GENERALIZED SCHUR COMPLEMENTS OF MATRICES AND COMPOUND MATRICES

JIANZHOU LIU† AND RONG HUANG‡

Abstract. In this paper, we obtain some formulas for compound matrices of generalized Schur complements of matrices. Further, we give some Löwner partial orders for compound matrices of Schur complements of positive semidefinite Hermitian matrices, and obtain some estimates for eigenvalues of Schur complements of sums of positive semidefinite Hermitian matrices.

Key words. Löwner partial order, generalized Schur complement, compound matrix, eigenvalues.

AMS subject classifications. 15A45, 15A57.

Let \(\mathbb{C} \), \(\mathbb{R} \) and \(\mathbb{R}_+ \) denote the set of complex, real, and positive real numbers respectively. Let \(\mathbb{C}^{m \times n} \) denote the set of \(m \times n \) complex matrices. Let \(N_n \) denote the set of \(n \times n \) normal matrices. Let \(H_n \) denote the set of \(n \times n \) Hermitian matrices, and let \(H_n^\geq (H_n^>) \) denote the subset consisting of positive semidefinite (positive definite)
Hermitian matrices. For $A \in \mathbb{C}^{m \times n}$, the rank of A is denoted by $r(A)$. Denote by A^* the conjugate transpose matrix of A. For $A, B \in H_n^\geq$, write $B \geq A$ if $B - A \in H_n^\geq$. The relation \geq is called the Löwner partial order. For $A \in \mathbb{C}^{n \times n}$, we always arrange the eigenvalues of A as $|\lambda_1(A)| \geq \cdots \geq |\lambda_n(A)|$. For $A \in \mathbb{C}^{m \times n}$, denote the column space of A by $\mathbb{R}(A)$.

Let k be an integer with $1 \leq k \leq n$. Define

$$Q_{k,n} = \{ \omega = \{\omega_1, \ldots, \omega_k\} : \omega_i \in \mathbb{R} \text{ and } 1 \leq \omega_1 < \cdots < \omega_k \leq n \}.$$

Given a matrix $A = (a_{ij}) \in \mathbb{C}^{m \times n}$. Let k and r be integers satisfying $1 \leq k \leq m$ and $1 \leq r \leq n$, respectively. If $\alpha \in Q_{k,m}$ and $\beta \in Q_{r,n}$, then $A(\alpha, \beta)$ denotes the $k \times r$ matrix whose (i,j) entry is a_{α_i, β_j}. If α is equal to β, $A(\alpha|\alpha)$ is abbreviated to $A(\alpha)$. Let $A \in \mathbb{C}^{m \times n}$, $l = \min\{m, n\}$, $k \in L = \{1, 2, \ldots, l\}$. We denote by $C_k(A)$ the kth compound matrix. Let all the elements of $Q_{k,m}$ be ordered lexicographically; \prec denotes the lexicographical order. Let $Q_{r,m} = \left\{ \alpha_{i} | i = 1, \ldots, \binom{m}{r} \right\}$ satisfy $\alpha_1 \prec \alpha_2 \prec \cdots \prec \alpha_{\binom{m}{r}}$. Define a mapping $\sigma : \sigma(\alpha_i) = i$; it is a one to one correspondence. We denote $\sigma(\alpha)$ by j_α if $\alpha \in Q_{r,m}$. If $\alpha \in Q_{r,m}$ and $\beta \in Q_{k,n}$, then A_{j_α, j_β} denotes the (j_α, j_β) entry of $C_k(A)$.

Let $A \in \mathbb{C}^{m \times n}$. If $X \in \mathbb{C}^{n \times m}$ satisfies the equations

(i) $AXA = A$,
(ii) $XAX = X$,
(iii) $(XA)^* =XA$,
(iv) $(AX)^* = AX$,

then X is called the Moore-Penrose (MP) inverse of A.

Let $A \in \mathbb{C}^{m \times n}$, $\alpha \in M$, $\beta \in N$, $\alpha' = M - \alpha$, and $\beta' = N - \beta$. Then

$$A/(\alpha, \beta) = A(\alpha', \beta') - A(\alpha', \beta)\{A(\alpha, \beta)\}^+A(\alpha, \beta')$$

is called the generalized Schur complement with respect to $A(\alpha, \beta)$. If $A(\alpha, \beta)$ is a nonsingular matrix, then $A/+(\alpha, \beta) = A/(\alpha, \beta)$ is called the Schur complement with respect to $A(\alpha, \beta)$. If $\alpha = \beta$, we define $A/+(\alpha, \beta) = A/+(\alpha, \alpha)$ and $A/(\alpha, \beta) = A/(\alpha, \alpha)$ respectively. In [1], Ando shows that if $A, B \in H_n^\geq$, then

$$(A + B)/\alpha \geq A/\alpha + B/\alpha,$$

and

$$A^{\frac{1}{2}}/\alpha \geq (A/\alpha)^{\frac{1}{2}}.$$

In this paper, we provide some similar results for compound matrices of the Schur complements of positive semidefinite Hermitian matrices and obtain some estimates for eigenvalues.
2. Some formulae for compound matrices of generalized Schur complements of matrices. In this section, using properties of compound matrices and \(M P \) inverses, we obtain some formulae for compound matrices of generalized Schur complements of matrices.

Lemma 2.1. Let \(A \in \mathbb{C}^{m \times n} \). Then

\[
C_k(A^+) = [(C_k(A))^+]^+.
\]

Proof. By properties of compound matrices, we have

i. \(C_k(A) = C_k(AA^+A) = C_k(A)C_k(A^+)C_k(A) \),

ii. \(C_k(A^+) = C_k(A^+ AA^+) = C_k(A^+)C_k(A)C_k(A^+) \),

iii. \(C_k(A^+A) = C_k(A^+)C_k(A) \),

iv. \(C_k(AA^+) = C_k(A)C_k(A^+) \).

Thus, by equations (i)-(iv) of (1.2), we easily get that \(C_k(A^+) = [C_k(A)]^+ \). \(\square \)

Lemma 2.2. ([4]) Let \(A \in \mathbb{C}^{m \times n} \) be partitioned as

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix},
\]

where

\[
\begin{align*}
\text{r} \left(\begin{array}{c}
A_{11} \\
A_{21}
\end{array} \right) &= \text{r}(A_{11}, A_{12}) = \text{r}(A_{11}), \\
\text{r} \left(\begin{array}{c}
A_{12} \\
A_{22}
\end{array} \right) &= \text{r}(A_{21}, A_{22}) = \text{r}(A_{22} - A_{21}A_{11}^+A_{12}).
\end{align*}
\]

Then

\[
A^+ = \begin{pmatrix}
A_{11}^+ + A_{11}^+A_{12}S^+A_{21}^+A_{11}^+ & -A_{11}^+A_{12}S^+ \\
-S^+A_{21}^+A_{11}^+ & S^+
\end{pmatrix},
\]

where \(S = A_{22} - A_{21}A_{11}^+A_{12} \).

Lemma 2.3. Let \(A \in H_{n}^{\geq} \) be partitioned as (2.2) with

\[
\text{r}(A) = \text{r}(A_{11}) + \text{r}(A_{22}).
\]

Then (2.3) holds.
Theorem 2.4. Let $A \in \mathbb{C}^{m \times n}$, $\alpha \subset M$, $\beta \subset N$, $\alpha' = M - \alpha$ and $\beta' = N - \beta$. Set $1 \leq k \leq \min \{|M - \alpha|, |N - \beta|\}$. Suppose that the following conditions are satisfied:

(2.4) $r \left(\begin{array}{c} A(\alpha', \beta') \\ A(\alpha, \beta) \end{array} \right) = r(A(\alpha', \beta'), A(\alpha', \beta)) = r(A(\alpha', \beta'))$,

(2.5) $r \left(\begin{array}{c} A(\alpha', \beta) \\ A(\alpha, \beta) \end{array} \right) = r(A(\alpha, \beta'), A(\alpha, \beta)) = r(A/_{\pm}(\alpha, \beta))$;

and

(2.6) $r \left(\frac{C_k[A(\alpha', \beta')]}{C_k(A)(\gamma', \delta')} \right) = r(C_k[A(\alpha', \beta')], C_k(A)(\gamma', \delta)) = r\{C_k[A(\alpha', \beta')]\}$,

(2.7) $r \left(\frac{C_k(A)(\gamma', \delta)}{C_k(A)(\gamma, \delta)} \right) = r(C_k(A)(\gamma', \delta'), C_k(A)(\gamma, \delta)) = r(C_k(A)/_{+}(\gamma, \delta))$,

where $\gamma' = \{j_{\tilde{\alpha}'_j} | \tilde{\alpha}'_j \subset \alpha', |\tilde{\alpha}'| = k, \tilde{\alpha}' \subset Q_{k,m}\}$, $\delta' = \{j_{\tilde{\beta}'_j} | \tilde{\beta}' \subset \beta', |\tilde{\beta}'| = k, \tilde{\beta}' \in Q_{k,n}\}$; and $\gamma = \{1, 2, \ldots, \left(\begin{array}{c} m \\ k \end{array} \right) \} - \gamma'$, $\delta = \{1, 2, \ldots, \left(\begin{array}{c} n \\ k \end{array} \right) \} - \delta'$.

Then

(2.8) $C_k[A/_{+}(\alpha, \beta)] = C_k(A)/_{+}(\gamma, \delta)$.

Proof. For $A \in \mathbb{C}^{m \times n}$, there exist permutation matrices $P \in \mathbb{C}^{m \times m}$ and $Q \in \mathbb{C}^{n \times n}$ such that

$$PAQ = \begin{pmatrix} A(\alpha', \beta') & A(\alpha', \beta) \\ A(\alpha', \beta') & A(\alpha, \beta) \end{pmatrix}.$$

Let

$\tilde{\alpha}' = \{1, 2, \ldots, |\alpha'|\}$, $\tilde{\beta}' = \{1, 2, \ldots, |\beta'|\}$, $\tilde{\alpha} = M - \tilde{\alpha}'$,

$\tilde{\beta} = N - \tilde{\beta}'$, $\tilde{\gamma}' = \{1, 2, \ldots, |\gamma'|\}$, $\tilde{\delta}' = \{1, 2, \ldots, |\delta'|\}$,

$\tilde{\gamma} = \{1, 2, \ldots, \left(\begin{array}{c} m \\ k \end{array} \right) \} - \tilde{\gamma}'$, $\tilde{\delta} = \{1, 2, \ldots, \left(\begin{array}{c} n \\ k \end{array} \right) \} - \tilde{\delta}'$.
Thus, by (2.3), (2.4) and Lemma 2.2, we have
\[(2.9) \quad [A^+(\alpha', \beta')]^+ = A/+(\alpha, \beta). \]

By (2.5), (2.6) and Lemma 2.2, we have
\[(2.10) \quad \{[C_k(A)]^+ (\gamma', \delta')\}^+ = C_k(A)/+(\gamma, \delta). \]

Therefore, from (1.3), (2.8) and (2.9), it follows that
\[
C_k[A/+(\alpha, \beta)] = C_k[(PAQ)/+(\tilde{\alpha}, \tilde{\beta})]
= C_k\{[(PAQ)^+(\tilde{\alpha}', \tilde{\beta}')]^+\} \quad \text{by (2.8)}
= \{C_k[(PAQ)^+(\tilde{\alpha}', \tilde{\beta}')]\}^+ \quad \text{by (1.3)}
= \{C_k[(PAQ)^+(\tilde{\gamma}, \tilde{\delta})]\}^+
= \{(PAQ)^+(\tilde{\gamma}', \tilde{\delta}')]^+(\tilde{\gamma}', \tilde{\delta}'))^+ \quad \text{by (1.3)}
= C_k(PAQ)/+(\tilde{\gamma}, \tilde{\delta}) \quad \text{by (2.9)}
= C_k(A)/+(\gamma, \delta). \]

Corollary 2.5. Let \(A \in \mathbb{C}^{n \times n} \), \(\alpha \subset N \) and \(\alpha' = N - \alpha \). Set \(1 \leq k \leq n - |\alpha| \).
If \(A, A(\alpha) \), and \(A(\alpha') \) are nonsingular respectively, then
\[(2.11) \quad C_k(A/\alpha) = C_k(A)/\gamma \]
where \(\gamma' = \{j_{\tilde{\alpha}}|\tilde{\alpha} \subset \alpha', |\tilde{\alpha}'| = k, \tilde{\alpha}' \in Q_{k,n}\} \) and \(\gamma = \{1, 2, \ldots, \binom{n}{k}\} - \gamma' \).

In a manner similar to the proof of Theorem 2.4, we obtain the following result by using Lemma 2.3.

Theorem 2.6. Let \(A \in H^2_n \), \(\alpha \subset N \) and \(\alpha' = N - \alpha \). Set \(1 \leq k \leq n - |\alpha| \).
Suppose that the following conditions are satisfied:
\[
\begin{align*}
 r(A) &= r(A(\alpha)) + r(A(\alpha')),
 r[C_k(A)] &= r[C_k(A)(\gamma)] + r[C_k(A)(\gamma')],
\end{align*}
\]
where \(\gamma' = \{j_{\tilde{\alpha}}|\tilde{\alpha} \subset \alpha', |\tilde{\alpha}'| = k, \tilde{\alpha}' \in Q_{n,n}\}, \gamma = \{1, 2, \ldots, \binom{n}{k}\} - \gamma' \).

Then
\[(2.12) \quad C_k(A/+(\alpha)) = C_k(A)/+(\gamma). \]

Corollary 2.7. Let \(A \in H^2_n \), \(\alpha \subset N \) and \(\alpha' = N - \alpha \). Set \(1 \leq k \leq n - |\alpha| \).
Then
\[(2.13) \quad C_k(A/\alpha) = C_k(A)/\gamma, \]
where \(\gamma' = \{j_{\tilde{\alpha}}|\tilde{\alpha} \subset \alpha', |\tilde{\alpha}'| = k, \tilde{\alpha}' \in Q_{k,n}\}, \gamma = \{1, 2, \ldots, \binom{n}{k}\} - \gamma' \).
3. Some Löwner partial orders for compound matrices of sums of matrices. In this section, we obtain some Löwner partial orders for compound matrices of Schur complements of positive semidefinite Hermitian matrices. Further, we obtain some estimates for eigenvalues of Schur complements of sums of positive semidefinite Hermitian matrices.

Lemma 3.1. ([2, p. 184]) Let $A, B \in H_n$. Then

$$\lambda_t(A + B) \geq \max_{i+j=n+t} \{\lambda_i(A) + \lambda_j(B)\}.$$

(3.1)

Lemma 3.2. (i) Let $A \in H_n^n$, $k \in \mathbb{N}$ and $r \in \mathbb{R}$. Then

$$C_k(A^r) = [C_k(A)]^r.$$

(3.2)

(ii) Let $A \in H_n^n$, $k \in \mathbb{N}$ and $r \in \mathbb{R}^+$. Then (3.2) holds.

Proof. Since $A \in H_n^n$, there exists an unitary matrix U such that

$$A = U \text{diag}(\lambda_1(A), \ldots, \lambda_n(A)) U^*$$

where $\lambda_i(A) > 0$ ($i = 1, 2, \ldots, n$). Thus

$$C_k(A^r) = C_k[U \text{diag}(\lambda_1^r(A), \ldots, \lambda_n^r(A)) U^*]$$

$$= C_k(U)C_k[\text{diag}(\lambda_1^r(A), \ldots, \lambda_n^r(A))][C_k(U)]^*$$

$$= C_k(U)\text{diag}([\lambda_1(A)^r, \ldots, \lambda_n(A)^r], [\lambda_{n-k+1}(A) \ldots \lambda_n(A)]^r)[C_k(U)]^*$$

$$= \{C_k(U)\text{diag}(\lambda_1(A), \ldots, \lambda_{n-k+1}(A) \ldots \lambda_n(A))[C_k(U)]^*\}^r$$

$$= \{C_k(U)C_k[\text{diag}(\lambda_1(A), \ldots, \lambda_n(A))][C_k(U)]^*\}^r$$

$$= \{C_k[U \text{diag}(\lambda_1(A), \ldots, \lambda_n(A)) U^*]\}^r$$

$$= [C_k(A)]^r.$$

In a manner similar to the proof of (i), we obtain (ii).

Lemma 3.3. Let $A, B \in H_n^n$, $k \in \mathbb{N}$. Then

$$C_k(A + B) \geq C_k(A) + C_k(B).$$

(3.3)

Proof. Since $A, B \in H_n^n$, we have

$$C_k(A + B) = C_k(A^\frac{1}{2} A^\frac{1}{2} + B^\frac{1}{2} B^\frac{1}{2})$$

$$= C_k[(A^\frac{1}{2}, B^\frac{1}{2})(A^\frac{1}{2}, B^\frac{1}{2})^*]$$

$$= C_k[(A^\frac{1}{2}, B^\frac{1}{2})][C_k[(A^\frac{1}{2}, B^\frac{1}{2})]^*].$$
It is not difficult to show that there exist X and a permutation matrix U such that

\[(3.5) \quad C_k[(A^+, B^+)] = C_k(A^+, B^+, X)U, \]

where X is \[\binom{n}{k} \times \left[\binom{2n}{k} - 2 \binom{n}{k}\right]\] and U is \[\binom{2n}{k} \times \binom{2n}{k}.\]

Therefore, by (3.3) and (3.4), we have

\[C_k(A + B) = [(C_k(A^+), C_k(B^+), X)U][C_k(A^+), C_k(B^+), X)U]^* \]
\[= [(C_k(A)^+, [C_k(B)^+]^+, X)](C_k(A)^+, [C_k(B)^+]^+, X)^* \]
\[= C_k(A) + C_k(B) + XX^* \]
\[\geq C_k(A) + C_k(B). \]

Lemma 3.4. Let $A, B \in H_n^2$, $A \geq B$ and $k \in N$. Then

\[(3.6) \quad C_k(A) \geq C_k(B). \]

Proof. Lemma 3.3 ensures that

\[C_k(A) = C_k(B + (A - B)) \geq C_k(B) + C_k(A - B) \geq C_k(B). \]

Theorem 3.5. Let $A, B \in H_n^2$, $\alpha \in N$, and $\alpha' = N - \alpha$. Set $1 \leq k \leq n - |\alpha|$. Suppose that the following conditions are satisfied:

\[(3.7) \quad r(A) = r(A(\alpha)) + r(A(\alpha')), \quad r(B) = r(B(\alpha)) + r(B(\alpha')), \]

\[r[C_k(A)] = r[C_k(A)] + r[C_k(A)] \quad r[C_k(B)] = r[C_k(B)] + r[C_k(B)] \]

where $\gamma' = \{j, \tilde{\alpha}, |\tilde{\alpha}' \subset \alpha', |\tilde{\alpha}' | = k, \tilde{\alpha}' \in Q_{k,n}\}$ and $\gamma = \{1, 2, \ldots, \binom{n}{k}\} - \gamma'$. Then

\[(3.9) \quad C_k[(A + B)/+\alpha] \geq C_k(A)/+\gamma + C_k(B)/+\gamma. \]

Proof. By [8, Theorem 3.1], it follows that

\[(3.10) \quad (A + B)/+\alpha \geq A/\alpha + B/\alpha. \]

Thus, by (3.5), (3.9), (3.2), (3.6), (3.7) and (2.13), we conclude that

\[C_k[(A + B)/+\alpha] \geq C_k(A/\alpha + B/\alpha) \quad \text{(by (3.5) and (3.9))} \]
\[\geq C_k(A/\alpha) + C_k(B/\alpha) \quad \text{(by (3.2))} \]
\[= C_k(A)/+\gamma + C_k(B)/+\gamma. \quad \text{(by (3.6), (3.7) and (2.13))} \]
Corollary 3.6. Let all assumptions of Theorem 3.5 be satisfied. If \(A - B \in H_n^\geq \), then

\[
C_k[(A - B)/+\alpha] \leq C_k(A)/+\gamma - C_k(B)/+\gamma.
\]

Proof. Since \(A - B \in H_n^\geq \), Theorem 3.5 ensures that

\[
C_k(A)/+\gamma = C_k(A/+\alpha) = C_k[(B + (A - B))/+\alpha]
\]

is at least

\[
C_k(B/+\alpha) + C_k[(A - B)/+\alpha] = C_k(B)/+\gamma + C_k[(A - B)/+\alpha],
\]

which means that (3.11) holds.

Theorem 3.7. Let all the assumptions of Theorem 3.5 be satisfied. Then

\[
\prod_{t=1}^{k} \lambda_t[(A + B)/+\alpha]
\]

is bounded below by the maximum of

\[
\prod_{t=1}^{k} \lambda_t(A/+\alpha) + \prod_{t=1}^{k} \lambda_{n - |\alpha| - t + 1}(B/+\alpha)
\]

and

\[
\prod_{t=1}^{k} \lambda_{n - |\alpha| - t + 1}(A/+\alpha) + \prod_{t=1}^{k} \lambda_t(B/+\alpha).
\]

Proof. Theorem 3.5 and (2.13) imply that

\[
\prod_{t=1}^{k} \lambda_t[(A + B)/+\alpha] \lambda_1[C_k[(A + B)/+\alpha]] \geq \lambda_1[C_k(A/+\alpha) + C_k(B/+\alpha)],
\]

which is bounded below by the maximum of

\[
\lambda_1[C_k(A/+\alpha)] + \lambda^{n - |\alpha|}C_k(B/\alpha)]
\]

and

\[
\lambda^{n - |\alpha|}[C_k(A/\alpha) + \lambda_1[(C_k(B/\alpha))]
\]
and hence by the maximum of
\[\prod_{t=1}^{k} \lambda_t(A/\alpha) + \prod_{t=1}^{k} \lambda_{n-|\alpha|-t+1}(B/\alpha) \]
and
\[\prod_{t=1}^{k} \lambda_{n-|\alpha|-t+1}(A/\alpha) + \prod_{t=1}^{k} \lambda_t(B/\alpha). \]

Remark 3.8. In a manner similar to the proof of Theorem 3.7, we get the following result

\[\prod_{t=1}^{k} \lambda_{n-|\alpha|-t+1}[(A+B)/\alpha] \geq \prod_{t=1}^{k} \lambda_{n-|\alpha|-t+1}(A/\alpha) + \prod_{t=1}^{k} \lambda_{n-|\alpha|-t+1}(B/\alpha). \] \hspace{1cm} (3.13)

Theorem 3.9. Let \(B \in H_\alpha^\text{m,n}, L = \{1, 2, \ldots, \min\{m, n\}\}, \alpha \subset L, \text{ and } \alpha' = M - \alpha, \beta' = N - \alpha. \) Set \(1 \leq k \leq |L - \alpha|. \) If \(A \in \mathbb{C}^{m \times n} \) satisfies conditions (2.3)-(2.6) and

\[\Re[A(\alpha, \alpha')] \subseteq \Re[A(\alpha)], \] \hspace{1cm} (3.14)

then

\[C_k[(ABA^*)/\alpha^*] \leq [C_k(A)/\alpha^*][C_k(B)(\delta')][C_k(A)/\alpha^*]^*, \] \hspace{1cm} (3.15)

where \(\gamma' = \{j_{\bar{\alpha}}| \bar{\alpha} \subset \alpha', |\alpha'| = k, \bar{\alpha} \in Q_{k,m}\}, \delta' = \{j_{\bar{\alpha}}' | \bar{\alpha}' \subset \beta', |\bar{\alpha}'| = k, \bar{\alpha}' \in Q_{k,m}\}, \) and \(\gamma = \{1, 2, \ldots, \binom{m}{k}\} - \gamma', \delta = \{1, 2, \ldots, \binom{n}{k}\} - \delta'. \)

Proof. Using (3.13), in a manner similar to the proof of [10, Theorem 3] and [9, Theorem 2], it follows that

\[(ABA^*)/\alpha^* \leq (A/\alpha^*)B(\alpha')(A/\alpha)^*. \] \hspace{1cm} (3.16)

Thus, from (3.15), (3.5) and (2.7), we obtain

\[C_k[(ABA^*)/\alpha^*] \leq C_k[(A/\alpha^*)B(\beta')(A/\alpha)^*] \] \hspace{1cm} (by (3.15) and (3.5))
\[= C_k(A/\alpha^*)C_k[B(\beta')][C_k(A/\alpha)^*] \]
\[= [C_k(A)/\alpha^*[C_k(B)(\delta')][C_k(A)/\alpha^*]^* \] \hspace{1cm} (by (2.7)).

Theorem 3.10. Let all assumptions of Corollary 2.7 be satisfied, and \(0 \leq l \leq 1. \)

Then

\[C_k(A^l/\alpha) \geq [C_k(A)/\gamma]^l. \] \hspace{1cm} (3.17)
Proof. By [13], for $1 \leq t \leq +\infty$, we have
\begin{equation}
A(\alpha') \leq [A^t(\alpha')]^\frac{1}{t}.
\end{equation}
Replace A with $(A^{-1})^\frac{1}{t}$ in Eqs. (3.17), and let $l = \frac{1}{t}$. Then
\begin{equation}
(A^l)^{-1}(\alpha') = (A^{-1})^l(\alpha') \leq [A^{-1}(\alpha')]^l.
\end{equation}
It is known by [3, p. 474] that for $B \in \mathbb{H}_{>n}$,
\begin{equation}
B^{-1}(\alpha') = (B/\alpha)^{-1}.
\end{equation}
Thus, by (3.18) and (3.19), we get
\begin{equation}
A^l/\alpha \geq (A/\alpha)^l.
\end{equation}
Therefore, from (3.20), (3.5), (3.1), and (2.12), we have
\begin{equation}
C_k(A^l/\alpha) \geq C_k[(A/\alpha)^l] = [C_k(A/\alpha)]^l = [C_k(A)/\gamma]^l.
\end{equation}

4. Some Löwner partial orders for compound matrices of Schur complements of two types matrices. Let $A \in \mathbb{C}^{n \times n}$. Then
\begin{equation}
H_A = \frac{A + A^*}{2}, \quad S_A = \frac{A - A^*}{2}.
\end{equation}
In this section, we study compound matrices of Schur complements of complex square matrices that are either normal or have positive definite Hermitian part.

Theorem 4.1. Let all assumptions of Corollary 2.5 be satisfied. If $(A + A^*)(\alpha) \in H^>_\alpha$, then
\begin{equation}
C_k(A + A^*)/\gamma \leq C_k[A/\alpha + (A/\alpha)^*] \leq \left[\frac{|\det A|}{\det H_A}\right]^{2k} C_k(A + A^*)/\gamma.
\end{equation}

Proof. By [9, Theorem 7 and Theorem 8], we have
\begin{equation}
\left[\frac{\det H_A}{\det A}\right]^2 [A/\alpha + (A/\alpha)^*] \leq (A + A^*)/\alpha \leq A/\alpha + (A/\alpha)^*.
\end{equation}
Thus
\begin{equation}
(A + A^*)/\alpha \leq A/\alpha + (A/\alpha)^* \leq \left[\frac{|\det A|}{\det H_A}\right]^2 (A + A^*)/\alpha.
\end{equation}
By (4.3), (3.5) and (2.10), we get that
\[
C_k[A/\alpha + (A/\alpha)^*] \leq C_k \left\{ \frac{|\det A|}{\det H_A} (A + A^*)/\alpha \right\} (\text{by (4.3) and (3.5)})
\]
\[
= \left[\frac{|\det A|}{\det H_A} \right]^{2k} C_k [(A + A^*)/\alpha]
\]
\[
= \left[\frac{|\det A|}{\det H_A} \right]^{2k} C_k (A + A^*)/\gamma \quad (\text{by (2.10)}),
\]
and
\[
C_k[A/\alpha + (A/\alpha)^*] \geq C_k [(A + A^*)/\alpha]
\]
\[
= C_k (A + A^*)/\gamma. \quad \square
\]

THEOREM 4.2. Let \(A \in N_n \), \(\alpha \subset N \) and \(\alpha' = N - \alpha \). Set \(1 \leq k \leq n - |\alpha| \). Suppose that the following conditions are satisfied:
\[
\begin{align*}
 r(H_A^2) &= r[H_A^2(\alpha)] + r[H_A^2(\alpha')], \\
 r(S_A^2) &= r[S_A^2(\alpha)] + r[S_A^2(\alpha')], \\
 r[C_k(H_A^2)] &= r[C_k(H_A^2)(\gamma)] + r[C_k(H_A^2)(\gamma')], \\
 r[C_k(S_A^2)] &= r[C_k(S_A^2)(\gamma)] + r[C_k(S_A^2)(\gamma')],
\end{align*}
\]
where \(\gamma' = \{ j_{\alpha'} | j_{\alpha'} \subset \alpha', |j_{\alpha'}| = k, j_{\alpha'} \in Q_{k,n} \}, \gamma = \{1, 2, \ldots, \binom{n}{k}\} - \gamma' \). Then
\[
(4.5) \quad C_k[(AA^*)/_{+\alpha}] \geq [C_k(H_A)]^2/_{+\gamma} + (-1)^k[C_k(S_A)]^2/_{+\gamma}.
\]

Proof. Since \(A \in N_n \), we have
\[
(4.6) \quad H_A S_A = S_A H_A.
\]
Noting that \(S_A^* = -S_A \), by (4.6), we obtain
\[
AA^* = (H_A + S_A)(H_A + S_A)^* = (H_A + S_A)(H_A + S_A^*)
\]
\[
= H_A^2 + H_A S_A^* + S_A H_A + S_A S_A^* = H_A^2 + S_A S_A^*.
\]
(4.7)

By (4.6), (3.9), (3.5), (3.2) and (2.11), we have
\[
C_k[(AA^*)/_{+\alpha}] = C_k[(H_A^2 + S_A S_A^*)/_{+\alpha}] \quad (\text{by (4.6)})
\]
Generalized Schur complements of matrices and compound matrices

\[\geq C_k[H_A^2/\alpha + (S_A S_A^*) / + \alpha] \quad \text{(by (3.9) and (3.5))} \]
\[\geq C_k(H_A^2/\alpha + C_k[(S_A S_A^*) / + \alpha]) \quad \text{(by (3.2))} \]
\[= C_k(H_A^2/\alpha + C_k(S_A S_A^*) / + \gamma) \quad \text{(by (2.11))} \]
\[= [C_k(H_A^2/\gamma + C_k(-S_A^2) / + \gamma) \]
\[= [C_k(H_A^2) / + \gamma + (-1)^k [C_k(S_A)]^2 / + \gamma]. \]

Theorem 4.3. Let all the assumptions of Corollary 2.5 be satisfied. Suppose \(A \in N_n \) is nonsingular and each of \(H_A \) and \(S_A \) is nonsingular. Then

\[C_k[(A A^*)^{-1}/\alpha] \geq [C_k(H_A - S_A H_A^{-1} S_A)]^{-2}/\gamma \]
\[+ (-1)^k [C_k(S_A - H_A S_A^{-1} H_A)]^{-2}/\gamma. \]

Proof. Since \(A \in N_n \), we have \(A^{-1} \in N_n \). Further

\[H_{A^{-1}} = \frac{1}{2} (A^{-1} + (A^{-1})^*) = \frac{1}{2} A^{-1}(A + A^*)(A^{-1})^* = (A H_A^{-1} A)^{-1} = [(H_A + S_A)(H_A^{-1}(H_A + S_A))]^{-1} = (H_A - S_A H_A^{-1} S_A)^{-1}. \]

Similarly, we have

\[S_{A^{-1}} = \frac{1}{2} (A^{-1} - A^{-1*}) = (S_A - H_A S_A^{-1} H_A)^{-1}. \]

Thus, in a manner similar to the proof of Theorem 4.2, we obtain (4.8). \(\square \)

5. Conclusions. We have obtained some formulae for compound matrices of generalized Schur complements of matrices. Using these results, we studied some Löwner partial orders for compound matrices of Schur complements of positive semidefinite Hermitian matrices. If \(A, B \in H_n^* \), we extend some results in [1] and show that

\[C_k[(A + B)/\alpha] \geq C_k(A)/\alpha + C_k(B)/\alpha \]

under some restrictive conditions, as shown in Theorem 3.5, as well as

\[C_k(A^T/\alpha) \geq [C_k(A)/\alpha]^T \]

if \(A \in H_n^* \), as shown in Theorem 3.10. In addition, we provide some results for compound matrices of Schur complements of complex square matrices that are either
normal or have positive definite Hermitian part. We obtained some estimates for eigenvalues.

Acknowledgment. The authors thank the referee for many valuable and detailed suggestions, which have led to an improvement in the presentation of this paper.

REFERENCES