Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 21, pp. 43-62, October 2010

SOLVABLE 3-LIE ALGEBRAS WITH A MAXIMAL
HYPO-NILPOTENT IDEAL N*

RUI-PU BAI', CAI-HONG SHENT, AND YAO-ZHONG ZHANGH

Abstract. This paper obtains all solvable 3-Lie algebras with the m-dimensional filiform 3-Lie
algebra N (m > 5) as a maximal hypo-nilpotent ideal, and proves that the m-dimensional filiform
3-Lie algebra N can’t be as the nilradical of solvable non-nilpotent 3-Lie algebras. By means of
one dimensional extension of Lie algebras to the 3-Lie algebras, we get some classes of solvable Lie
algebras directly.
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1. Introduction. The concept of n-Lie algebras appeared in two different con-
texts [1, 2]. In [1], Nambu introduced n-ary multilinear operations in his description of
simultaneous classical dynamics of n particles, and extended the Poisson bracket to the
n-ary multilinear bracket. In [2], Filippov formulated a theory of n-Lie algebras based
on his proposed (2n — 1)-fold Jacobi type identity and gave a classification for n-Lie
algebras of lower (< n+ 1) dimensions. The connection between the Nambu mechan-
ics and the Filippov’s theory of n-Lie algebras was established in 1994 by Takhtajan
[3]. Recently n-Lie algebras have found important applications in string and mem-
brane theories. For instance, in [4, 5] Bagger and Lambert proposed a supersymmetric
field theory model for multiple M2-branes based on the metric 3-Lie algebras. More
application of n-Lie algebras can be found in e.g., [6, 7, 8, 9, 10, 11, 12, 13].

In recent years, the structure of n-Lie algebras has been widely studied. Kasymov
[14] developed the structure and representation theory of n-Lie algebras. Ling [15]
proved that there is a unique (n + 1)-dimensional simple n-Lie algebra for n > 2 over
an algebraically closed field of characteristic zero. The first author of the current
paper and her collaborators showed in [16] that there exist only [§] + 1 classes of
(n+ 1)-dimensional simple n-Lie algebras over a complete field of characteristic 2 and
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gave a complete classification in [17] for six dimensional 4-Lie algebras. There are
other results on structures and representations of n-Lie algebras.

The structure of n-Lie algebras is very different from that of Lie algebras, due
to the n-ary multilinear operations involved. In particular, it turns out that the
fundamental identity for an n-Lie algebra is much more restrictive than the Jocobi
identity for a Lie algebra. One consequence is that higher, finite dimensional n-Lie
algebras may be rare and are difficult to find. So it is very important to construct
new examples of n-Lie algebras.

Filiform n-Lie algebras, i.e., nilpotent n-Lie algebras L satisfying dimL? = dimL —
n—i, are important class of nilpotent n-Lie algebras. In [18] we introduced the concept
of hypo-nilpotent ideals of n-Lie algebras, and proved that an m-dimensional simplest
filiform 3-Lie algebra Ny can’t be a nilradical of solvable non-nilpotent 3-Lie algebras.
By m-dimensional simplest filiform 3-Lie algebra, we mean an m-dimensional filiform
3-Lie algebra with the following multiplication table in the basis e, e, ..., €n,

(1.1) le1, €2, 6] = €j—1,4 < j <m.

Moreover, it was shown that there are only four classes of (m + 1)-dimensional and
one class of (m+2)-dimensional solvable non-nilpotent 3-Lie algebras with Ny as their
maximal hypo-nilpotent ideal.

In this paper we generalize the results of [18]. Namely we consider a more compli-
cated m-dimensional filiform 3-Lie algebra N (m > 5) defined by the multiplication
table (3.1) below (c.f. (1.1)). We obtain all solvable 3-Lie algebras with such an N
as a maximal hypo-nilpotent ideal and prove that N can’t be a nilradical of solvable
non-nilpotent 3-Lie algebras.

The organization for the rest of this paper is as follows. Section 2 introduces
some basic notions. Section 3 describes the structure of solvable 3-Lie algebras with
the maximal hypo-nilpotent ideal N. Section 4 studies the solvable 3-Lie algebras
with nilradical N. Section 5 gives an application of one dimensional extension of Lie
algebras.

Throughout this paper we consider 3-Lie algebras over a field F' of characteristic
zero.

2. Fundamental notions. First we introduce some notions of n-Lie algebras
(see [2, 14, 18]). A vector space A over a field F' is an n-Lie algebra if there is an
n-ary multilinear operation [ ,---, ] satisfying the following identities

(21) [Ila c wrn] = (_1)T(U)['ra'(l)7 T 7xa(n)]a
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and
n
(2'2) [[xlj...,xn],y%...’yn] = E [wl,---,[wi,yz,---,yn],---,wn],
i=1

where ¢ runs over the symmetric group S,, and the number 7(c¢) is equal to 0 or 1
depending on the parity of the permutation o.

A derivation of an n-Lie algebra A is a linear map D : A — A, such that for any
elements 1, ..., z, of A

D([zy, -, an]) = Z[‘rl’ e D(x), - ).
i=1
The set of all derivations of A is a subalgebra of Lie algebra gl(A). This subal-
gebra is called the derivation algebra of A, and is denoted by DerA. The map
ad(z1, - ,2pn-1) : A = A defined by ad(z1, -+, xn—1)(xn) = [21,---, p] for a7,
...y Ty € Ais called a left multiplication. It follows from (2.2) that ad(z1,- -+, zp—1)
is a derivation. The set of all finite linear combinations of left multiplications is an
ideal of DerA and is denoted by ad(A). Every element in ad(A) is by definition an
inner derivation, and for all x1,...,Zn—1,Y1,---,Yn—1 Of A,

(23) [ad(xl,--~,:cn,1),ad(y1,-~-,yn,1)]

=ad(wy, -, wp-1)ad(yr, - Yn—1) —ad(y1, -, Yn—1)ad(z1, -, 1)

n—1

= Za’d(ylv" '7[1715' "7'rnflay’i]a' o aynfl)-

i=1

Let A1, As, ..., A, be subalgebras of n-Lie algebra A and let [A1, Aa, ---, Ay
denote the subspace of A generated by all vectors [x1, x2, - - -, z,], where x; € A; for
i=1,2,...,n. The subalgebra [A, A, - -, A] is called the derived algebra of A, and is
denoted by A'. If A' =0, then A is called an abelian n-Lie algebra.

An ideal of an n-Lie algebra A is a subspace I such that [[,A,---,A] C I. If
A' # 0 and A has no ideals except for 0 and itself, then A is by definition a simple
n-Lie algebra.

An ideal I of an n-Lie algebra A is called a solvable ideal, if I(") = 0 for some
r >0, where I(©) = T and I'®) is defined by induction,

Js+1) — [](8)7](8),147 o Al
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for s > 0. When A = I, A is a solvable n-Lie algebra.

An ideal I of an n-Lie algebra A is called a nilpotent ideal, if I satisfies I" = 0
for some r > 0, where I° = I and I" is defined by induction, I"*! = [I", I, A,---, A]
forr>0. If I = A, A is called a nilpotent n-Lie algebra.

The sum of two nilpotent ideals of A is nilpotent, and the largest nilpotent ideal
of A is called the nilradical of A, and is denoted by NR(A).

Denote by A* an associative algebra generated by all operators ad(z), where
= (xy, -, p_1) € APV If I is an ideal of A, denote by I'*, K(I) and ad(I, A)
respectively the subalgebra of A*, the ideal of A* and the subalgebra of ad(A) gener-
ated by the operators of the form ad(e,z1, -+, 2p—2), c€ [,a; € Aji=1,...,n—2.
It follows at once from (2.3) that K(I) = I*- A* = A* - I*, and ad(I, A) is an ideal of
ad(A).

LEMMA 2.1. [14] An ideal I of an n-Lie algebra A is a nilpotent ideal if and only
if K(I) is a nilpotent ideal of the associative algebra A*.

An ideal I of an n-Lie algebra A may not be a nilpotent ideal although it is a
nilpotent subalgebra. This property is different from that of Lie algebras. In the
following, we concern such types of ideals of n-Lie algebras.

DEFINITION 2.2. Let A be an n-Lie algebra and I be an ideal of A. If I is a
nilpotent subalgebra but is not a nilpotent ideal, then I is called a hypo-nilpotent ideal
of A. If I is not properly contained in any hypo-nilpotent ideals, then I is called a
maximal hypo-nilpotent ideal of A.

From (2.2), a hypo-nilpotent ideal of A is a proper ideal, and the nilradical NR(A)
is properly contained in every maximal hypo-nilpotent ideals. But the sum of two
hypo-nilpotent ideals of A may not be hypo-nilpotent.

In the following, any brackets of basis vectors not listed in the multiplication table
of n-Lie algebras are assumed to be zero.

3. 3-Lie algebras with maximal hypo-nilpotent ideal N. In the following
we suppose that N is an m-dimensional filiform 3-Lie algebra with the multiplication
table

(3.1) [e1,e2,¢5] = ej—1, 4<j<m,
' le1,ej,em] =e€j—2, 5<j<m—1,
where ey, ..., e, is a basis of V.
LEMMA 3.1. Let N be an m-dimensional 3-Lie algebra with a basis e1,...,en

satisfying (3.1). Then the inner derivation algebra ad(N) has a basis ad(ey,ea),
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ad(ei,e;), ad(ez,e;), j = 4,5, ...,m. And with respect to the basis e1,---,em,
ad(ek, ;) is represented by the following matriz form
m m—1
ad(er, e2) = g Ejj_1,ad(er,em) = E Ejj 2+ Eapm_1,
j=4 Jj=

ad(e1, e;) = Ezi—1 4+ Enmi—2,ad(ez, ;) = By for 5 <i<m—1,
ad(e1,e4) = Ea3, ad(ez, e4) = Er3, ad(ez, em) = Eim-1,
where E;; is the (m x m) matriz unit.
Proof. The result follows from a direct computation. O

Let A be an (m+1)-dimensional 3-Lie algebra with the ideal N, and z,eq, ..., e

be a basis of A. Then the multiplication table of A in the basis z,e1,..., e, is given
by

[el,eg,ej] =€j—1, 4§]§m,
(32) [eluejuem] = €5-2, ) S] < m_17

m
['rveiaej] = Z a?jekv 1 S Za.] S m,
k=1

k k _ k . . m(m—1) .
where a;; € F,a;; = —aj;, 1 <4,j < m. Therefore, the following (=~5— x m) matrix
M determines the structure of A

1 2 3 4 m—1 m
aja aya aia aia © Qo Ay
1 2 3 4 m—1 m
ais ais ais ais © Qi3 a3
1 2 3 4 m—1 m
a14 a1q a1q Q14 T Qyy a14
1 2 3 4 m—1 m
ais ars ais a1 T 015 ays
1 2 3 4 m—1 m
Alm—2 Oim—2 Aim—2 Qim—2 - Quu-2 Oi;m-—2
1 2 3 4 m—1 m
Aim—1  Am-1  Am—-1 Aim—-1 - Aim—1 O1m-1
1 2 3 4 m—1 m
A1 A1 A1 A1 ' A1, A1
1 2 3 4 m—1 m
(33) M a3 a3 a3 23 T Ga3 ) a3
. = 1 2 3 4 m— m
az4 az4 24 24 T Qgy 24
1 2 3 4 m—1 m
azs azs azs azs © Qg Azs
1 2 3 4 m—1 m
Am—2  A2pm—2  Am_2 A2pm—_2 = Qop_9o  A2p_2
1 2 3 4 m—1 m
Aom—1  A2m—1  @2m—1 Aam-1 ° Qom—1 Q2m—1
1 2 3 4 m—1 m
A2 A2 A2 A2 T Qg A2
1 2 3 4 m—1 m
a3y a3y a3y a3y T Qgy a3y
1 2 3 4 m—1 m
Un—1m %m—1m Am—1m Om—1m Up—1m Am—1m
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The matrix M is called the structure matrix of A with respect to the basis x, ey, ...,

em.-
By the above notations we have the following result.

THEOREM 3.2. Let A be an (m + 1)-dimensional 3-Lie algebra with a mazimal
hypo-nilpotent ideal N. Then A is solvable, and up to isomorphism the following is
the only possibility for the structural matriz M of A:

0 1 0 0 0 0 0 0 0
0 0 m-—1 0 0 0 0 0 0
0 0 0 m— 2 0 0 0 0 0
0 0 0 0 m—3 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0
(34) M= 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 -+ 0 0 0 0
Moreover, the multiplication table of A in a basis x,e1,...,en (m >5) is as follows
el,eg,ej]zej_l Zf4§j§m,

I3617€2] = €2,

[
(3 5) [elaejaem]:ej—2 Zf5§j§m_17
' [
[x,e1,ex] =(m—k+2)er if3<k<m.

Proof. Since N is an ideal of A and dim A = m + 1, we have A' = [A, A, A] =
[A, A, N] C N. Then the structural matrix M is of the form (3.3) with respect to a
basis x,e1,...,em.

Firstly, imposing the Jacobi identities

[[I361762]76136j] = [[Ivelaej]aelveﬂ + [Iaelv [6276136j]] for 3 < .] <m— 1?
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and
[z, e1,ea],e1,em] = [[x, €1, em], €1, e2] + [z, €1, [e2, €1, €m]],
and using (3.2), we obtain

al,=a2 =00 =l = —al =0 for 3< j <m—2
al ! al +a2,4<j<m-—1;
1j—-1 = %15 1235 m )

a12—ajljl—ajlj2l,alfj—alj Lk#j—1, forda<k<m,5<j<m-—1,

and
2 m m—1 _ 1 _ 2 _ . m _
aty +aty, —ay, -1 = 0,01, 1 = aip_1 = aip,_1 =0,
1+1 1 1—1 o . m—1 _ m—2
apy. +ay, =0y, =0,4<i<m =20y, = aj, 5
respectively.

Secondly, imposing the Jacobi identities on {[z, e1, e2], e2,¢e;} for 3 < j < m, we

get
a%]—aQJ*O aJJrl aé;rzz---:ag}:()for3§j§m—1;
1 1 - k
a%J 1—a23 a12,4§j§m;a2j—a2j 1, ford<k<j<m.
From

[[$,61,6i],62,€j] = [[IaeQaej]velaei] + [Ia [615627€j]76i] = Oa for 3 < Za.] <m-— 17

[[z,e1,eq],e1,em] = [[x,€1,em], €1, €4],
and
[[z,e1,ei],e1,em] = [[x,€1,em], €1, €] — [x,e1,e;_2] for 5 <i <m —1,
we get

ZJ—O3<1]<m—11<k<ma1m:0,
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and
j i—2 k—2 -
al; +al, — a2 =0,af, =ai7A for k#i,5 <k <m-—1,

1 2 . m—2 _ m—1_ _m _
Q19 = Q9 = Qy;_5 =y, 5 = ay;_g = 0.

m 2 mo_
Then we have af}, = 2a%,, als = 0.

Again from

[[$,62,€4],€1,6m] = [[$,€1,€m],€2,€4],
[[Iaelve’m]vere‘l] = [[‘I7€2564]56176m] + [I,eg,em],
[[$7€27€i]7€176m] = [[:Euelaem]ae2uei] - [$7€276i—2]7 ) S 1 S m — 17

[z, e1,e4], €2, em] = [[x, €2, €m], €1, €4],
and
[z, e1, €], e2, em] = [[x, €2, €m], €1, €i],
we get
al O,aqum:O,lgkgm,a’;izagi_if0r5§k§m—1,

im —

T _ 2 _ m—-2_ m-1_ m  __ 1 _ 2 m
Agig = Q%9 = Qg _5 = Ay;_5 = Ay;_5 =0, aj, =0, a3,, =0 and a3;, = 0.
By

[[x76276m]7€176i] = [[xaelaei]ae2uem] - [xaei—laem] + [$,€2,€i_2],5 S 1 S m — 17

[['rv €2, 64]5 €2, e’m] = [[ZE, €2, em]v €2, 64]5

and
[z, e1, em], €2, em] = [[x, e2, em], €1, em] + [T, €m—1, €m],
we obtain
al | =al 5, 1<j<m,ad, =0,d, =a>2 for5<i<m-—1,
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Therefore, we get

ELA

o1

ad(z,e1)|n
0 0 0 0 0 0 0 0 0
0 afy af ajy ajy ayy ayy afy ! 0
0 0 rad 0 0 0 0 0 0
0 0 a™' 1y, 0 0 0 0 0
0 0 a3 a7t riad, 0 0 0 0
=10 0 at oand et 0 0 0 0 ,
0 0 a%mfl a?mfl atlimfl a’ﬁ;l rm,4a%2 0 0
0 0 a}y aipoy afyy U“Tv;—gl ‘flnnfl Tm—30%s 0
0 0 ai)m ailm a?m agnn:3 agnnzz agnn:l rm—Qa’%Q
where r; =m—jfor1 <j<m-—2, ali;nlfl :agl—l—alim ford <i<m-—2;
ad(z, e2)|n
0 —ai, —afy, —aiy, —ai, —afy ey ? —agyto0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 amt 0 0 0 0 0 0
o 0 ah? oalt o0 0 0 0 0
oo 0 el oal? eyt 0 0 0 0 |’
o 0 a3, dS, a5 ay -t 0 0 0
0 0 a3, a3, d, agn® agyt 0 0
0 0 a3, a3, di, ag.” ay,’ gt 0
—ad(x, em)|N
0 0 af, df, di, afy” ai? oafy'oaf,
0 0 a3, a3, d, ag° ayn? oag.t 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
o 0 apmtooo0 0 0 0 0 0
10 0 ap? et o0 0 0 0 0
0 as,, ab. a5, 0 0 0 0
0 0 a3, dS, al. ag’>t o0 0 0
0 0 0 0 0 0 0 0 0
If we replace x by = — a;’lrglel + a’lnmfleg — alqeq — ajyes — - — a’l’;lem, the above
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maps are reduced to

ad(z,e1)|n
0 0 0 0 0 0 0 0 0
0 ay, 0 0 0 0 0 0 0
0 0 mad, 0 0 0 0 0 0
0 0 0 7mal, 0 0 0 0 0
0 0 b2 0 rzad, 0 0 0 0
=10 o b om0 0 0 0 0 ,
0 0 3, b5, b, - 0 rnm_saly 0 0
0 0 bf, 3, S, - b2 0 Trn—303, 0
0 0 b, b, b, - b2 0 Trm—2G3s
where r; =m —j, for 1 <j<m—2,

ad(z, es)|n

0 —a?y, O 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
I O T R 0 0 0 0 0
o0 0 alnt el o0 0 o o0 o0 |’

0 a,, as, ab. 0 0 0 O

0 0 as,, a3, as,, ag% 0 0 0

0 0 as,, a%m as,, - a’2”m_3 a;"m_2 0 0
—ad(z, em)|n

0 0 b}, b, b, - O W00 243,

0 0 a3, a3, ad, -+ ag., 3 ag, 200 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
o 0o o 0 0 0 0 0 0
10 0 af? 0 0 0 0 0 0

0 0 d, ab, d5, 0 0

0 0 a3, ds, al., 0 0 0 0

0 0 0 0 0 0 0 0 0

Again by the Jacobi identities for vectors {[x,e1, €], z,€;} for 3 < i < m, we get
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2 1/ _ s _ . 2 . 2 _ . .
ajqab,, =0 for i =3,4,...,m —2. Since af, # 0 (if a7, = 0, then A is nilpotent), we

get ab, =0, fori=3,4,...,m—2.

Therefore,
ad(z,e1)|n
0 O 0 0 0 0 0 0 0
0 a 0 0 0 0 0 0 0
0 0 riajs 0 0 0 0 0 0
0 O 0 r2a3y 0 0 0 0 0
0 0 b2 0 r3ai, 0 0 0 0
=l o o P our?o0 0 0 0 0 ,
o o0 3, b, b, - 0 Tm—4G3 0 0
0o o0 b}, b}, b5, - b 0 Tm—307 0
0 0 b?m béllm b?m ’ binnjg bin7rj2 0 rm—2a%2
where rj =m—jfor1 <j<m-—2,
ad(z, e2)|n
0 —a2, 0 0 0 0 0 0 O
0 0 0 0 O 0 0 0 O
0 0 0 0 O 0 0 0 O
0 0 0 0 O 0o 0 0 O
- 0 0 0 0 O 0o 0 0 O
N 0 0 0 0 O 0o 0 0 O ’
0 0 0 0 0 ©0
0 0 0 0 O 0o 0 0 ©0
0 0 0 0 O 0o 0 0 O
—ad(z, em)|n
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 '
N 0 0 0 0 0 0 0 0 0 ’
0 0 0 0 0
0 0 0 0 0 0 0 0 0
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that is

[x,e1,e2] = a%zeg, [z,e1,e3] = (m — 1)@%263, [z,e1,e4] = (M — 2)a%264,

[z, e1, er] me Miei 4 (m — k+2)a3yer, for k=5,6,...,m,

and other brackets of the basis vectors are equal to zero.

For any [ satisfying 3 < | < m — 2, we take a series of linear transformations
defined by

bm +1

(I —1)a

Then the basis vectors €1, ..., &, satisfy (3.1). After replacing x by -3, we get the
12

ép=epfor 1 <k<Il+1andé,=e— ek,l+1forl+2§k§m.

structural matrix M of A with respect to the basis vectors x, €1, ..., &, as follows
0 1 0 0 0 -0 0 0 O
0 0 m-1 0 0 0O 0 0 0
0 0 0 m— 2 0 0 0 0 0
0 0 0 0 m—3 0 0 0 0
0 0 0 0 0 0O 0 0 0
0 0 0 0 0 0 4 0 O
0 0 0 0 0 0o 0 3 0
0 O 0 0 0 0O 0 0 2
M- 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0O 0 0 0
0 0 0 0 0 0O 0 0 0
0 0 0 0 0 0O 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 -0 0 0 O
Therefore, the multiplication table of A is
e1,e2,6;] =ej_1 for 4 < j <m,

x, €1, 62] = €2,

[

le1, €5, em] = €j_2 for5<j<m-—1,

[

[x,e1,ex] = (m —k+2)e, for 3<k<m. |
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THEOREM 3.3. Let A be a solvable (m + k)-dimensional 3-Lie algebra with the
maximal hypo-nilpotent ideal N. Then we have k = 1.

Proof. If k > 2, let x1,...,xk,e1,...ey be a basis of A. Thanks to the solvability
of A, we have [A, A, A] C N. By the discussions of the proof of Theorem 3.2, we
might as well suppose

ad(z1,e1)|ny = diag(0,1,m —1,m —2,...,4,3,2),

0O -1 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0

ad@ellv =1 o o g o o o 0o o o |’
0 0
O 0 0 0 0 0 0 0 0

(e
(an)
(en)
(en]
(en)
(en)
(an)
(en)
(en)

0O 0 0 0 O 0 0 0 -2
0 0 0 0 O 0 0 0 0
0 0 0 0 O 0 0 0 0
0O 0 0 0 O 0 0 0 0
a1, ) = 0O 0 0 0 O 0 0 0 0 |
0O 0 0 0 O 0 0 0 0
0 0 0
0O 0 0 0 O 0 0 0 0
0O 0 0 0 O 0 0 0 0
ad($2,€1)|N
0 0 0 0 0 0 0 0 0
0 a2, O 0 0 0 0 0 0
0 0 ra 0 0 0 0 0 0
0 0 0 a2y, 0 0 0 0 0
0 0 b2 0 riad, 0 0 0 0
=l o o P o0 0 0 0 0 7
0o o0 b, b, b, - 0 rp_gady 0 0
0 0 bf, b, O, - bl 0 Tm—303; 0
0 0 b, b, b, - b7 0 Tm—207s
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wherer; =m—jfor1<j<m—2

0 —a}, O 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 ay? 0 0 0 0 0 0
d — 2m
ad(zs, €2l 0 0 a3 o2 0 o o o |
0 @, aS,  d, 0
0 0 a3, a3, dS,, ag’=? 0 0 0
0 0 a3, a3, d, ag,” ap.? 00
0 0 a3, a3, a3, - a’ ap? 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
o) 0 0 0 0 0 0 0 0 0
- 2,Cm)IN = m—
0 0 a2 0 0 0 0 0 0
agm Ao agm 0 0
0O 0 a5, dS, al., 0 0 0 0
0 0 0 0 0 0 0 0 0

Therefore, ad(z2, e1)|n — a?pad(z1,e1)|n, ad(z2, €2)| N — afpad(x1,e2)|n and
ad(za, em)|N — aﬂad(:z:l, em)|N

are nilpotent. It follows that I = F(xg — afyr1) + N is an (m + 1)-dimensional
hypo-nilpotent ideal of A. This is a contradiction. Therefore, we have k = 1.0

COROLLARY 3.4. There are no (m + k)-dimensional solvable 3-Lie algebras with
a mazimal hypo-nilpotent ideal N when k > 2.
4. 3-Lie algebras with nilradical N. In this section we study the solvable

3-Lie algebras with the nilradical N.

THEOREM 4.1. There are no solvable non-nilpotent 3-Lie algebras with nilradical
N.

Proof. First let A be an (m + k)-dimensional 3-Lie algebra with the nilpotent
ideal N, where 1 < k < 2. We will prove that A is nilpotent.
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If kK = 1, suppose z,e1,...,¢e, is a basis of A. Then the associative algebra

A* is generated by left multiplications ad(x,e;) and ad(e;,e;), where 1 < 4,5 < m.
Therefore, we have A* = K(N, A). Tt follows from Lemma 2.1 that A is nilpotent.

If k =2, let z1,22,€1,...,¢m, be a basis of A. Set B = Fxy + Fe; +---+ Fe,,
and C = Fxo+ Fey+---+ Fey,. Then B and C are (m + 1)-dimensional subalgebras
of A with the nilpotent ideal N. It follows from the result of the case k = 1, and
Theorem 3.2 that the matrices of ad(x;, e;)|n (¢ = 1,2,1 < j < m) with respect to
€1,...,en are of the form

0 0 as a4 as -3 Qm—2 0 0

0 0 b3 b4 b5 bm,3 bm,Q 0 0

0 0 0 0 0 0 0 0 O

0 O 0 0 0 0 0 0 O

g 0 0 c3 0 0 0 0 0 0
0 O c4 c3 0 0 0 0 0 ’

Cm—4 Cm—5 Cm—6 " 0 0 0 0

0 0 Cm—3 Cm—4 Cmpm—5 --* C3 0 0 0

0 0 Cm—2 Cm—3 Cm—4 **° C4 C3 0 0

where a;,b;,¢; € F,3 <1 < m — 2. Therefore, ad(z;, e;) are nilpotent maps of A for
i=1,2;7=1,...,m. Now suppose

m
[,Tl,,fg,ei] = E Tij€j, 1 S ) S m.
Jj=1

With the help of the Jacobi identities for {[z1, 22, €;], €1, ea}, {[x1, 22, €], e1,e4}, i =
1,2,...,m; {[z1, 22, 1], €2,€;} for 4 <i < m, we get that ad(z1,z2)|n has the form

0 0 rs 0 O 0O 0 0 O
0 0 13 0 O 0O 0 0 O
0 O 0 0 O 0 0 0 O
0 0 0 0 0 0o 0 0 O
0 0 0 0 0 0O 0 0 O
0 O 0 0 O 0 0 0 O
0 O 0 0 O 0O 0 0 O
0 0 0 0
0 0 0 o o0 -~ 0 0 0 O
0 0 r3 O O --- 0 O 0 O

Then ad(z1, x2)|n is nilpotent, and ad(z1, x2) is also nilpotent to A. This proves that
A is nilpotent when k = 2.
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Last we suppose that there is a solvable non-nilpotent (m + k)-dimensional 3-Lie
algebra with the nilradical N for & > 3. Let z1,...,x,€1,...,e, be a basis of A.
Then there exist x;,z; such that ad(z;, z;)|n is not nilpotent. Set T'= Fz; + Fx; +
Fei +---+ Fe,,, then N is a nilpotent ideal of (m + 2)-dimensional subalgebra T
From the above discussions, T is a nilpotent subalgebra. Hence there exists an integer
r such that ad”(z;,z;)(T) = 0. Since A is solvable and N is the nilradical of A, we
have [A,---, A] C N. Therefore,

ad™ (s, 2)(A) C ad"(zi,2;)(N) € ad” (2, 2;)(T) = 0.
This is a contradiction. O

REMARK 4.2. The solvable condition in Theorem 4.1 is necessary. See the fol-
lowing example. Let A be an (m + 4)-dimensional 3-Lie algebra with the basis x1, X2,
T3, T4, €1, ..., €m, and the multiplication table

I1,$2,$4] = I3,
,’El,.’L’3,.’L’4] = T2,

2
I47€1562] = €3,
e1,e2,e;] =ej_1 ford <j<m,

[
[
[, 23, 4] = 21,
[
[
[

e1,€j,em] =ej_o for5<j<m-—1.
By a direct computation we get that N is the nilradical of A, and

A(l):FI1+F$2+FI3+F€3+"'—|—F6m,1,

A®) = Fay + Foo + Fag #0,s > 1.

1t follows that A is an unsolvable 3-Lie algebra.

5. One dimensional extension of Lie algebras. In this section we describe
the one dimensional extension of Lie algebras, first introduced in [6]. As an application
of it we get all classes of solvable Lie algebras with the special nilradical given in
[19, 20].

For any given s-dimensional Lie algebra g with a basis y1,...,ys and the multi-
plication table

s
k=1
k

where aj; are structure constants, we can define a corresponding 3-Lie algebra as

follows. Let yo, y1,. .., ys be the basis of the (s+1)-dimensional vector space Lqy. The
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3-ary multiplication table of L, is defined by

s

[yan’ivyj] = kz a"]ijk; 1 S 7’5.] S S,
=1

[ytayivyj] = 071 S taiaj S S.

It is not difficult to check that L, is a 3-Lie algebra. L, is called the one dimensional
extension of the Lie algebra g. Then we have following results.

THEOREM 5.1. Let I be a subalgebra of g, then I is an ideal of Lie algebra g if
and only if I is an ideal of 3-Lie algebra Ly, and I is a solvable (nilpotent) ideal of g
if and only if I is a solvable (nilpotent) ideal of L.

Proof. Since [Lg, Ly, I] = [yo0,9,I] = [g,I] C I, we get the first result. Denote the
derived series (descending central series ) of I in 3-Lie algebra Ly by I, és) (I;), that is
Ig(s+1) _ [155)7 ;S),LgL (I;Jrl — [I;,I,Lg]) for s > 0, Iéo) =71=10), (Ig =1=1.
By induction on s we get

s+ — [1(5)71(5)] - [yO,I(S),I(S)] - [Lg,Iés),Ig(S)] - [g(s-irl)’S >0,

Y= 1°1) = [yo, I°, 1) = [Lg, I3, 1] = I;T, s > 0.

g9 *g»

It follows that I(**1) = 0 if and only if I_(SSH) = 0, and I**! = 0 if and only if
[t =0.0

THEOREM 5.2. Let I be an ideal of Lie algebra g. Then J = I + Fyq is an ideal

of 3-Lie algebra Ly, and I is a solvable ideal of g if and only if J is a solvable ideal
of Lg.

Proof. 1t is evident that J is an ideal of L, if I is an ideal of L. Since
JO =1, L) € 1,J® = [JW g L] C[I,I,L,] = [I,1] =1V,
by induction on s, we get
JEHD = [J& g& ] [16D 16D = 1),
Conversely,
I =11 = I1,y0) C [, ], Ly} = I,
by induction on s, we get
T+ — [[(5)7](5)] — [[(5)7](5)7%] C [J(S), J(S),Lg] — Jls+D),

Therefore, I is a solvable ideal of L if and only if J is a solvable ideal of L,. O
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REMARK 5.3. If I is a nilpotent ideal of g, then J = I + Fyg is a nilpotent
subalgebra of Ly, but J may not be a nilpotent ideal of L. See the following example.

EXAMPLE 5.4. Suppose g = Fx + Fey + Fea+ Fes + Fey is a 5-dimensional Lie
algebra and the multiplication table of g in the basis x,e1, e, e3,e4 1S

I = Fey + Fey+ Fes+ Fey is a nilpotent ideal of g since I*> = 0. Let Ly, = Fyo + g is
the one dimensional extension of g. Then the multiplication table of Ly in the basis
Yo, T, €1, €2, €3, €4 15 as follows

Then J = Fyo+ 1 = Fyo + Fei1 + Fey + Fesz + Fey is an ideal of Ly. Since
J* =J'=Fey + Fey + Feg # 0 for s > 1, J is not a nilpotent ideal of L.

Suppose N7 = Ng = Fey + --- + Fe,, ( as vector spaces), with m > 4, the
multiplication table of Lie algebra Ny in the basis e, ..., e,, is as follows

[e1,e] =ej_1 for 3<j <m,
and the multiplication table of Lie algebra Nj in the basis eq,..., e, is

[e1,e;] =ej_q1 for 3<j <m,
[ejvem] =€j—2 for 4 Sj S m — 1.

In [19, 20], authors constructed all solvable Lie algebras with the nilradical Ny
and Nj respectively. By Theorem 3.1, and Theorem 4.1 and Theorem 4.2 in [18], we
have

(1). Let A be an (m + k)-dimensional solvable Lie algebra with the nilradical
Ny (k > 1). Then we have k = 1, and up to isomorphism the following is the only
possibility:

le1,ej] =ej_1 for 3<j <m,
lej,em] =ej_a for4<j<m-—1,
[z, e1] = e
[, ex] =

x, e (m k+2)eg, for 2 < k < m.
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(2). Let A be an (m + k)-dimensional solvable Lie algebra with the nilradical Ny
(k> 1,m > 4). Then we have kK = 1 or k = 2. And in the case of k = 1, up to
isomorphisms one and only one of the following possibilities holds:

e1,¢5] = €j-1,

[

[:v, 62] = €9, [61, ej] = ejfl,
(Ml). [x, 63] = e3, (MQ) [LL', 61] = €1,

[ =2 [,e/] = (m — t)ey;

zyer] = 3 br_prieg + ey
k=2

[elaej] = €51, [61763‘] = €51,
(M?)) [.I, 61] = €1, (M4) [Ia 61] = €1 — €Em,
[x,e¢] = (m —t + a)ey; [z,e:] = (m —t+ 1ey;

where 3<j<m,2<t<m,4<r<m,bj,a€F,and a #0.
In the case of k = 2, up to isomorphism the only possibility is the following:

le1,€e] =ej—1 for 3<j <m,
[:E ]_627

[21,€;] = (m —1i)e; for 2 < i < m,
[x2,e;] = e; for 2 <i < m.
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