NEW PROPERTIES OF A SPECIAL MATRIX RELATED TO POSITIVE-DEFINITE MATRICES*

SHAOWU HUANG ${ }^{\dagger}$ AND QING-WEN WANG ${ }^{\ddagger}$

Abstract

Let H be a $2 n \times 2 n$ real symmetric positive-definite matrix. Suppose that $H \circ H=\left(H_{i j}\right)_{2 n \times 2 n}$ is a partitioned matrix, in which o represents the Hadamard product and the block $H_{i j}$ has order $n \times n, 1 \leq i, j \leq 2$. Several new properties on the matrix \widetilde{H} are derived including inequalities that involve the symplectic eigenvalues and the usual eigenvalues, where $2 \widetilde{H}=H_{11}+H_{22}+H_{12}+H_{21}$.

Key words. Positive-definite matrix, Symplectic eigenvalue, Principal submatrix, Schur inequality.

AMS subject classifications. 15A18, 15A42.

1. Introduction. Let $\mathbb{R}^{n \times n}, \mathbb{P}(n), \mathbb{P}_{0}(n)$ and I_{n} be the set of $n \times n$ real matrices, and the set of $n \times n$ real symmetric positive-definite matrices, and the set of $n \times n$ real symmetric positive-semidefinite matrices, and the $n \times n$ identity matrix, respectively. Denote by J the $2 n \times 2 n$ matrix $J=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$, we define the set of symplectic matrices $\operatorname{Sp}(2 n)$ and the set of rectangular symplectic matrices $\operatorname{Sp}(2 k, 2 n)$ to be $\operatorname{Sp}(2 n)=\left\{M \in \mathbb{R}^{2 n \times 2 n}: M^{T} J M=J\right\}$ and $\operatorname{Sp}(2 k, 2 n)=\left\{M \in \mathbb{R}^{2 n \times 2 k}: M^{T} J_{2 n} M=J_{2 k}\right\}$ for some k with $1 \leq k \leq n$, respectively. Williamson's theorem (see $[1,11]$) says that for every element $A \in \mathbb{P}(2 n)$, there exists a symplectic matrix M such that

$$
M^{T} A M=\left(\begin{array}{cc}
D & 0 \\
0 & D
\end{array}\right)
$$

where $D=\operatorname{diag}\left(d_{1}(A), \ldots, d_{n}(A)\right)$ with diagonal elements $0<d_{1}(A) \leq d_{2}(A) \leq \cdots \leq d_{n}(A)$. The diagonal entries of D are known as symplectic eigenvalues of A.

Let $H \in \mathbb{R}^{2 n \times 2 n}$ have a block decomposition

$$
H=\left(\begin{array}{cc}
L & Y_{h} \\
C & Z
\end{array}\right)
$$

where C, L, Y_{h}, Z are $n \times n$ matrices. Let \widetilde{H} be the $n \times n$ matrix whose entries are given by

$$
\begin{equation*}
\widetilde{h}_{i j}=\frac{1}{2}\left(c_{i j}^{2}+l_{i j}^{2}+y_{i j}^{2}+z_{i j}^{2}\right), \tag{1}
\end{equation*}
$$

where $C=\left(c_{i j}\right)_{i, j=1}^{n}, L=\left(l_{i j}\right)_{i, j=1}^{n}, Y_{h}=\left(y_{i j}\right)_{i, j=1}^{n}, Z=\left(z_{i j}\right)_{i, j=1}^{n} \in \mathbb{R}^{n \times n}$.
In Bhatia and Jain [3], the matrix \widetilde{H} was introduced and several properties were obtained. Our recent paper [5] also presented another proof of [3, Theorem 6]. Meanwhile, we established an analog of Schur-Horn

[^0]theorem via the matrix \widetilde{H} (see [4]). In this paper, new properties on the matrix \widetilde{H} are derived including inequalities that involve the symplectic eigenvalues and the usual eigenvalues.
2. New properties of \widetilde{H}. Bhatia and Jain [3] showed that \widetilde{H} is doubly superstochastic for the symplectic matrix H. Our first result provides an analog of [3, Theorem 6] for the positive-definite matrix H.

Theorem 2.1. Let $H \in \mathbb{P}(2 n)$ and \widetilde{H} be the $n \times n$ matrix associated with H according to the rule (1). Then \widetilde{H} is a positive-definite matrix.

Proof. The condition $H \in \mathbb{P}(2 n)$ implies $H \circ H$ is positive-definite (see [7, Theorem 5.2.1]). We partition $H \circ H$ in the form

$$
H \circ H=\left(\begin{array}{cc}
P_{1} & P_{3} \\
P_{3}^{T} & P_{2}
\end{array}\right)
$$

where $P_{i} \in \mathbb{R}^{n \times n}, i=1,2,3$. Note that

$$
\left(\begin{array}{cc}
2 \widetilde{H} & P_{2}+P_{3} \\
P_{2}+P_{3}^{T} & P_{2}
\end{array}\right)=\left(\begin{array}{cc}
I & I \\
0 & I
\end{array}\right)(H \circ H)\left(\begin{array}{ll}
I & 0 \\
I & I
\end{array}\right),
$$

is a positive-definite matrix, which implies \widetilde{H} is positive-definite.

We note that the proof of Theorem 2.1 also holds for the positive-semidefinite matrices.
Corollary 2.2. Let $H \in \mathbb{P}_{0}(2 n)$ and \widetilde{H} be the $n \times n$ matrix associated with H according to the rule (1). Then \widetilde{H} is a positive-semidefinite matrix.

Let $H \in \operatorname{Sp}(2 n)$ and $X=\left(x_{i j}\right)_{l \times k}$ be any submatrix of \widetilde{H}. [3, Theorem 6] implies $\sum_{i, j} x_{i j} \geq \max \{k+$ $l-n, 0\}$ (see [2, Theorem 1] or [9, p.44. D.4.Theorem]). We present a similar result for the positive-definite matrix H. For ease of presentation, let $\tau \subseteq \Omega=\{1,2, \ldots, n\}$ with $|\tau|=l$ and

$$
I_{\tau}=\left(e_{i j}\right)_{n \times n}, e_{i j}= \begin{cases}1, & i=j \in \tau \\ 0, & \text { else }\end{cases}
$$

In addition, write $|\tau|$ to indicate the cardinality of τ. Our proof of the first inequality in Theorem 2.3 relies on the Schur inequality: Let $A \in \mathbb{C}^{n \times n}$ have eigenvalues $\left\{\lambda_{i}(A)\right\}$. Then,

$$
\|A\|_{F}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}(A) \geq \sum_{i=1}^{n}\left|\lambda_{i}(A)\right|^{2}
$$

where $\sigma_{i}(A)$ denotes the i th singular value of A.
Theorem 2.3. Let $H \in \mathbb{P}(2 n)$ and \widetilde{H} be the $n \times n$ matrix associated with H according to the rule (1). Suppose $Y=\left(y_{i j}\right)_{l \times l}$ be any $l \times l$ principal submatrix of $\widetilde{H}, 1 \leq l \leq n$, we have

$$
\sum_{i=1}^{l} d_{i}^{2}(H) \leq \sum_{i, j=1}^{l} y_{i j} \leq \frac{1}{2} \sum_{i=2 n-2 l+1}^{2 n} \lambda_{i}^{2}(H)
$$

Proof. Note that

$$
2 \sum_{i, j=1}^{n} y_{i j}=\operatorname{tr}\left[\left(\begin{array}{cc}
I_{\tau_{1}} & 0 \\
0 & I_{\tau_{1}}
\end{array}\right) H\left(\begin{array}{cc}
I_{\tau_{1}} & 0 \\
0 & I_{\tau_{1}}
\end{array}\right) H\right]
$$

for some $\tau_{1} \subseteq \Omega$ and there exists a permutation matrix P such that

$$
I_{\tau_{1}}=P\left(\begin{array}{cc}
I_{l} & 0 \\
0 & 0
\end{array}\right) P^{T} \triangleq P I_{\tau_{2}} P^{T}
$$

Let $\mathcal{J}_{t}=\operatorname{diag}\left(I_{t}, I_{t}\right), t \in\left(\tau_{1}, \tau_{2}\right)$ and $\mathcal{P}=\operatorname{diag}(P, P)$. We have $2 \sum_{i, j=1}^{n} y_{i j}=\operatorname{tr}\left(\mathcal{J}_{\tau_{2}} B \mathcal{J}_{\tau_{2}} B\right)$, where $B=\mathcal{P}^{T} H \mathcal{P}$ with $d(H)=d(B)$ and $\lambda(H)=\lambda(B)$.

Let

$$
\mathcal{J}_{\tau_{2}} B \mathcal{J}_{\tau_{2}}=\left(\begin{array}{cccc}
B_{11} & 0 & B_{12} & 0 \\
0 & 0 & 0 & 0 \\
B_{12}^{T} & 0 & B_{22} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { and } B_{[l]}=\left(\begin{array}{cc}
B_{11} & B_{12} \\
B_{12}^{T} & B_{22}
\end{array}\right)
$$

Now, it can be easily seen that $B_{[l]} \in \mathbb{P}(2 l)$. Therefore, by the Schur inequality and the interlacing theorem for symplectic eigenvalues (see $[3,(42)]$),

$$
\begin{aligned}
\operatorname{tr}\left(\mathcal{J}_{\tau_{2}} B \mathcal{J}_{\tau_{2}} B\right) & =\operatorname{tr}\left(\mathcal{J}_{\tau_{2}} B \mathcal{J}_{\tau_{2}} B \mathcal{J}_{\tau_{2}}\right)=\operatorname{tr}\left(B_{[l]} B_{[l]}\right) \\
& =\operatorname{tr}\left(J B_{[l]}\left(J B_{[l]}\right)^{T}\right)=\left\|J B_{[l]}\right\|_{F}^{2} \\
& \geq \sum_{i=1}^{2 l}\left|\lambda_{i}\left(J B_{[l]}\right)\right|^{2}=2 \sum_{i=1}^{l} d_{i}^{2}\left(B_{[l]}\right) \geq 2 \sum_{i=1}^{l} d_{i}^{2}(B) \\
& =2 \sum_{i=1}^{l} d_{i}^{2}(H)
\end{aligned}
$$

On the other hand, by [6, Corollary 4.3.37] and $\mathcal{L} \mathcal{L}^{T}=I_{2 l}$,

$$
\begin{aligned}
\operatorname{tr}\left(\mathcal{J}_{l} B \mathcal{J}_{l} B \mathcal{J}_{l}\right) & =\operatorname{tr}\left(\mathcal{L} B \mathcal{L}^{T} \mathcal{L} B \mathcal{L}^{T}\right)=\sum_{i=1}^{2 l} \lambda_{i}^{2}\left(\mathcal{L} B \mathcal{L}^{T}\right) \\
& \leq \sum_{i=2 n-2 l+1}^{2 n}\left[\lambda_{i}^{\uparrow}(B)\right]^{2}=\sum_{i=2 n-2 l+1}^{2 n}\left[\lambda_{i}^{\uparrow}(H)\right]^{2}
\end{aligned}
$$

where $\mathcal{L}=\left(\begin{array}{c|cc}I_{l} & 0 & 0_{l \times n} \\ \hline 0_{l \times n} & I_{l} & 0\end{array}\right)$.
As a direct consequence of Theorem 2.3, we obtain the following result. Trace minimizations are useful tools in studying matrix inequalities. One may see $[3,8,10]$ and references therein. We prove it again by a trace minimization theorem.

Theorem 2.4. Let $H \in \mathbb{P}(2 n)$ and \widetilde{H} be the $n \times n$ matrix associated with H according to the rule (1). Suppose $Y=\left(y_{i j}\right)_{l \times l}$ be any $l \times l$ principal submatrix of $\widetilde{H}, 1 \leq l \leq n$, we have

$$
\sum_{i, j=1}^{l} y_{i j} \geq \frac{1}{l}\left(d_{1}(H)+d_{2}(H)+\cdots+d_{l}(H)\right)^{2}
$$

Proof. We proceed to adopt notations in the above theorem. As in the proof of Theorem 2.3, we obtain

$$
2 \sum_{i, j=1}^{n} y_{i j}=\operatorname{tr}\left(\mathcal{L} B \mathcal{L}^{T} \mathcal{L} B \mathcal{L}^{T}\right)=\operatorname{tr}\left(\mathcal{L} B \mathcal{L}^{T}\right)^{2}
$$

for some $\tau_{1} \subseteq \Omega$. For any square matrix N with all eigenvalues real, we have

$$
\operatorname{tr}\left(N^{2}\right) \geq \frac{1}{\operatorname{rank}(N)}(\operatorname{tr} N)^{2}
$$

So, by [3, Theorem 5],

$$
\begin{aligned}
2 \sum_{i, j=1}^{n} y_{i j} & =\operatorname{tr}\left(\mathcal{L} B \mathcal{L}^{T}\right)^{2} \geq \frac{1}{2 l}\left[\operatorname{tr}\left(\mathcal{L} B \mathcal{L}^{T}\right)\right]^{2} \geq \frac{1}{2 l} \min _{Z \in \operatorname{Sp}(2 l, 2 n)}\left[\operatorname{tr}\left(Z B Z^{T}\right)\right]^{2} \\
& =\frac{1}{2 l}\left[\min _{Z \in \operatorname{Sp}(2 l, 2 n)} \operatorname{tr}\left(Z B Z^{T}\right)\right]^{2}=\frac{1}{2 l}\left(2 \sum_{i=1}^{l} d_{i}(B)\right)^{2}
\end{aligned}
$$

Note that $d(H)=d(B)$. This completes the proof.
3. Remarks. Suppose two real vectors $x, y \in \mathbb{R}^{n}$, we say that x is weakly majorized by y, denoted by $x \prec_{w} y$, if the sum of the k largest entries of x is not larger than that of y for each $k=1, \ldots, n$. If in addition the sum of the entries of each of the vectors is the same, we say that x is majorized by y, and write $x \prec y$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a vector in \mathbb{R}^{n}. We rearrange the components of x in decreasing order and obtain a vector $x^{\downarrow}=\left(x_{1}^{\downarrow}, \ldots, x_{n}^{\downarrow}\right)$, where $x_{1}^{\downarrow} \geq x_{2}^{\downarrow} \geq \cdots \geq x_{n}^{\downarrow}$. Similarly, let $x_{1}^{\uparrow} \leq x_{2}^{\uparrow} \leq \cdots \leq x_{n}^{\uparrow}$ denote the components of x in increasing order and write $x^{\uparrow}=\left(x_{1}^{\uparrow}, x_{2}^{\uparrow}, \ldots, x_{n}^{\uparrow}\right)$. If x, y are two n-vectors with positive coordinates, then we say that x is \log majorized by y, in symbols $x \prec_{\log } y$, if

$$
\prod_{i=1}^{k} x_{j}^{\downarrow} \leq \prod_{i=1}^{k} y_{j}^{\downarrow}, 1 \leq k \leq n \text { and } \prod_{i=1}^{n} x_{j}^{\downarrow}=\prod_{i=1}^{n} y_{j}^{\downarrow}
$$

Next we recall an important result from [3].
Theorem 3.1. [3, Theorem 11] Let $A \in \mathbb{P}(2 n)$. Then

$$
\widehat{d}(A) \prec_{\log } \lambda(A) \text { and } \lambda_{j}^{\uparrow}(A) \leq d_{j}(A) \leq \lambda_{n+j}^{\uparrow}(A), 1 \leq j \leq n
$$

where $\widehat{d}(A)=\left\{d_{1}(A), d_{1}(A), \ldots, d_{n}(A), d_{n}(A)\right\}$ and $\lambda(A)=\left\{\lambda_{1}(A), \ldots, \lambda_{2 n}(A)\right\}$.
We consider two special cases in Theorem 2.3:
Case 1: $l=1$. We have $\min _{1 \leq l \leq n}\left\{h_{i i}\right\} \geq d_{1}^{2}(H)$, which also is a special case in [4, Theorem 2.1].
Case 2: $l=n$. We have $2 \sum_{i=1}^{n} d_{i}^{2}(H) \leq \sum_{i=1}^{2 n} \lambda_{i}^{2}(H)$, which can be followed by [3, Theorem $\left.11(\mathrm{i})\right]$.
In view of Theorem 2.3 and [3, Theorem 11], we have
Theorem 3.2. Let $H \in \mathbb{P}(2 n)$ and \widetilde{H} be the $n \times n$ matrix associated with H according to the rule (1). Suppose $Y=\left(y_{i j}\right)_{l \times l}$ be any $l \times l$ principal submatrix of $\widetilde{H}, 1 \leq l \leq n$, we have

$$
\sum_{i=2 n-2 l+1}^{2 n} \lambda_{i}^{2}(H) \geq \max \left\{2 \sum_{i, j=1}^{l} y_{i j}, 2 \sum_{i=n-l+1}^{n} d_{i}^{2}(H)\right\} .
$$

Proof. Since weak log majorization implies weak majorization, the result follows from [3, Theorem 11(i)] combined with the operator convexity of $f(x)=x^{2}$ on $(0,+\infty)$ (see [9, p.644, B.3.c] and [9, p.167, A.2.Theorem]).

In the following, we give a numerical example to illustrate the result obtained in the above theorem.
Example 3.3. Let $H=\left(\begin{array}{cccc}1 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 6 & 5 \\ 1 & 1 & 5 & 6\end{array}\right)$. For $l=1$, we have

$$
\sum_{i=3}^{4} \lambda_{i}^{2}(H) \approx 138.38\left\{\begin{array}{l}
\geq 2 \widetilde{h}_{22}=47(\text { by Theorem } 3.2) \\
\geq 2 d_{2}^{2}(H) \approx 37.3205(\text { by }[3, \text { Theorem } 11(\mathrm{i})])
\end{array}\right.
$$

It is obvious that the bound of Theorem 3.2 is sharper.

Acknowledgements. The work was supported by the National Natural Science Foundation of China [No.12201332, No.12371023]. The authors are very grateful to an anonymous referee for all his/her comments and corrections.

REFERENCES

[1] A.B. Dutta, N. Mukunda, and R. Simon. The real symplectic groups in quantum mechanics and optics. Pramana, 45:471495, 1995.
[2] S.K. Bhandari and S.D. Gupta. Two characterizations of doubly superstochastic matrices. Sankhya: Indian J. Stat., 47(3):357-365, 1985.
[3] R. Bhatia and T. Jain. On symplectic eigenvalues of positive-definite matrices. J. Math. Phys., 56:112201, 2015.
[4] S. Huang. A new version of Schur-Horn type theorem. Linear Multilinear Algebra, 71(1):41-46, 2023.
[5] S. Huang. Another proof of a result on the doubly superstochastic matrices. Linear Multilinear Algebra, 2023. doi: 10.1080/03081087.2023.2205083.
[6] R.A. Horn and C.R. Johnson. Matrix Analysis, 2nd edition. Cambridge University Press, Cambridge, 2013.
[7] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1994.
[8] X. Liang, L. Wang, L.-H. Zhang, and R.-C. Li. On generalizing trace minimization principles. Linear Algebra Appl., 656: 483-509, 2023.
[9] A.W. Marshall, I. Olkin, and B.C. Arnold. Inequalities: Theory of Majorization and Its Application. Springer, New York, 2011.
[10] N.T. Son and T. Stykel. Symplectic eigenvalues of positive semidefinite matrices and the trace minimization theorem. Electron. J. Linear Algebra, 38:607-616, 2022.
[11] J. Williamson. On the algebraic problem concerning the normal forms of linear dynamical systems. Amer. J. Math., 58:141-163, 1936.

[^0]: *Received by the editors on August 31, 2023. Accepted for publication on January 15, 2024. Handling Editor: Ren-Cang Li. Corresponding Author: Shaowu Huang.
 \dagger 'School of Mathematics and Finance, Putian University, Putian Fujian 351100, P. R. of China and Fujian Key Laboratory of Financial Information Processing, Putian University, Putian Fujian 351100, P. R. of China (shaowu2050@126.com).
 ${ }^{\ddagger}$ Department of Mathematics, Shanghai University, Shanghai, P. R. of China and Collaborative Innovation Center for the Marine Artificial Intelligence (wqwshu9@126.com).

