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NEW PROPERTIES OF A SPECIAL MATRIX RELATED TO POSITIVE-DEFINITE

MATRICES∗

SHAOWU HUANG† AND QING-WEN WANG‡

Abstract. Let H be a 2n× 2n real symmetric positive-definite matrix. Suppose that H ◦H = (Hij)2n×2n is a partitioned

matrix, in which ◦ represents the Hadamard product and the block Hij has order n × n, 1 ≤ i, j ≤ 2. Several new properties

on the matrix H̃ are derived including inequalities that involve the symplectic eigenvalues and the usual eigenvalues, where

2H̃ = H11 + H22 + H12 + H21.
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1. Introduction. Let Rn×n, P(n), P0(n) and In be the set of n × n real matrices, and the set of

n × n real symmetric positive-definite matrices, and the set of n × n real symmetric positive-semidefinite

matrices, and the n × n identity matrix, respectively. Denote by J the 2n × 2n matrix J =
(

0 In
−In 0

)
, we

define the set of symplectic matrices Sp(2n) and the set of rectangular symplectic matrices Sp(2k, 2n) to be

Sp(2n) = {M ∈ R2n×2n : MTJM = J} and Sp(2k, 2n) = {M ∈ R2n×2k : MTJ2nM = J2k} for some k with

1 ≤ k ≤ n, respectively. Williamson’s theorem (see [1, 11]) says that for every element A ∈ P(2n), there

exists a symplectic matrix M such that

MTAM =

(
D 0

0 D

)
,

where D = diag(d1(A), . . . , dn(A)) with diagonal elements 0 < d1(A) ≤ d2(A) ≤ · · · ≤ dn(A). The diagonal

entries of D are known as symplectic eigenvalues of A.

Let H ∈ R2n×2n have a block decomposition

H =

(
L Yh
C Z

)
,

where C,L, Yh, Z are n× n matrices. Let H̃ be the n× n matrix whose entries are given by

(1) h̃ij =
1

2

(
c2ij + l2ij + y2ij + z2ij

)
,

where C = (cij)
n
i,j=1, L = (lij)

n
i,j=1, Yh = (yij)

n
i,j=1, Z = (zij)

n
i,j=1 ∈ Rn×n.

In Bhatia and Jain [3], the matrix H̃ was introduced and several properties were obtained. Our recent

paper [5] also presented another proof of [3, Theorem 6]. Meanwhile, we established an analog of Schur-Horn
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theorem via the matrix H̃ (see [4]). In this paper, new properties on the matrix H̃ are derived including

inequalities that involve the symplectic eigenvalues and the usual eigenvalues.

2. New properties of H̃. Bhatia and Jain [3] showed that H̃ is doubly superstochastic for the sym-

plectic matrix H. Our first result provides an analog of [3, Theorem 6] for the positive-definite matrix

H.

Theorem 2.1. Let H ∈ P(2n) and H̃ be the n × n matrix associated with H according to the rule (1).

Then H̃ is a positive-definite matrix.

Proof. The condition H ∈ P(2n) implies H ◦H is positive-definite (see [7, Theorem 5.2.1]). We partition

H ◦H in the form

H ◦H =

(
P1 P3

PT3 P2

)
,

where Pi ∈ Rn×n, i = 1, 2, 3. Note that(
2H̃ P2 + P3

P2 + PT3 P2

)
=

(
I I

0 I

)
(H ◦H)

(
I 0

I I

)
,

is a positive-definite matrix, which implies H̃ is positive-definite.

We note that the proof of Theorem 2.1 also holds for the positive-semidefinite matrices.

Corollary 2.2. Let H ∈ P0(2n) and H̃ be the n × n matrix associated with H according to the rule

(1). Then H̃ is a positive-semidefinite matrix.

Let H ∈ Sp(2n) and X = (xij)l×k be any submatrix of H̃. [3, Theorem 6] implies
∑
i,j xij ≥ max{k +

l− n, 0} (see [2, Theorem 1] or [9, p.44. D.4.Theorem]). We present a similar result for the positive-definite

matrix H. For ease of presentation, let τ ⊆ Ω = {1, 2, . . . , n} with |τ | = l and

Iτ = (eij)n×n, eij =

{
1, i = j ∈ τ ;

0, else.

In addition, write |τ | to indicate the cardinality of τ . Our proof of the first inequality in Theorem 2.3 relies

on the Schur inequality: Let A ∈ Cn×n have eigenvalues {λi(A)}. Then,

‖A‖2F =

n∑
i=1

σ2
i (A) ≥

n∑
i=1

|λi(A)|2 ,

where σi(A) denotes the ith singular value of A.

Theorem 2.3. Let H ∈ P(2n) and H̃ be the n × n matrix associated with H according to the rule (1).

Suppose Y = (yij)l×l be any l × l principal submatrix of H̃, 1 ≤ l ≤ n, we have

l∑
i=1

d2i (H) ≤
l∑

i,j=1

yij ≤
1

2

2n∑
i=2n−2l+1

λ2i (H).

Proof. Note that

2

n∑
i,j=1

yij = tr

[(
Iτ1 0

0 Iτ1

)
H

(
Iτ1 0

0 Iτ1

)
H

]
,
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for some τ1 ⊆ Ω and there exists a permutation matrix P such that

Iτ1 = P

(
Il 0

0 0

)
PT , PIτ2P

T .

Let It = diag(It, It), t ∈ (τ1, τ2) and P = diag(P, P ). We have 2
∑n
i,j=1 yij = tr (Iτ2BIτ2B), where

B = PTHP with d(H) = d(B) and λ(H) = λ(B).

Let

Iτ2BIτ2 =


B11 0 B12 0

0 0 0 0

BT12 0 B22 0

0 0 0 0

 and B[l] =

(
B11 B12

BT12 B22

)
.

Now, it can be easily seen that B[l] ∈ P(2l). Therefore, by the Schur inequality and the interlacing theorem

for symplectic eigenvalues (see [3, (42)]),

tr (Iτ2BIτ2B) = tr (Iτ2BIτ2BIτ2) = tr
(
B[l]B[l]

)
= tr

(
JB[l](JB[l])

T
)

=
∥∥JB[l]

∥∥2
F

≥
2l∑
i=1

∣∣λi(JB[l])
∣∣2 = 2

l∑
i=1

d2i (B[l]) ≥ 2

l∑
i=1

d2i (B)

= 2

l∑
i=1

d2i (H).

On the other hand, by [6, Corollary 4.3.37] and LLT = I2l,

tr (IlBIlBIl) = tr
(
LBLTLBLT

)
=

2l∑
i=1

λ2i
(
LBLT

)
≤

2n∑
i=2n−2l+1

[
λ↑i (B)

]2
=

2n∑
i=2n−2l+1

[
λ↑i (H)

]2
,

where L =

(
Il 0 0l×n
0l×n Il 0

)
.

As a direct consequence of Theorem 2.3, we obtain the following result. Trace minimizations are useful

tools in studying matrix inequalities. One may see [3, 8, 10] and references therein. We prove it again by a

trace minimization theorem.

Theorem 2.4. Let H ∈ P(2n) and H̃ be the n × n matrix associated with H according to the rule (1).

Suppose Y = (yij)l×l be any l × l principal submatrix of H̃, 1 ≤ l ≤ n, we have

l∑
i,j=1

yij ≥
1

l
(d1(H) + d2(H) + · · ·+ dl(H))

2
.
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Proof. We proceed to adopt notations in the above theorem. As in the proof of Theorem 2.3, we obtain

2

n∑
i,j=1

yij = tr
(
LBLTLBLT

)
= tr

(
LBLT

)2
,

for some τ1 ⊆ Ω. For any square matrix N with all eigenvalues real, we have

tr(N2) ≥ 1

rank(N)
(trN)2.

So, by [3, Theorem 5],

2

n∑
i,j=1

yij = tr
(
LBLT

)2 ≥ 1

2l

[
tr
(
LBLT

)]2 ≥ 1

2l
min

Z∈Sp(2l,2n)

[
tr
(
ZBZT

)]2
=

1

2l

[
min

Z∈Sp(2l,2n)
tr
(
ZBZT

)]2
=

1

2l

(
2

l∑
i=1

di(B)

)2

.

Note that d(H) = d(B). This completes the proof.

3. Remarks. Suppose two real vectors x, y ∈ Rn, we say that x is weakly majorized by y, denoted

by x ≺w y, if the sum of the k largest entries of x is not larger than that of y for each k = 1, . . . , n. If in

addition the sum of the entries of each of the vectors is the same, we say that x is majorized by y, and write

x ≺ y. Let x = (x1, . . . , xn) be a vector in Rn. We rearrange the components of x in decreasing order and

obtain a vector x↓ = (x↓1, . . . , x
↓
n), where x↓1 ≥ x↓2 ≥ · · · ≥ x↓n. Similarly, let x↑1 ≤ x↑2 ≤ · · · ≤ x↑n denote the

components of x in increasing order and write x↑ = (x↑1, x
↑
2, . . . , x

↑
n). If x, y are two n-vectors with positive

coordinates, then we say that x is log majorized by y, in symbols x ≺log y, if

k∏
i=1

x↓j ≤
k∏
i=1

y↓j , 1 ≤ k ≤ n and

n∏
i=1

x↓j =

n∏
i=1

y↓j .

Next we recall an important result from [3].

Theorem 3.1. [3, Theorem 11] Let A ∈ P(2n). Then

d̂(A) ≺log λ(A) and λ↑j (A) ≤ dj(A) ≤ λ↑n+j(A), 1 ≤ j ≤ n,

where d̂(A) = {d1(A), d1(A), . . . , dn(A), dn(A)} and λ(A) = {λ1(A), . . . , λ2n(A)}.

We consider two special cases in Theorem 2.3:

Case 1: l = 1. We have min1≤l≤n{hii} ≥ d21(H), which also is a special case in [4, Theorem 2.1].

Case 2: l = n. We have 2
∑n
i=1 d

2
i (H) ≤

∑2n
i=1 λ

2
i (H), which can be followed by [3, Theorem 11(i)].

In view of Theorem 2.3 and [3, Theorem 11], we have

Theorem 3.2. Let H ∈ P(2n) and H̃ be the n × n matrix associated with H according to the rule (1).

Suppose Y = (yij)l×l be any l × l principal submatrix of H̃, 1 ≤ l ≤ n, we have

2n∑
i=2n−2l+1

λ2i (H) ≥ max

2

l∑
i,j=1

yij , 2

n∑
i=n−l+1

d2i (H)

 .
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Proof. Since weak log majorization implies weak majorization, the result follows from [3, Theorem

11(i)] combined with the operator convexity of f(x) = x2 on (0,+∞) (see [9, p.644, B.3.c] and [9, p.167,

A.2.Theorem]).

In the following, we give a numerical example to illustrate the result obtained in the above theorem.

Example 3.3. Let H =


1 0 1 1

0 3 1 1

1 1 6 5

1 1 5 6

. For l = 1, we have

4∑
i=3

λ2i (H) ≈ 138.38

{
≥ 2h̃22 = 47 (by Theorem 3.2),

≥ 2d22(H) ≈ 37.3205 (by [3,Theorem 11(i)]).

It is obvious that the bound of Theorem 3.2 is sharper.
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