

A. HORN'S RESULT ON MATRICES WITH PRESCRIBED SINGULAR VALUES AND EIGENVALUES*

TIN-YAU TAM[†]

Abstract. We give a new proof of a classical result of A. Horn on the existence of a matrix with prescribed singular values and eigenvalues.

Key words. Eigenvalues, singular values.

AMS subject classifications. 15A45, 15A18.

Let $A \in \mathbb{C}_{n \times n}$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A arranged in the order $|\lambda_1| \geq \cdots \geq |\lambda_n|$. The singular values of A are the nonnegative square roots of the eigenvalues of the positive semi-definite matrix A^*A and are denoted by $s_1 \geq \cdots \geq s_n$. Weyl's inequalities [7] provide a very nice relation between the eigenvalues and singular values of A:

(1.1)
$$\prod_{j=1}^{k} |\lambda_j| \le \prod_{j=1}^{k} s_j, \quad k = 1, \dots, n-1,$$

(1.2)
$$\prod_{j=1}^{n} |\lambda_j| = \prod_{j=1}^{n} s_j$$

The equality follows from two ways of expressing the absolute value of the determinant of A. A. Horn [2] established the converse of Weyl's result.

THEOREM 1.1. (A. Horn) If $|\lambda_1| \geq \cdots \geq |\lambda_n|$ and $s_1 \geq \cdots \geq s_n$ satisfy (1.1) and (1.2), then there exists $A \in \mathbb{C}_{n \times n}$ such that $\lambda_1, \ldots, \lambda_n$ are the eigenvalues and s_1, \ldots, s_n are the singular values of A.

Horn's original proof is divided into two cases: (i) $s_n \neq 0$ (the nonsingular case) and (ii) $s_n = 0$ (the singular case. There is a typo: $C_{m,m+1} = \gamma$ and $C_{i,i+1} = \alpha_i$ should be $C_{m+1,m} = \gamma$ and $C_{i+1,i} = \alpha_i$ on [2, p.6]). In this note we provide a new proof of Horn's result. Our proof differs from Horn's proof in two ways that (i) our proof is divided into two cases according to $\lambda_1 = 0$ and $\lambda_1 \neq 0$, and (ii) our induction technique is different. It is very much like Chan and Li's technique [1] (the same

^{*}Received by the editors on June 10, 2009. Accepted for publication on July 31, 2010. Handling Editors: Roger A. Horn and Fuzhen Zhang.

 $^{^\}dagger Department$ of Mathematics and Statistics, Auburn University, AL 36849–5310, USA (tamtiny@auburn.edu).

T.Y. Tam

technique is also used in [8]) for proving another result of Horn [3] (on the diagonal entries and eigenvalues of a Hermitian matrix): ours is multiplicative and Chan and Li's is additive. See [4, Section 3.6] for a proof of Theorem 1.1 using the result of Horn [3]. Also see [5] for an extension of Weyl-Horn's result and a numerically stable construction of A. A technique similar to that of Chan and Li can be found in Thompson's earlier work [6] on the diagonal entries and singular values of a square matrix.

Proof. We divide the proof into two cases: nilpotent or not. Case i: $\lambda_1 = 0$. Then $s_n = 0$ by (1.2) and we choose

$$A := \begin{pmatrix} 0 & s_1 & & \\ & 0 & \ddots & \\ & & & s_{n-1} \\ & & & 0 \end{pmatrix}$$

Case ii: $\lambda_1 \neq 0$. We will use induction on *n*. When n = 2, the matrix

$$A = \begin{pmatrix} \lambda_1 & \mu \\ 0 & \lambda_2 \end{pmatrix}$$

has singular values $s_1 \ge s_2$ if we set

$$\mu := (s_1^2 + s_2^2 - |\lambda_1|^2 - |\lambda_2|^2)^{1/2}.$$

Suppose that the statement of Theorem 1.1 is true for $\lambda_1 \neq 0$ when $n = m \geq 2$. Let n = m + 1 and let $j \geq 2$ be the largest index such that $s_{j-1} \geq |\lambda_1| \geq s_j$. Clearly $s_1 \geq \max\{|\lambda_1|, s_1s_j/|\lambda_1|\} \geq \min\{|\lambda_1|, s_1s_j/|\lambda_1|\}$. Then there exist 2×2 unitary matrices U_1 and V_1 such that

$$U_1 \begin{pmatrix} s_1 \\ s_j \end{pmatrix} V_1 = \begin{pmatrix} \lambda_1 & \mu' \\ 0 & s_1 s_j / |\lambda_1| \end{pmatrix},$$

where $\mu' = (s_1^2 + s_j^2 - |\lambda_1|^2 - s_1^2 s_j^2 / |\lambda_1|^2)^{1/2}$. Set $U_2 := U_1 \oplus I_{m-1}, V_2 := V_1 \oplus I_{m-1}$. Then

$$A_{1} := U_{2} \operatorname{diag}(s_{1}, s_{j}, s_{2}, \dots, s_{j-1}, s_{j+1}, \dots, s_{m+1})V_{2}$$

= $\begin{pmatrix} \lambda_{1} & \mu' \\ 0 & s_{1}s_{j}/|\lambda_{1}| \end{pmatrix} \oplus \operatorname{diag}(s_{2}, \dots, s_{j-1}, s_{j+1}, \dots, s_{m+1}).$

It suffices to show that $(s_1s_j/|\lambda_1|, s_2, \ldots, s_{j-1}, s_{j+1}, \ldots, s_{m+1})$ and $(\lambda_2, \ldots, \lambda_{m+1})$ satisfy (1.1) and (1.2). Since $s_{j-1} \ge |\lambda_1| \ge |\lambda_2|$,

$$|\lambda_2| \le \max\{s_1s_j/|\lambda_1|, s_2, \dots, s_{j-1}, s_{j+1}, \dots, s_{m+1}\}.$$

26

Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 21, pp. 25-27, October 2010

A simple proof of Horn's result

Moreover

$$\prod_{i=2}^{k} |\lambda_{i}| \leq |\lambda_{1}|^{k-1} \leq \prod_{i=2}^{k} s_{i}, \quad k = 2, \dots, j-1,$$

$$\prod_{i=2}^{k} |\lambda_{i}| = \frac{1}{|\lambda_{1}|} \prod_{i=1}^{k} |\lambda_{i}| \leq \frac{s_{1}s_{j}}{|\lambda_{1}|} \prod_{i=2, i \neq j}^{k} s_{i}, \quad k = j, \dots, m, \quad \text{by (1.1)}$$

$$\prod_{i=2}^{m+1} |\lambda_{i}| = \frac{s_{1}s_{j}}{|\lambda_{1}|} \prod_{i=2, i \neq j}^{m+1} s_{i} \quad \text{by (1.2)}.$$

We consider two cases: (a) $\lambda_2 = 0$ and apply Case i. (b) $\lambda_2 \neq 0$ and apply the induction hypothesis in Case ii. For both cases, there exist $m \times m$ unitary matrices U_3 , V_3 such that

$$U_3 \operatorname{diag}\left(\frac{s_1s_2}{|\lambda_1|}, s_2, \dots, s_{j-1}, s_{j+1}, \dots, s_{m+1}\right) V_3$$

is upper triangular with diagonal $(\lambda_2, \ldots, \lambda_{m+1})$. Then $A = U_4 A_1 V_4$ is the desired matrix, where $U_4 := 1 \oplus U_3$, $V_4 := 1 \oplus V_3$. \square

Acknowledgment: The author is very thankful to Roger Horn for many valuable comments and suggestions.

REFERENCES

- N.N. Chan and K.H. Li. Diagonal elements and eigenvalues of a real symmetric matrix. J. Math. Anal. Appl., 91 (1983) 562–566.
- [2] A. Horn. On the eigenvalues of a matrix with prescribed singular values. Proc. Amer. Math. Soc., 5 (1954) 4–7.
- [3] A. Horn. Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math., 76 (1954), 620–630.
- [4] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge Univ. Press, 1991.
- [5] C.K. Li and R. Mathias. Construction of matrices with prescribed singular values and eigenvalues. BIT 41 (2001) 115-126.
- [6] R.C. Thompson. Singular values, diagonal elements, and convexity. SIAM J. Appl. Math., 32 (1977) 39–63.
- [7] H. Weyl. Inequalities between the two kinds of eigenvalues of a linear transformation. Proc. Nat. Acad. Sci. U.S.A., 35 (1949) 408–411.
- [8] H. Zha and Z. Zhang. A note on constructing a symmetric matrix with specified diagonal entries and eigenvalues. BIT, 35 (1995) 448–452.

27