ1, γ2 for all i = 1, 2, ..., k1.

If every path from γ1 (or γ2) to any other cycle of G contain u1 (or u2), then the result holds. If not

there exists a vertex u′2 6= u2 in γ2 and a cycle γ3 6= γ2 such that P2 : u′2v
2
1v

2
2 · · · v2k2

u3 is a path from γ2 to γ3
for some k2 ∈ N, where v2i 6∈ γ2, γ3 for all i = 1, 2, ..., k2. Since u2 6= u′2 and v1i , v

2
j 6∈ γ2 for all i = 1, 2, ..., k1,

j = 1, 2, ..., k2, so P1 6= P2. Also, the cycles of G do not share any edge; thus, γ3 6= γ1. Otherwise, γ2 shares

an edge either with the cycle formed by P1, P2 and a path segment of γ1 from u1 to u3 and a path segment

of γ2 from u2 to u′2 (if P1, P2 do not intersect) or with the cycle formed by certain path segments of P1, P2

and γ2 (if P1, P2 intersects), which is a contradiction.

Since P1 is a path from γ2 to γ1 and P2 is a path from γ2 to γ3 and u2 6= u′2, so by Lemma 3.8, every

path from γ3 to γ1 must intersect γ2. (*)

If every path from γ3 to any other cycle of G contains u3 then the result holds. Otherwise, there exists

another vertex u′3 6= u3 of γ3 and a cycle γ4 6= γ3 such that P3 : u′3v
3
1 · · · v3k3

u4 is a path from γ3 to γ4 for

some k3 ∈ N, where v3i 6∈ γ3, γ4 for all i = 1, 2, ..., k3. Since u3 6= u′3 and v2i , v
3
j 6∈ γ3 for all i = 1, 2, ..., k2,

j = 1, 2, ..., k3, so P2 6= P3. Again since the cycles of G do not share an edge, by repeating the argument

used to show γ3 6= γ1 we get, γ2 6= γ4. Since P2 is a path from γ3 to γ2 and P3 is a path from γ3 to γ4 and

u3 6= u′3, so by Lemma 3.8, every path from γ4 to γ2 must intersect γ3. If γ1 = γ4, then two cases arise.
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Case-1: P3 intersects γ2 at some vertex w. Then, similarly we get a contradiction to the assumption

that no two cycles in G share an edge.

Case-2: P3 does not intersect γ2. Then, there exists a path from γ3 to γ1 which does not intersect γ2,

which is a contradiction to (*).

Therefore, the cycles γ1, γ2, γ3, and γ4 are all distinct. Since G has m cycles after a finite number of

steps, the above process will terminate with a cycle γk and a vertex uk in γk such that every path from γk
to any other cycle in G contain uk. Therefore, the result holds with γ = γk and u = uk.

Theorem 3.10. Let P = [pij ] be a nonnegative symmetric sign pattern of order n such that the under-

lying graph G of P contains no loops. Suppose that all the cycles of G have an order of the form 4k + 2,

k ∈ N, and no two cycles in G share an edge, then P requires unique inertia.

Proof. If G does not have any cycle, then G is a tree and hence G requires unique inertia by Lemma

2.7. Suppose that G has at least one cycle. We prove this theorem by using induction on m, where m is the

number of cycles in G. If m = 1 then by Theorem 3.3, the theorem is true. Suppose that the theorem holds

for all m, m ≤ r − 1, r ≥ 2.

For m = r, since no two cycles of G share an edge, by Theorem 3.9 there exists a cycle γ : u1u2 · · ·u4k+2

of length 4k + 2, and a vertex u1 such that every path from γ to any other cycle of G contains u1.

Case-1: Each of the vertices u2, ..., u4k+2 has degree equal to 2. Since (u2, u3) is positively signed with

deg(u2) = deg(u3) = 2, u2 adjacent with u1, u3 adjacent with u4, pu1u2
= pu3u4

= + and pu1u4
= 0, by

Theorem 3.4,

In(P) = (1, 1, 0) + In(P ′),

where P ′ is the principal subpattern of P obtained by deleting the rows and columns corresponding to u2, u3
from P and setting pu1u4 = −. Therefore, the underlying graph of P ′ denoted by G′ is obtained from G

by replacing γ with the cycle γ′ : u1u4u5 · · ·u4k+2 of length 4k, the edge (u1, u4) being negative (everything

else in G′ is same as in G). Now γ′ has a positive edge (u4, u5) with deg(u4) = deg(u5) = 2, u4 adjacent

with u1 and u5 adjacent with u6, pu1u4
6= pu5u6

and pu1u6
∈ {0,+}. By Theorem 3.4,

In(P ′) = (1, 1, 0) + In(P ′′), or In(P) = (2, 2, 0) + In(P ′′),

where P ′′ is the principal subpattern of P ′ obtained by deleting the rows and columns corresponding to u4, u5
from P ′ and setting pu1u6

= +. Therefore, the underlying graph of P ′′ is obtained from G by replacing γ

with the cycle γ′′ : u1u6u7 · · ·u4k+2 with all the edges positive.

Since γ has 4k + 2 vertices, continuing in this way, after 2k steps we get

In(P) = (2k, 2k, 0) + In(P2k),

where P2k is the principal subpattern of P obtained by deleting the rows and columns corresponding to

u2, ..., u4k+1 and setting pu1u4k+2
= +. Therefore, the underlying graph of P2k denoted by G2k is obtained

from G by replacing γ with the positive edge (u1, u4k+2). Since G2k has strictly less than r cycles, so by the

induction hypothesis P2k, P requires unique inertia.

Case-2: At least one of u2, u3, ..., u4k+2 has degree greater than or equal to 3. Then as in the proof

of Theorem 3.3, P requires unique inertia if and only if P ′ requires unique inertia where P ′ is a principal

subpattern of P such that the underlying graph of P ′ has either strictly less than r cycles or otherwise
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contains the cycle γ where the degree of each of u2, u3, ..., u4k+2 is equal to 2. Then either by applying the

induction hypothesis or the proof of Case-1, P ′ and P require unique inertia.

Theorem 3.11. Let P = [pij ] be an n×n symmetric sign pattern whose underlying graph is G. Suppose

that G has a positive edge (u, v) and a positive loop (u, u) with deg(u) = 4, deg(v) = 2 and u adjacent with

u1, u1 6= v, v adjacent with v1, v1 6= u, u1.

If pu,u1 = pv,v1 , pu1,v1 ∈ {0,−} and pv1,v1 ∈ {0,+}, then

In(P) = (1, 1, 0) + In(P ′),

where P ′ is obtained from P by deleting the rows and columns corresponding to u, v and setting pu1,v1 =

pv1,u1
= −, pv1,v1

= +.

If pu,u1 6= pv,v1 , pu1,v1 ∈ {0,+} and pv1,v1 ∈ {0,+}, then

In(P) = (1, 1, 0) + In(P ′),

where P ′ is obtained from P by deleting the rows and columns corresponding to u, v and setting pu1,v1 =

pv1,u1
= +, pv1,v1

= +.

Proof. Without loss of generality, assume u = 1, v = 2, u1 = 3 and v1 = 4. Here, we prove the case with

pu,u1 = pv,v1 . Let A = AT ∈ Q(P), then A can be written as

A =

[
A11 CT

C B

]
,

where A11 =

[
a11 a12
a12 0

]
and B, C are the same as in Theorem 3.4. Then, A congruent to

[
A11 0T

0 B′

]
, where B′ = B − CA−111 C

T .

Thus, B′ is obtained from B by adding −a13a24

a12
to its (1, 2) and (2, 1) entries and

a11a
2
24

a2
12

to its (2, 2)

entry. Since −a13a24

a12
< 0, p34 ∈ {0,−} and p44 ∈ {0,+}, it follows that B′ ∈ Q(P ′). Since the inertia of A11

is (1, 1, 0) for any nonzero a12 and a11, it follows that

In(P) ⊆ (1, 1, 0) + In(P ′).

Since A = AT ∈ Q(P) can be arbitrary, and any B′ ∈ Q(P ′) can be realized by some A, equality follows.

Note that the above theorem can be used to give an alternate proof of part (b) of Theorem 3.1.

Example 3.12. Consider a symmetric sign pattern P = [pij ], pij ∈ {0,+}. From left to right, let P, P1

and P2 be the sign patterns corresponding to each of the graphs G, G1 and G2, respectively, given in Fig. 7.
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Figure 7. Using Theorem 3.11 to determine the inertia.

By using Theorem 3.11 to the edge (u, v) of G, we have In(P) = (1, 1, 0) + In(P1). Again, applying

Theorem 3.11 to the edge (v1, v2) of G1, we have In(P1) = (1, 1, 0) + In(P2). Since In(P2) = {(1, 1, 0)},
therefore the sign pattern P requires unique inertia (3, 3, 0).

Theorem 3.13. Let P = [pij ], be a nonnegative symmetric sign pattern of order n such that the under-

lying graph G of P is connected with exactly one loop. Suppose that all the cycles in G have order 4k+ 2 for

some k ∈ N and no two cycles share an edge. Then, P requires unique inertia.

Proof. If G does not contain any cycle, then G is a tree with one loop hence, by Lemma 2.7, G requires

unique inertia. Suppose that G has at least one cycle. We prove this theorem by using induction on m,

where m is the number of cycles in G. If m = 1 suppose that γ : u1u2 · · ·u4k+2 is the cycle of G and u is

the vertex of G for which puu 6= 0.

Case-1: u is a vertex of γ. If the underlying graph of G is a cycle with one loop then by Theorem 3.1(b),

P requires unique inertia. If the underlying graph G is not a cycle then by applying Lemma 2.5 recursively

as in Theorem 3.3, P requires unique inertia if and only if P ′ requires unique inertia where the underlying

graph of P ′ is either a tree with at most one loop or a cycle with exactly one loop. By Lemma 2.7 and

Theorem 3.1, P ′ and P require unique inertia.

Case-2: u is not a vertex of γ. Then, there exists a path P : utw1w2...ws from a vertex ut of γ to a

leaf ws for some s ∈ N such that u = wi for some i ∈ {1, 2, ..., s} where w1, w2, ..., ws /∈ γ. If u = wi for

some even i, then by applying Lemmas 2.5 and 2.6 recursively, P requires unique inertia if and only if P ′
requires unique inertia, where P ′ is a principal subpattern of P obtained either by deleting the rows and

columns corresponding to w1, w2, ..., ws in P and setting putut
= + or by deleting the rows and columns

corresponding to ut, w1, w2, ..., ws in P. Then similarly as in Case-1, P ′ and P require unique inertia.

If u = wi for some odd i, then by applying Lemmas 2.5 and 2.6 recursively, P requires unique inertia if

and only if P ′ requires unique inertia, where P ′ is a principal subpattern of P obtained either by deleting

the rows and columns corresponding to w1, w2, ..., ws and setting putut = − or by deleting the rows and

columns corresponding to ut, w1, w2, ..., ws. By applying Lemma 2.5 recursively to P ′, we get P ′ requires

unique inertia if and only if P ′′ requires unique inertia, where the underlying graph of P ′′ is either a cycle

or a tree with exactly one loop. Then, the result follows by Theorem 3.1(b).

Suppose that the theorem holds for all m ≤ r − 1, r ≥ 2. For m = r, since no two cycles of G share

an edge, by Theorem 3.9 there exists a cycle γ : u1u2 · · ·u4k+2 where u1 is such that every path from γ to

any other cycle of G contains u1. Suppose that u is the vertex of G such that pu,u = +. Then, we have the

following cases.
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Case-1: u is a vertex of γ. Then, there exists s, s ∈ {1, 2, ..., 4k + 2} such that u = us. If all paths from

a vertex of γ to a leaf of G intersect some cycle other than γ of G, then by recursively applying Theorems

3.4 and 3.11, we have

In(P) = (2k, 2k, 0) + In(P2k),

where P2k is a principal subpattern of P obtained by deleting the rows and columns of P corresponding to

u2, ..., u4k+1 and setting pu1u4k+2
= + and pu1u1 = + if s is odd or pu4k+2u4k+2

= + if s is even. Therefore,

the underlying graph of P2k is G2k obtained from G by replacing γ with the positive edge (u1, u4k+2) and

a loop (u1, u1) if s is odd or a loop (u4k+2, u4k+2) if s is even. Therefore, G2k has strictly less than r cycles,

so by the induction hypothesis P2k, P requires unique inertia.

If there exists a path Pi from ui to a leaf wi of G such that Pi does not intersect any other cycle of

G. By applying Lemma 2.5 recursively, we get P requires unique inertia if and only if P ′ requires unique

inertia, where the underlying graph of P ′ either has strictly less than r cycles or otherwise the underlying

graph of P ′ has r cycles such that every path from a vertex of γ to a leaf of G intersect some other cycle of

G. So P ′ and P require unique inertia followed either by the induction hypothesis or similarly as Case-1 in

the previous paragraph.

Case-2: γ does not contain u.

Case-2a: There exists a path P : utw1w2...ws from a vertex ut to a leaf ws for some s ∈ N such that

u = wi for some i = 1, 2, ..., s, where w1, w2, ..., ws /∈ γ. Similarly as in Case-2 for the number of cycles

m = 1, by applying Lemmas 2.5, 2.6 and Theorem 3.11 we get P requires unique inertia if and only if P1

requires unique inertia where the underlying graph of P1 is obtained from G by replacing the cycle γ with

a positive edge with at most one loop. Since G1 the underlying graph of P1 has a cycle γ1 and a vertex

v1 ∈ γ1 such that every path from γ1 to any other cycle of G1 contains v1, continuing the same argument

with P replaced by P1 we finally get a principal subpattern Pk of P such that P requires unique inertia if

and only if Pk requires unique inertia where the underlying graph of Pk is a tree with at most one loop.

Hence, Pk, P require unique inertia by Lemma 2.7.

Case-2b: There exists no such path. Similarly, as in Theorem 3.10, we get P requires unique inertia if

and only if P1 requires unique inertia where P1 is a principal subpattern of P whose underlying graph is

obtained from P by replacing γ with a positive edge. By the induction hypothesis P1, P requires unique

inertia.

In the above theorem if the number of loops in G is more than one, then P may not require unique

inertia.

Example 3.14. Let P be a symmetric sign pattern of order 6, whose underlying graph is G given in Fig.

8.

0

++

0

0 0

Figure 8. G.
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By Theorem 3.1(c), P does not require unique inertia.

Lemma 3.15. Let P = [pij ] be a nonnegative symmetric sign pattern of order n such that underlying

graph G of P is connected with exactly one loop and exactly one cycle of order 4k + 1 for some k ∈ N.

Suppose that the loop either belongs to the cycle or if not then the distance between the loop and the cycle is

even. Then, P requires unique inertia.

Proof. By applying Lemma 2.5 recursively to P, we get that P requires unique inertia if and only if P ′
requires unique inertia where the underlying graph of P ′ is either a tree with at most one loop or a cycle

with at most one positive loop. Then from Lemma 2.7 or part (c) of Theorem 3.2, it follows that P, P ′
requires unique inertia.

If in the above theorem, the distance between the loop and the cycle is odd then P may not require

unique inertia.

Example 3.16. Let P be a symmetric sign pattern of order 6. From left to right, let P, P ′ be the sign

patterns corresponding to each of the graphs given in Fig. 9.

0

0 0

00

+ + +

Figure 9. Using Theorem 3.4 and Corollary 3.6 to determine the inertia.

Then by Theorem 3.4 and Corollary 3.6, we have P requires unique inertia if and only if P ′ requires

unique inertia. Clearly, P ′ and P does not require unique inertia.

Theorem 3.17. Let P = [pij ] be a nonnegative symmetric sign pattern of order n such that underlying

graph G of P is connected with no loops and at most two cycles with orders of the form, 4k + 1 for some

k ∈ N. Assume that the distance between the cycles is even and no two cycles share an edge. Then, P
requires unique inertia.

Proof. By Theorem 3.3, P requires unique inertia if G has fewer than two cycles. Assume that G has

exactly two cycles. By applying Lemma 2.5 recursively, we get P requires unique inertia if and only if P ′
requires unique inertia, where the underlying graph G′ of P ′ has either fewer than 2 cycles or exactly two

cycles with no leaves.

If the underlying graph of P ′ has fewer than 2 cycles, then the result follows from Theorem 3.3. If the

underlying graph of P ′ has two cycles γ and γ1 (say), then by applying Theorems 3.4 and 3.11 recursively

on the vertices of γ, we get P ′ requires unique inertia if and only if P ′′ requires unique inertia, where the

underlying graph of P ′′ is obtained from G′ by replacing γ with a positive loop such that the distance of the

loop from γ1 is even. By applying Lemma 3.15, we get P ′′, P requires unique inertia.

If the underlying graph G of P contain two cycles of orders of the form 4k + 1, k ∈ N, and a loop with

an even distance between the cycles, then P may not require unique inertia.

Example 3.18. Consider the symmetric sign pattern P = [pij ], pij ∈ {0,+}. From left to right, let P,

P ′ be the sign patterns corresponding to the graphs G, G′, respectively, given in Fig. 10.
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0

0 0

00

+0

00

0 0

+ + +

Figure 10. Using Theorem 3.4 and Corollary 3.6 to determine the inertia.

Then by recursively applying Theorem 3.4 and Corollary 3.6, we get that P requires unique inertia if

and only if P ′ requires unique inertia. Since G′ is a path of even length and the loops lie in odd-even-odd

ascending positions, respectively, so by Proposition 2.3, P ′ and P does not require unique inertia.

If the underlying graph G of P contain two cycles with order of the form 4k + 1, k ∈ N such that the

distance between the cycles is odd, then P may not require unique inertia.

Example 3.19. Consider the symmetric sign pattern P = [pij ], pij ∈ {0,+}. From left to right, let P,

P ′ be the sign patterns corresponding to the graphs G, G′, respectively, given in Fig. 11.

0

0 0

00

0

00

0 0

+ +

Figure 11. Using Theorem 3.4 and Corollary 3.6 to determine the inertia.

Then by recursively applying Theorem 3.4 and Corollary 3.6, we get that P requires unique inertia if

and only if P ′ requires unique inertia, and G′ is an edge with 2 positive loops. Clearly P ′ and P does not

require unique inertia.

If the underlying graph G of P contain two cycles one with order of the form 4k + 1, k ∈ N and the

other with order of the form 4k + 3, k ∈ N, then P may not require unique inertia.

Example 3.20. Consider the symmetric sign pattern P = [pij ], pij ∈ {0,+}. From left to right, let P,

P ′ be the sign patterns corresponding to the graphs G, G′, respectively, given in Fig. 12.

0

0 0

00

00

0

0

- 0 +

Figure 12. Using Theorem 3.4 and Corollary 3.6 to determine the inertia.
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Then by recursively applying Theorem 3.4 and Corollary 3.6, we get that P requires unique inertia if

and only if P ′ requires unique inertia. Clearly, (2, 1, 0), (1, 2, 0) ∈ In(P ′); hence, P ′ and P do not require

unique inertia.
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