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THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS WITHOUT

INTERSECTING ODD CYCLES∗
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Abstract. Let Fa1,...,ak be a graph consisting of k cycles of odd length 2a1 + 1, . . . , 2ak + 1, respectively, which intersect

in exactly one common vertex, where k ≥ 1 and a1 ≥ a2 ≥ · · · ≥ ak ≥ 1. In this paper, we present a sharp upper bound for

the signless Laplacian spectral radius of all Fa1,...,ak -free graphs and characterize all extremal graphs which attain the bound.

The stability methods and structure of graphs associated with the eigenvalue are adapted for the proof.
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1. Introduction. Let G be an undirected simple graph with vertex set V (G) = {v1, . . . , vn} and

edge set E(G), where e(G) is the number of edges of G. For v ∈ V (G), the neighborhood NG(v) of v is

{u : uv ∈ E(G)} and the degree dG(v) of v is |NG(v)|. We write N(v) and d(v) for NG(v) and dG(v),

respectively, if there is no ambiguity. Denote by △(G) and δ(G) the maximum and minimum degree of G,

respectively. Denote by Pn and Cn the path and the cycle of order n, respectively. For A,B ⊆ V (G), e(A)

denotes the number of the edges of G with both endvertices in A and e(A,B) denotes the number of the

edges of G with one endvertex in A and the other in B. For two vertex disjoint graphs G and H, we denote

by G ∪H and G∇H the union of G and H, and the join of G and H, that is, joining every vertex of G to

every vertex of H, respectively. Denote by kG the union of k disjoint copies of G. Let Sn,t = Kt∇Kn−t

denote the join of a complete graph of order t and the independent set of size n − t. Let Lr,t = K1∇rKt

denote the graph consists of r complete graph Kt+1 which intersect in exactly one common vertex. For

graph notation and terminology undefined here, we refer the readers to [1].

We say a graph G is H-free if it does not contain H as a subgraph. The Turán number of a graph H is

the maximum number of edges in an H-free graph of order n and is denoted by ex(n,H). An H-free graph

of order n with ex(n,H) edges is called an extremal graph for H. Moreover, denote Ex(n,H) by the set

of all extremal graphs of order n for H. To determine ex(n,H) and characterize those graphs in Ex(n,H)

is a fundamental problem (called Turán-type problem) in extremal graph theory. It will be interesting to

look for some nice graphs H such that ex(n,H) and Ex(n,H) will be characterized. The graph Fa1,...,ak

consisting of k cycles of odd length 2a1+1, . . . , 2ak +1, respectively, which intersect in exactly one common

vertex may be of interest, where k ≥ 1 and a1 ≥ a2 ≥ · · · ≥ ak ≥ 1. If k = 1, then Fa1,...,ak
is an odd

cycle C2a1+1. Simonovits [23] proved that ex(n,C2a1+1) = ⌊n2

4 ⌋ for sufficiently large n and Ex(n,C2a1+1)

is a balanced complete bipartite graph, that is a complete bipartite graph whose two partite sets have sizes
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differing by at most 1. If k ≥ 2 and a1 = · · · = ak = 1, then Fa1,...,ak
is denoted by F (k) which is called the

friendship graph. In 1995, Erdős, Füredi, Gould, Gunderson [11] significantly extended Mantel’s result and

proved the following interesting result.

Theorem 1.1. [11] Let k ≥ 1 and n ≥ 50k2. Then,

ex(n, F (k)) =
⌊n2

4

⌋
+

{
k2 − k, if k is odd,

k2 − 3
2k, if k is even.

Furthermore, if k is odd, then Ex(n, F (k)) consists of graphs which are constructed by taking a complete

bipartite graph with two parts of sizes ⌈n
2 ⌉ and ⌊n

2 ⌋ and embedding two vertex disjoint copies of Kk in one

side. If k is even, then Ex(n, F (k)) consists of graphs which are constructed by taking a complete bipartite

graph with two parts of sizes ⌈n
2 ⌉ and ⌊n

2 ⌋ and embedding a graph with 2k − 1 vertices, k2 − 3
2k edges with

maximum degree k − 1 in one partite.

If k ≥ 2 and a1 ≥ · · · ≥ as ≥ 2, as+1 = · · · = ak = 1 with 1 ≤ s ≤ k, then Fa1,··· ,ak
is denoted by Hk,s, that

is, Hk,s is the graph consisting of k odd cycles and k − s triangles which intersect in exactly one common

vertex. In 2018, Hou, Qiu and Liu [14], and Yuan [24] independently proved the following result.

Theorem 1.2. [14, 24] Let k ≥ 2 and 1 ≤ s ≤ k. Then

ex(n,Hk,s) =
⌊n2

4

⌋
+ (k − 1)2,

for sufficiently large n. Moreover, Ex(n,Hk,s) consists of a balanced complete bipartite graph with a complete

bipartite graph Kk−1,k−1 embedded in one part if (k, s) ̸= (4, 1); a balance complete bipartite graph with a

complete bipartite graph K3,3 or 3K3 embedded in one part if (k, s) = (4, 1)

In spectral extremal graph theory, there is an analogy between the Turán-type problem and the Brualdi-

Solheid-Turán-type problem which is proposed by Nikiforov [18]. The Brualdi-Solheid-Turán-type problem

is to determine the maximum spectral radius of an H-free graph of order n and characterize those graphs

which attain the maximum spectral radius. The Brualdi-Solheid-Turán-type problem of the spectral radius

has been studied for various kinds of H such as the complete graph [17], the complete bipartite graph [19],

cycles or paths of specified length [18], the linear forest [3], and star forest [4]. In addition, the Brualdi-

Solheid-Turán-type problem of the signless Laplacian spectral radius has also been investigated extensively

in the literature. For more details, readers may be referred to [8, 13, 20, 21, 22, 25, 26]. It is of interest to

consider this problem for Fa1,··· ,ak
.

The adjacency matrix of G is the n× n matrix A(G) = (aij), where aij = 1 if vi is adjacent to vj , and

0 otherwise. Moreover, the matrix Q(G) = D(G) + A(G) is known as the signless Laplacian matrix of G,

where D(G) is the degree diagonal matrix of G. The largest eigenvalue of A(G) is called the spectral radius

of G. The largest eigenvalue of Q(G) is called the signless Laplacian spectral radius of G and denoted by

q(G).

In fact, if k = 1 and a1 = 1, Nikiforov [17] determined the maximum spectral radius of all F1-free graphs

of order n and proved that only the balanced bipartite graph has the maximum spectral radius; while He,

Jin and Zhang [13] obtained a sharp bound for the signless Laplacian spectral radius of all F1-free graphs

of order n and proved that the corresponding extremal graphs are any complete bipartite graphs Kr,s with

r+ s = n. Later, if k = 1 and a1 ≥ 2, Nikiforov [18] and Yuan [25] determined the maximum spectral radius
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and the signless spectral radius among Fa1 -free graphs of order n, respectively. Recently, Cioabă, Feng,

Tait, and Zhang [5] studied the Brualdi-Solheid-Turán-type problem for F (k)-free graphs and determined

the corresponding spectral extremal graphs, which can be viewed as a spectral analogue of Theorem 1.1.

Theorem 1.3. [5] Let G be an F (k)-free graph of order n with k ≥ 2. If G has the maximum spectral

radius, then

G ∈ Ex(n, F (k)),

for sufficiently large n.

Inspired by the work of Cioabă, Feng, Tait, and Zhang [5], Zhao, Huang, and Guo [26] focused on the

maximum signless Laplacian spectral radius of all F (k)-free graphs of order n and proved the following

result.

Theorem 1.4. [26] Let G be an F (k)-free graph of order n. If k ≥ 2 and n ≥ 3k2 − k − 2, then

q(G) ≤ q(Sn,k),

with equality if and only if G = Sn,k.

Recently, Li and Peng [15] proved the spectral result of all Hk,s-free graphs of order n, which can be

viewed as a spectral analogue of Theorem 1.2.

Theorem 1.5. [15] Let k ≥ 2 and 1 ≤ s ≤ k. If G is an Hk,s-free graph of order n with the maximum

spectral radius, then

G ∈ Ex(n,Hk,s),

for sufficiently large n.

Furthermore, combining with known results, Li and Peng [15] proposed the following conjecture on the

signless Laplacian spectral radius of Fa1,··· ,ak
-free graphs of order n with k ≥ 2 and a1 = · · · = ak ≥ 2.

Conjecture 1.6. [15] Let G be an Fa1,··· ,ak
-free graph of order n. If k ≥ 2 and a1 = · · · = ak = a ≥ 2,

then

q(G) ≤ q(Sn,ka),

for sufficiently large n with equality if and only if G = Sn,ka.

Inspired by above known results and Conjecture 1.6, we study the maximum signless Laplacian spectral

radius of all Fa1,··· ,ak
-free graphs. The main result of this paper can be stated as follows.

Theorem 1.7. Let G be an Fa1,...,ak
-free graph of order n ≥ 8t2 − 12t+ 9 with t =

∑k
i=1 ai.

(1) [13] If k = 1 and a1 = 1, then q(G) ≤ q(Sn,t) with equality if and only if G is any complete bipartite

graphs Kr,s with r + s = n.

(2) [25] If k = 1, a1 ≥ 2, and n ≥ 110t2, then q(G) ≤ q(Sn,t) with equality if and only if G = Sn,t.

(3) [26] If k ≥ 2 and a1 = · · · = ak = 1, then q(G) ≤ q(Sn,t) with equality if and only if G = Sn,t.

(4) If k ≥ 2 and a1 ≥ 2, then q(G) ≤ q(Sn,t) with equality if and only if G = Sn,t.
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Remark 1. It is easy to see that

q(Sn,t) =
n+ 2t− 2 +

√
(n+ 2t− 2)2 − 8(t2 − t)

2
.

Remark 2. It is worth mentioning that the extremal graphs in Theorem 1.7 (4) are not the same

as those of Theorems 1.2 and 1.5. The extremal graphs in Theorems 1.2 and 1.5 only depend on the

number of intersecting triangles and the number of all intersecting odd cycles, while the extremal graph

in Theorem 1.7 (4) not only depends on the number of intersecting odd cycles but also the lengths of all

intersecting odd cycles.

The rest of this paper is organized as follows. In Section 2, some known lemmas are presented. In

Section 3, we give the proof of Theorem 1.7.

2. Some Lemmas.

Lemma 2.1. [10] Let k ≥ 3. If G is a Pk-free graph of order n, then e(G) ≤ (k−2)n
2 with equality if and

only if G is the union of disjoint copies of Kk−1.

Lemma 2.2. [10] Let k ≥ 2. If G is a graph of order n with no cycle greater than k, then e(G) ≤ k(n−1)
2

with equality if and only if G = Lr,k−1 with n = r(k − 1) + 1.

Lemma 2.3. [9] If G is a graph with δ(G) ≥ 2, then G contains a cycle of length at least δ(G)+1.

We also need the stability result on the disjoint paths.

Lemma 2.4. [2] Let H =
⋃k

i=1 P2ai with k ≥ 2, a1 ≥ · · · ≥ ak ≥ 1, and t =
∑k

i=1 ai. If δ(G) ≥ t − 1

and G is an H-free connected graph of order n ≥ 2t, then one of the following holds:

(1) G ⊆ Sn,t−1;

(2) H = 2P2a1
and G = Lr,t−1, where n = r(t− 1) + 1.

Lemma 2.5. [21] Let t ≥ 2 and n > 5t2. Then

(1) q(Sn,t) > n+ 2t− 2− 2(t2−t)
n+2t−3 > n+ 2t− 3.

(2) If G is a graph of order n with q(G) ≥ q(Sn,t), then e(G) ≥ tn− t2 + 1.

Lemma 2.6. [7] Let G be a graph on n ≥ 2 vertices with degree sequence (d1, . . ., dn), where d1 ≥ · · · ≥
dn. For 1 ≤ l ≤ n,

q(G) ≤
d1 + 2dl − 1 +

√
(2dl − d1 + 1)2 + 8

∑l−1
i=1(di − dl)

2
.

Moreover, if G is connected, equality holds if and only if G is either a regular graph or a bidegreed graph in

which d1 = · · · = dt−1 = n− 1 > dt = · · · = dn for some 2 ≤ t ≤ l.

Lemma 2.7. [12, 16] Let G be a graph on n vertices. Then,

q(G) ≤ max
v∈V (G)

{
d(v) +

1

d(v)

∑
z∈N(v)

d(z)
}
.

If G is connected, then equality holds if and only if either G is a regular graph or G is a semi-regular bipartite

graph.
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Lemma 2.8. [6] Let G be a graph on n vertices and m edges. Then,

max
v∈V (G)

{
d(v) +

1

d(v)

∑
z∈N(v)

d(z)
}
≤ 2m

n− 1
+ n− 2.

with equality if and only if G is an Sn graph (K1,n−1 ⊆ Sn ⊆ Kn) or a complete graph of order n − 1 with

one isolated vertex.

Lemma 2.9. If n = r(t− 1) + 2 with r ≥ 1 and t ≥ 3, then q(K1∇Lr,t−1) < n+ 2t− 3.

Proof. Let G = K1∇Lr,t−1. Note that the nonincreasing degree sequence (d1, . . . , dn) of G is (n − 1, n −
1, t, . . . , t). From Lemma 2.6, we have

q(G) =
d1 + 2d3 − 1 +

√
(2d3 − d1 + 1)2 + 8

∑2
i=1(di − d3)

2

=
n+ 2t− 2 +

√
(n− 2t− 2)2 + 16(n− 2t− 2) + 16t+ 16

2

≤
n+ 2t− 2 + (n− 2t− 2) + 3t+7

2

2
< n+ 2t− 3.

This completes the proof. □

3. Proof of Theorem 1.7. In this section, we only need to prove that Theorem 1.7 holds for k ≥ 2

and a1 ≥ 2. Hence, we always assume that Fa1,··· ,ak
is a graph with k ≥ 2 and a1 ≥ 2 throughout the

section. Firstly, we present some preliminary results.

Lemma 3.1. Let G be an Fa1,...,ak
-free graph of order n ≥ 8t2 − 12t + 9 with t =

∑k
i=1 ai. If q(G) ≥

q(Sn,t), then ∆(G) = n− 1.

Proof. From Lemma 2.7, there exists a vertex u such that

q(G) ≤ max
v∈V (G)

{
d(v) +

1

d(v)

∑
z∈N(v)

d(z)
}
= d(u) +

1

d(u)

∑
z∈N(u)

d(z).

Let A = N(u) and B = V (G)\(N(u) ∪ {u}). Then |A|+ |B|+ 1 = n and

(1) q(Sn,t) ≤ q(G) ≤ d(u) +
1

d(u)

∑
z∈N(u)

d(z) = |A|+ 1 +
2e(A) + e(A,B)

|A|
.

Next we show that d(u) = n − 1. Assume for a contradiction that d(u) < n − 1. We prove the following

claims.

Claim 1. No vertex in B is adjacent to every vertex in A.

Suppose that there exists a vertex v ∈ B which is adjacent to every vertex in A. Since G is Fa1,...,ak
-

free, we claim that G[A] is P2a1−1

⋃
(
⋃k

i=2 P2ai
)-free. Otherwise, we assume that G[A] contains a copy of

P2a1−1

⋃
(
⋃k

i=2 P2ai
). Then G contains a copy of the cycle of length 2a1 + 1 which is constructed from a

path P2a1−1 and the two vertices v and u (since both u and v are adjacent to all vertices in A). Moreover, G

contains a copy of a cycle of length 2ai+1 which is constructed from a path P2ai and u for 2 ≤ i ≤ k. Hence,
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G contains a copy of Fa1,...,ak
, which is a contradiction. Hence, G[A] is P2t−1-free, where t =

∑k
i=1 ai. From

Lemma 2.1, we have 2e(A) ≤ (2t− 3)|A|. It follows from (1) and e(A,B) ≤ |A||B| that

q(Sn,t) ≤ |A|+ 1 +
2e(A) + e(A,B)

|A|

≤ |A|+ 1 +
(2t− 3)|A|+ |A||B|

|A|
= n+ 2t− 3 < q(Sn,t),

where the last inequality is from Lemma 2.5 (1) with 8t2−12t+9 ≥ 5t2, which is a contraction. This proves

Claim 1.

Since G is Fa1,...,ak
-free, the subgraph G[A] induced by A is

⋃k
i=1 P2ai

-free (otherwise, the subgraph

G[A∪{u}] induced by A∪{u} contains a copy of Fa1,...,ak
, which is a contradiction). Hence, G[A] is P2t-free

since t =
∑k

i=1 ai. Therefore, applying Lemma 2.1 to the induced subgraph G[A] yields

e(A) = e(G[A]) ≤ (2t− 2)|A|
2

.(2)

Claim 2. |B| ≤ 2t2 − 2t.

It follows from Claim 1 that e(A,B) ≤ (|A| − 1)|B|. Together with (1) and (2), we have

q(Sn,t) ≤ |A|+ 1 +
2e(A) + e(A,B)

|A|

≤ |A|+ 1 +
(2t− 2)|A|+ (|A| − 1)|B|

|A|

= n+ 2t− 2− |B|
n− 1− |B|

< n+ 2t− 2− |B|
n+ 2t− 3

.

Hence, |B| ≤ 2t2 − 2t follows from Lemma 2.5 (1). This proves Claim 2.

Let A′ be the set of all vertices in A which are adjacent to every vertex in B.

Claim 3. |A′| ≥ |A| − 2t2 + 2t.

Note that

e(A,B) ≤ |A′||B|+ (|A| − |A′|)(|B| − 1) = |A||B| − |A|+ |A′|.

Together with (2), we have

q(Sn,t) ≤ |A|+ 1 +
2e(A) + e(A,B)

|A|

≤ |A|+ 1 +
(2t− 2)|A|+ |A||B| − |A|+ |A′|

|A|

= n+ 2t− 2− |A| − |A′|
|A|

≤ n+ 2t− 2− |A| − |A′|
n+ 2t− 3

.
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Hence, |A′| ≥ |A| − 2t2 + 2t follows from Lemma 2.5 (1). This proves Claim 3.

Let G1 be the union of all components of G[A] each of which contains at least a vertex in A′, and let

G2 be the union of the remaining components of G[A]. Set n1 = |V (G1)| and n2 = |V (G2)|. Note that G2

is also
⋃k

i=1 P2ai
-free which implies that G2 is P2t-free. From Lemma 2.1 again, e(G2) ≤ (t− 1)n2.

Claim 4. G1 does not contain any cycle of length greater than 2t− 3.

Suppose that G1 contains a cycle Cp with p ≥ 2t− 2. Since G is Fa1,...,ak
-free, G[A] must be

⋃k
i=1 P2ai -

free, which implies p ≤ 2t − 1. Hence 2t − 2 ≤ p ≤ 2t − 1. By the definition of G1, there must be a vertex

z ∈ A′ that either belongs to Cp or can be joined to a vertex of Cp by a path Q contained in G1. From

Claims 2-3,

|A′| ≥ |A| − 2t2 + 2t = n− 1− |B| − 2t2 + 2t ≥ n− 4t2 + 4t− 1 ≥ 2t > 2.

We consider the following two cases.

Case 1. z ∈ V (Cp).

There exists a vertex v ∈ A′\V (Cp) because |A′| ≥ 2t > p. Choose a vertex w ∈ B and construct a

path P of order 2t whose first three successive vertices are v, w, z, respectively, and all vertices of P except

w are in A. As a result, G[A ∪ {w}] contains a copy of
⋃k

i=1 P2ai
, where

⋃k
i=1 V (P2ai

) = V (P ) and the

first three successive vertices of P2a1
are v, w, z respectively. Thus, G contains a copy of Fa1,...,ak

, which is

a contradiction.

Case 2. z is joined to a vertex of Cp by a path Q contained in G1.

Choose a vertex w ∈ B. If A′\(V (Cp) ∪ V (Q)) ̸= ∅, then there exists a vertex v ∈ A′\(V (Cp) ∪ V (Q)),

and we can get a path P of order 2t whose first three successive vertices are v, w, z, respectively, and all

vertices of P except w are in A. If A′ ⊆ (V (Q) ∪ V (Cp)), then by |A′| ≥ 2t > p, there exists a vertex

v ∈ A′ ∩ (V (Q)\V (Cp)). Hence, we can also construct a path P of order 2t whose first two successive

vertices are w, v and all vertices of P except w are in V (P ) ∪ V (Q). Therefore, G[A ∪ {w}] contains a copy

of
⋃k

i=1 P2ai
, implying that G contains a copy of Fa1,...,ak

. This is a contradiction. Hence, Claim 4 holds.

From Claim 4 and Lemma 2.2, we have

2e(G1) ≤ (2t− 3)(n1 − 1) < (2t− 3)n1.

Furthermore,

2e(A) = 2e(G1) + 2e(G2)

≤ (2t− 3)n1 + (2t− 2)n2 = (2t− 3)(n1 + n2) + n2

≤ (2t− 3)|A|+ |A| − |A′| ≤ (2t− 3)|A|+ 2t2 − 2t.

From (1),

q(Sn,t) ≤ |A|+ 1 +
2e(A) + e(A,B)

|A|

≤ |A|+ 1 +
(2t− 3)|A|+ 2t2 − 2t+ |A||B|

|A|

= n+ 2t− 3 +
2t2 − 2t

|A|
.
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Then, it follows from Lemma 2.5 (1) that

n+ 2t− 2− 2t2 − 2t

|A|
≤ n+ 2t− 2− 2t2 − 2t

n+ 2t− 3
≤ n+ 2t− 2− 1 +

2t2 − 2t

|A|

which implies that |A| ≤ 4t2 − 4t. Hence from Claim 3,

n = 1 + |A|+ |B| ≤ 1 + 4t2 − 4t+ 2t2 − 2t < 8t2 − 12t+ 9,

which is a contradiction. Hence, d(u) = n− 1, and it completes the proof. □

Lemma 3.2. Let G be a
⋃k

i=1 P2ai
-free graph of order n > t2 − t− 1 with k ≥ 2, a1 ≥ · · · ≥ ak ≥ 1, and

t =
∑k

i=1 ai. If e(G) ≥ (t− 1)n− (t2 − t− 1), then there exists an induced subgraph H of G which satisfies

the following conditions: (1). |V (H)| ≥ n− (t2− t− 1); (2). δ(H) ≥ t− 1; (3). dH(v) ≤ t− 2 for any vertex

v ∈ V (G)\V (H), where dH(v) = |NG(v) ∩ V (H)|.

Proof. We will construct the desired induced subgraph H by iteratively deleting vertices. Starting step:

if δ(G) ≥ t − 1, then G clearly satisfies the conditions (1)-(3) and let H = G, and we are done. Iterative

process: if δ(Gi−1) < t − 1, then let the induced subgraph Gi of Gi−1 obtained from Gi−1 by deleting a

vertex of minimum degree δ(Gi−1) ≤ t − 2 for 1 ≤ i ≤ n, where G0 = G. Suppose that the constructive

process stops after r steps when δ(Gr) ≥ t− 1. Now we prove that Gr satisfies conditions (1)-(3). Note that

Gr satisfies the following conditions: (1). |V (Gr)| = n − r; (2). δ(Gr) ≥ t − 1; (3). dGr (v) ≤ t − 2 for any

vertex v ∈ V (G)\V (Gr). Hence, we only need to prove that r ≤ t2 − t− 1. In fact,

e(Gr) ≥ e(Gr−1)− (t− 2) ≥ · · · ≥ e(G)− r(t− 2) ≥ (t− 1)n− (t2 − t− 1)− r(t− 2).

On the other hand, since G is a
⋃k

i=1 P2ai
-free graph, the induced subgraph Gr is also

⋃k
i=1 P2ai

-free. Hence,

Gr is P2t-free, where t =
∑k

i=1 ai. Applying Lemma 2.1 to Gr yields

e(Gr) ≤
(2t− 2)(n− r)

2
= (t− 1)(n− r).

Hence,

(t− 1)n− (t2 − t− 1)− r(t− 2) ≤ e(Gr) ≤ (t− 1)(n− r),

which implies that r ≤ t2 − t− 1. So let H = Gr and this completes the proof. □

Lemma 3.3. Let G1 be a
⋃k

i=1 P2ai
-free graph of order n1 with t =

∑k
i=1 ai ≥ 3 and G2 be a graph of

order n2 with 1 ≤ n2 ≤ t2+t−2. If G = K1∇(G1∪G2) is a graph of order n with n = n1+n2+1 ≥ 8t2−12t+9,

then q(G) < q(Sn,t).

Proof. By contradiction assume that q(G) ≥ q(Sn,t). Note that adding edges to G will increase q(G)

by the Perron-Frobenius Theorem. Without loss of generality, we assume that G2 = Kn2
. Since G1 is⋃k

i=1 P2ai
-free, we have G1 is P2t-free. From Lemma 2.1,

e(G1) ≤ (t− 1)(n− n2 − 1),

Thus,

e(G− V (G2)) = e(G1) + n− n2 − 1 ≤ t(n− n2 − 1).

From Lemmas 2.7 and 2.8,

q(G− V (G2)) ≤ 2e(G− V (G2))

|V (G− V (G2))| − 1
+ |V (G− V (G2))| − 2
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≤ 2t(n− n2 − 1)

n− n2 − 1
+ n− n2 − 2

= n+ 2t− n2 − 2.

Let x = (x1, . . . , xn)
⊤ be a unit positive eigenvector of Q(G) corresponding to the signless Laplacian spectral

radius q(G). By symmetry, all entries of x corresponding to the vertices of G2 = Kn2
are the same, say a.

From the eigenvalue-eigenvector equations of Q(G) on u with maximum degree n− 1 and one vertex of G2

with degree n2, we have

(q(G)− n+ 1)xu =
∑

v∈V (G)\{u}

xv ≤
√
(n− 1)

∑
v∈V (G)\{u}

x2
v =

√
(n− 1)(1− x2

u),

(q(G)− n2)a = (n2 − 1)a+ xu.

In addition, n2 ≤ t2 + t− 2 and q(G) ≥ q(Sn,t) > n+ 2t− 3 from Lemma 2.5. Hence,

x2
u ≤ n− 1

(q(G)− n+ 1)2 + n− 1
≤ n− 1

n− 1 + 4(t− 1)2
< 1− 4(t− 1)2

n+ 4t2
,

and

a =
xu

q(G)− 2n2 + 1
≤ xu

n+ 2t− 2n2 − 2
≤ xu

n− 2t2 + 2
.

Therefore,

q(G) =
∑

ij∈E(G)

(xi + xj)
2 =

∑
ij∈E(G)\E(G2)

(xi + xj)
2 + n2(a+ xu)

2 +
∑

ij∈E(G2)

(xi + xj)
2

< q(G− V (G2)) + n2(a+ xu)
2 + 2n2(n2 − 1)a2

≤ n+ 2t− n2 − 2 + n2

(
1 +

1

(n− 2t2 + 2)2
+

2

n− 2t2 + 2
+

2(n2 − 1)

(n− 2t2 + 2)2

)
x2
u

< n+ 2t− n2 − 2 + n2

(
1 +

3

n− 2t2 + 2

)(
1− 4(t− 1)2

n+ 4t2

)
< n+ 2t− 2−

(
4(t− 1)2

n+ 4t2
− 3

n− 2t2 + 2

)
< n+ 2t− 2− 2t(t− 1)

n− 2t2 + 2

< n+ 2t− 2− 2t(t− 1)

n+ 2t− 3
< q(Sn,t),

which is a contradiction. This completes the proof. □

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. Suppose that q(G) ≥ q(Sn,t). We will show that G = Sn,t. From Lemma 3.1,

∆(G) = n − 1. Let u ∈ V (G) be a vertex with maximum degree ∆(G), that is, d(u) = n − 1. From
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Lemma 2.5 (2), e(G) ≥ tn− t2 + 1, which implies that

e(G− u) = e(G)− n+ 1

≥ (t− 1)n− t2 + 2

= (t− 1)(n− 1)− (t2 − t− 1).

Since G is Fa1,...,ak
-free, G − u is

⋃k
i=1 P2ai

-free. From Lemma 3.2, there exists an induced subgraph H

of G − u such that δ(H) ≥ t − 1, |V (H)| = n1 ≥ n − (t2 − t), and dH(v) ≤ t − 2 for every vertex

v ∈ V (G)\(V (H)∪{u}). Let H =
⋃s

i=1 Hi and |V (Hi)| = hi, where Hi is a component of H for i = 1, . . . , s.

Claim 1. Every component of G−u contains at most one graph of H1, . . . ,Hs as an induced subgraph.

Note that δ(Hi) ≥ t − 1 ≥ 2 for i = 1, . . . , s. From Lemma 2.3, Hi contains a cycle of length at least t

for i = 1, . . . , s. In fact, if there is a component of G − u containing at least two graphs Hi and Hj as an

induced subgraph for 1 ≤ i ̸= j ≤ s, then G − u contains a copy of P2t+1 and thus G contains a copy of

Fa1,...,ak
, which is a contradiction. This proves Claim 1.

From Claim 1, let Ti be the component of G − u containing Hi as an induced subgraph, and G − u =

(
⋃s

i=1 Ti)
⋃
T0, where T0 is the union of the remaining components of G− u. Since G− u is

⋃k
i=1 P2ai

-free,

we have Ti is P2t-free for i = 0, . . . , s.

Claim 2. T0 = ∅.

In fact, if T0 ̸= ∅, then

1 ≤ |V (T0)| = n− 1−
s∑

i=1

|V (Ti)| ≤ n− 1−
s∑

i=1

|V (Hi)|

= n− 1− n1 ≤ t2 − t− 1.

From Lemma 3.3, q(G) < q(Sn,t), which is a contradiction. This proves Claim 2.

Claim 3. hi ≥ 2t for i = 1, . . . , s.

Suppose there exists an hi such that hi ≤ 2t− 1. Since δ(Hi) ≥ δ(H) ≥ t− 1, we have hi ≥ t. Then,

t ≤ hi ≤ |V (Ti)| ≤ hi + |V (G− u) \ V (H)| ≤ 2t− 1 + t2 − t− 1 = t2 + t− 2.

From Lemma 3.3, q(G) < q(Sn,t), which is a contradiction. This proves Claim 3.

By the definition of Lr,t, we have the following claim directly.

Claim 4. For any fixed 1 ≤ i ≤ s, if Hi = Lri,t−1 with hi = ri(t − 1) + 1, then Hi contains a copy of

P2t−1.

Claim 5. For any fixed 1 ≤ i ≤ s, if Hi is a subgraph of Shi,t−1, then Hi contains a copy of P2t−1.

Moreover, Ti is subgraph of S|V (Ti)|,t−1.

If Hi is a subgraph of Shi,t−1, then there exists Ii ⊆ V (Hi) of size hi − t + 1 such that Ii induces an

independent set of Hi. Since δ(Hi) ≥ t− 1, every vertex in Ii is adjacent to every vertex in V (Hi)\Ii. Then,
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Hi contains a copy of a path P of order 2t − 1 with both endvertices in Ii. If (V (Ti)\V (Hi)) ∪ Ii induces

at least an edge, then we can get a path of order 2t from P . Hence, G contains a copy of Fa1,...,ak
, which

is a contradiction. This implies that (V (Ti)\V (Hi)) ∪ Ii is an independent set, and thus, Ti is subgraph of

S|V (Ti)|,t−1. This proves Claim 5.

Note that q(G) ≥ q(Sn,t). SinceHi is
⋃k

i=1 P2ai
-free and δ(Hi) ≥ δ(H) ≥ t−1, it follows from Lemma 2.4

that Hi is a subgraph of Shi,t−1 or Hi = Lri,t−1 with hi = ri(t− 1) + 1 and k = 2, a1 = a2 for i = 1, . . . , s.

If s ≥ 2, then it follows from Claims 4 and 5 that G− u contains a copy of 2P2t−1, and thus, G contains a

copy of Fa1,...,ak
, which is a contradiction. So s = 1. This implies that

G− u = T1,

and H1 is an induced graph of T1, where H1 = Sh1,t−1 or H1 = Lr1,t−1 with h1 = r1(t − 1) + 1 and

k = 2, a1 = a2.

First suppose that H1 = Sh1,t−1. From Claim 5, T1 is a subgraph of S|V (T1)|,t−1, that is, G is a

subgraph of Sn,t. If G is a proper subgraph of Sn,t, then it follows from the Perron-Frobenius theorem that

q(G) < q(Sn,t), which is also a contradiction. Hence, G = Sn,t.

Next, suppose that H1 = Lr1,t−1 with h1 = r1(t − 1) + 1 and k = 2, a1 = a2. If H1 = T1, then

G = K1∇Lr1,t−1 with n = r1(t − 1) + 2. From Lemma 2.9, q(G) < n + 2t − 3 < q(Sn,t), which is a

contradiction. Thus, H1 is a proper subgraph of T1. Let H ′ = T1 − V (H1) and |V (H ′)| = n2. Since

dH1
(v) ≤ t− 2 for every vertex v ∈ V (H ′), we have

e(V (H ′), V (H1)) ≤ (t− 2)n2 ≤ (t− 2)(t2 − t− 1).

Then,

e(H ′) = e(T1)− e(H1)− e(V (H ′), V (H1))

> (t− 1)n− t2 + 2− t(n1 − 1)

2
− (t− 2)(t2 − t− 1)

= (t− 1)n− t2 + 2− t(n− n2 − 2)

2
− (t− 2)(t2 − t− 1)

=
(t− 2)n− (2t3 − 4t2)

2
+

tn2

2
>

tn2

2
.

From Lemma 2.1, H ′ contains a copy of Pt+2. Together with Claim 4, T1 contains a copy of P2t−1 ∪ Pt+2.

This implies that G contains a copy of Fa1,a2 , which is a contradiction. This completes the proof. □
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