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NUMERICAL RANGE FOR WEIGHTED MOORE-PENROSE INVERSE OF TENSOR∗

AAISHA BE† , VAIBHAV SHEKHAR‡ , AND DEBASISHA MISHRA†

Abstract. This article first introduces the notion of weighted singular value decomposition (WSVD) of a tensor via the

Einstein product. The WSVD is then used to compute the weighted Moore-Penrose inverse of an arbitrary-order tensor. We

then define the notions of weighted normal tensor for an even-order square tensor and weighted tensor norm. Finally, we apply

these to study the theory of numerical range for the weighted Moore-Penrose inverse of an even-order square tensor and exploit

its several properties. We also obtain a few new results in matrix setting.
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1. Introduction. The terms numerical range and numerical radius have drawn significant attention

from researchers in the last few decades in the field of matrix and operator theory [8, 9, 45, 47]. These have

been widely studied because of their applications in many areas, such as numerical analysis and differential

equations [41, 50, 27, 30, 31, 51, 18, 44]. The numerical range (or the field of values) of a square matrix

A ∈ Cn×n is a subset of complex numbers defined as:

(1.1) W (A) = {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1},

where 〈x, y〉 = y∗x for x, y ∈ Cn and ‖x‖ = 〈x, x〉1/2. And, the numerical radius of the matrix A is defined

as:

(1.2) w(A) = max{|z| : z ∈W (A)}.

One of the main reasons for emphasizing the numerical range concept is its many attractive properties.

For example, W (A) is a convex subset of C (known as Toeplitz-Hausdorff theorem [47]). Further, the

numerical range of a matrix contains its spectrum (or the set of all eigenvalues). The numerical radius is

frequently employed as a more reliable indicator of the rate of convergence of iterative methods than the

spectral radius [41, 27]. In 2016, Ke et al. [49] introduced tensor numerical ranges using tensor inner products

and tensor norms via the k-mode product, which may not be convex in general (see Example 1, [49]). In

2021, Pakmanesh and Afshin [35] continued the same study for even-order tensors and proved the convexity

for the numerical range of an even-order tensor. In 2023, Rout et al. [38] introduced tensor numerical

ranges using tensor inner products and tensor norms via the Einstein product. The authors [38] studied

several fundamental notions of tensor numerical ranges, such as unitary invariance, spectral containment,

and convexity. Furthermore, they developed an algorithm to plot the boundary of the numerical range of a

tensor, which helps to design faster algorithms for the calculations of its eigenvalues. To understand tensor
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numerical ranges, we first recall some basic facts about tensors. Tensors are generalizations of scalars (that

have no index), vectors (that have precisely one index), and matrices (that have precisely two indices) to an

arbitrary number of indices. A tensor is represented as a multidimensional array. An N th-order tensor is

defined as:

A = (ai1i2...iN ) ∈ CI1×···×IN ; 1 ≤ ik ≤ Ik for each k = 1, 2, ..., N,

where each mode Ik is a natural number and the notation ai1...iN represents the (i1, . . . , iN )th element of

A. According to the number of modes a tensor is called an even or odd tensor. The transpose of a tensor

may not be unique, which is recalled here. Let A ∈ CI1×I2×···×IM be a tensor and let π be a permutation in

SM except the identity permutation, where SM represents the permutation group over the set {1, 2, . . . ,M}.
Then, the transpose [26] of A associated with π is defined as

(1.3) ATπ = (aiπ(1)iπ(2)...iπ(M)
) ∈ CIπ(1)×Iπ(2)×···×Iπ(M) .

Thus, there are M ! − 1 possible transposes associated with a tensor A ∈ CI1×···×IM . In particular, for

A = (ai1i2...iM j1j2...jN ) ∈ CI1×···×IM×J1×···×JN and π ∈ SM+N such that ATπ = (bj1j2...jN i1i2...iM ) =

(ai1i2...iM j1j2...jN ) ∈ CJ1×···×JN×I1×···×IM , then it is simply written as AT . To see this numerically, we

next produce an example.

Example 1.1. Let A ∈ CI1×I2×J1 with I1 = I2 = 2, J1 = 3 such that

A(:, :, 1) A(:, :, 2) A(:, :, 3)

1 2 0 3 i 0

0 0 4 0 2 0

.

Then, the transpose of A, AT ∈ CJ1×I1×I2 is

AT (:, :, 1) AT (:, :, 2)

1 0 2 0

0 4 3 0

i 2 0 0

.

Similarly, the conjugate transpose of A is denoted by AH and defined by AH = (cj1j2...jN i1i2...iM ) =

(ai1i2...iM j1j2...jN ) ∈ CJ1×···×JN×I1×···×IM , where bar denotes the complex conjugate of a number. Fur-

thermore, if A ∈ CI1×I2×···×IM , then AT = (a1i1i2...iM ) ∈ C1×I1×I2×···×IM . There are two ways to define a

square tensor. One when each mode is of equal size, i.e., n×n×· · ·×n and another when the first N modes

are repeated in the same order, i.e., I1 × · · · × IN × I1 × · · · × IN . For the tensors with all equal modes,

symmetricity can be studied as in [42, 24]. A square tensor A ∈ CI1×···×IN×I1×···×IN is called Hermitian

(symmetric) [26, 34] if A = AH (A = AT ). We next consider an example of a Hermitian tensor of size

2× 2× 2× 2.

Example 1.2. A ∈ CI1×I2×I1×I2 with I1 = I2 = 2 such that

A(:, :, 1, 1) A(:, :, 2, 1) A(:, :, 1, 2) A(:, :, 2, 2)

1 1 1+i 0 1 2 0 i

1-i 0 0 0 0 -i 0 0

is a Hermitian tensor.

Ke et al. [49] extended the notion of the numerical range of a matrix for the former type of square

tensors. Further, Rout et al. [38] extended the numerical range for the latter type of square tensors. They
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also obtained a few properties of tensor numerical range of the Moore-Penrose inverse via the Einstein

product. We aim to study these properties of tensor numerical range for the weighted Moore-Penrose inverse

of a tensor. For this purpose, we recall the Einstein product below.

The Einstein product [2] A ∗N B ∈ CI1×···×IM×J1×···×JL of tensors A ∈ CI1×···×IM×K1×···×KN and

B ∈ CK1×···×KN×J1×···×JL is defined by the operation ∗N via

(A ∗N B)i1...iM j1...jL =
∑

k1,...,kN

ai1...iMk1...kN bk1...kN j1...jL .

In the next example, we compute the Einstein product of the tensors A and B because the last two modes

of A are the same as the first two modes of B.

Example 1.3. Let A ∈ R2×2×3 and B ∈ R2×3×2 be such that

A(:, :, 1) A(:, :, 2) A(:, :, 3)

1 0 2 1 0 2

2 1 0 2 1 1

and

B(:, :, 1) B(:, :, 2)

4 -1 0 1 1 1

1 0 2 0 0 -1

.

Then, their Einstein product C = A ∗2 B ∈ R2×2 is

C(:, :)
6 1

11 2

.

The associative law for the Einstein product holds. In the above formula, if B ∈ CK1×···×KN , then A∗N B ∈
CI1×···×IM and

(A ∗N B)i1...iM =
∑

k1,...,kN

ai1...iMk1...kN bk1...kN .

This product is used in the study of the theory of relativity [2] and in the area of continuum mechanics [54].

Let A ∈ Rm×n and B ∈ Rn×l. Then, the Einstein product ∗1 reduces to the standard matrix multiplication

as

(A ∗1 B)ij =

n∑
k=1

aikbkj .

We refer to [3] for further advantages of studying the theory of tensors via the Einstein product.

In 2005, Lim [23] and Qi [24] independently introduced the notions of eigenvalues and eigenvectors of

an m-th order n-dimensional tensor. In this direction, Sturmfels [4] solved two problems on counting the

number of eigenvectors and singular vectors of a 3× 3× 3 tensor. The role of the eigenvectors of the third

and fourth moment of multivariate distribution is examined by Loperfido [39, 40]. In 2019, Liang and Zheng

[34] recalled the definition of eigenvalues of an even-order square tensor via the Einstein product as follows.

Definition 1.4 (Definition 2.3, [34]).

Let A ∈ CI1×···×IN×I1×···×IN . Then, a complex number λ is called an eigenvalue of A if there exists a

nonzero tensor X ∈ CI1×···×IN such that
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(1.4) A ∗N X = λX .

The tensor X is called an eigentensor with respect to λ.

The set of all the eigenvalues of A is denoted by σ(A). The spectral radius of the tensor A is denoted by

ρ(A) and defined by ρ(A) = max{|λ| : λ ∈ σ(A)}.
The eigenvalues and their corresponding eigentensors are computed in the next example for a simple even-

order square tensor.

Example 1.5. The set of all eigenvalues of the tensor A ∈ R2×2×2×2 such that

A(:, :, 1, 1) A(:, :, 2, 1) A(:, :, 1, 2) A(:, :, 2, 2)

1 0 1 0 1 3 1 1

0 0 2 0 1 0 1 1

is σ(A) = {1, 2, 3} and their corresponding eigentensors are

eigenvalue 1 1

eigentensor

X (:, :)

1 0

0 0

X (:, :)

0 1

1 -2

,

eigenvalue 2 3

eigentensor

X (:, :)

1 0

1 0

X (:, :)

1 1

1 0

.

Furthermore, the positive square roots of eigenvalues of AH ∗N A are called the singular values of A. The

maximum singular value of A is called the spectral norm [13] of the tensor A. Wang and Wei [56] studied the

generalized eigenvalue problem via the Einstein product for even-order tensors and showed its applications

in multilinear control systems.

In 2013, Brazell et al. [26] first introduced the notion of the inverse of a tensor via the Einstein product.

For A ∈ CI1×···×IN×I1×···×IN , if there exists a tensor X ∈ CI1×···×IN×I1×···×IN such that A ∗N X = I =

X ∗N A, then the tensor X is called the inverse of the tensor A and it is denoted by A−1. In 2016, Sun et

al. [25] formally introduced a generalized inverse called the Moore-Penrose inverse of an even-order tensor

via the Einstein product. The authors [25] then used the Moore-Penrose inverse to find the minimum-norm

least-squares solution of some multilinear systems. Panigrahy and Mishra [20], Stanimirović et al. [46], and

Liang and Zheng [34] independently improved the definition of the Moore-Penrose inverse of an even-order

tensor to a tensor of any order via the same product. In 2017, Ji and Wei [16] defined the notion of Hermitian

positive definite tensor and the weighted Moore-Penrose inverse for an even-order square tensor, and then in

2020, Behera et al. [48] extended the definition to an arbitrary-order tensor. The definition of the weighted

Moore-Penrose inverse of an arbitrary-order tensor and one result are recalled here.

Definition 1.6 (Definition 8, [48]).

Let A ∈ CI1×···×IM×J1×···×JN , and M ∈ CI1×···×IM×I1×···×IM , N ∈ CJ1×···×JN×J1×···×JN be two Hermitian

positive definite tensors. Then, the tensor X ∈ CJ1×···×JN×I1×···×IM is called the weighted Moore-Penrose

inverse of A if it satisfies the following four tensor equations:
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A ∗N X ∗M A = A;(1.5)

X ∗M A ∗N X = X ;(1.6)

(M∗M A ∗N X )H =M∗M A ∗N X ;(1.7)

(N ∗N X ∗M A)H = N ∗N X ∗M A.(1.8)

It is denoted by A†M,N . In particular, if M and N are the identity tensors, then A†M,N = A†, the Moore-

Penrose inverse [20] of A.

Theorem 1.7 (Theorem 4, [48]).

Let A ∈ CI1×···×IM×J1×···×JN , and M ∈ CI1×···×IM×I1×···×IM , N ∈ CJ1×···×JN×J1×···×JN be two Hermitian

positive definite tensors. If Ã =M1/2 ∗M A ∗N N−1/2, then

A†M,N = N−1/2 ∗N Ã† ∗MM1/2.

This article aims to introduce the notions of WSVD of an arbitrary-order tensor, weighted normal tensor,

and weighted tensor norm and to establish their various properties. Some of these are utilized to investigate

a few properties of the numerical range for the weighted Moore-Penrose inverse of an even-order square

tensor. The rest of this article is structured as follows to accomplish our objectives. In Section 2, we recall

some preliminaries. Then, we provide the WSVD and some of its applications in Section 3. Section 4 defines

the weighted normal tensor and discusses its several features. Section 5 introduces the weighted tensor norm.

Finally, we utilize all these notions to collect some properties of the numerical range, which examine different

relations between the numerical range of a tensor and its weighted Moore-Penrose inverse in Section 6.

2. Preliminaries. For two tensors X ,Y ∈ CI1×···×IN , an inner product 〈X ,Y〉 is defined as 〈X ,Y〉 =

YH ∗N X and a norm induced by this inner product as ‖X‖ = 〈X ,X〉1/2. A tensor X ∈ CI1×···×IN is called

a unit tensor if ‖X‖ = 1. First, we recall the definition of the numerical range and some results from [38].

Definition 2.1 (Definition 2.1, [38]).

Let A ∈ CI1×···×IN×I1×···×IN . Then, the numerical range of A is denoted by W (A) and defined by

(2.9) W (A) = {〈A ∗N X ,X〉 : X is a unit tensor in CI1×···×IN }.

With some elementary calculations, it can be shown that

(2.10) W (A) =

{
〈A ∗N X ,X〉
‖X‖2

: O 6= X ∈ CI1×···×IN
}
,

where O is the zero tensor having all the entries zero. The numerical radius of A is defined as:

(2.11) w(A) = max{|z| : z ∈W (A)}.

Note that, in the above Definition 2.1 when N = 1, it coincides with the numerical range of a matrix defined

in (1.1).

Theorem 2.2 (Theorem 5.1, [38]).

Let A ∈ CI1×···×IN×I1×···×IN . Then, A is normal (resp. Hermitian) if and only if A† is normal (resp.

Hermitian).

We now recall the definition of the weighted conjugate transpose of a tensor proposed by Behera et al. [48]
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Definition 2.3 (Definition 9, [48]).

Let A ∈ CI1×···×IM×J1×···×JN . If M ∈ CI1×···×IM×I1×···×IM and N ∈ CJ1×···×JN×J1×···×JN are two Hermi-

tian positive definite tensors, then the tensor

(2.12) A#
MN = N−1 ∗N AH ∗MM,

is called the weighted conjugate transpose of A.

Unfolding (or reshaping or flattening or matricization) is a way to transform a tensor into a matrix. There

are several ways of unfolding [26, 12, 28, 29, 52, 53, 34, 22, 46] of a tensor. For the variety of applications

of tensors, different unfolding are defined, like n-mode unfoldings [12, 53, 22] give nice relations among the

n-mode product of tensor, usual matrix multiplication, and Kronecker product of matrices [52]. Also, the

third-mode unfolding is very useful in the computation of c-product of tensors. In the framework of higher

order moment of multivariate distributions, Loperfido [40] showed a connection between the star product of

matrices and the contraction product of tensors using a tensor unfolding. For the convenience of the present

work, unfolding of a tensor is derived from [34, 46]. The reshaping operation transforms an arbitrary tensor

A = (ai1...iM j1...jN ) ∈ CI1×···×IM×J1×···×JN into the matrix A = (aij) ∈ Cm×n, where m = I1 · · · · · IM and

n = J1 · · · · · JN , in which the (i1...iM j1...jN )th element of A is mapped to (ij)th element of A, where

i := i1 +

M∑
s=2

(is − 1)

s−1∏
u=1

Iu and j := j1 +

N∑
t=2

(jt − 1)

t−1∏
v=1

Jv.

One can find this reshaping operation using the Matlab function “reshape” [46] as follows:

rsh(A) = A = reshape(A,m,n).

This reshape map is also bijective [46] and the inverse of the reshaping operation is defined by

rsh−1(A) = A = reshape(A,M1, . . . ,Mm, N1, . . . , Nn).

For a third-order tensor, different unfoldings are shown and discussed in the following example.

Example 2.4. Let A ∈ R2×2×3 such that

A(:, :, 1) A(:, :, 2) A(:, :, 3)

1 2 5 6 9 10

3 4 7 8 11 12

.

According to Kolda [52], we can find 12 different unfoldings of A. From the 12 unfoldings, particularly, we

compute n-mode unfoldings (Kolda and Bader [53]) here. So, first, second, and third-mode unfoldings of A
are

A(1) =

[
1 2 5 6 9 10

3 4 7 8 11 12

]
, A(2) =

[
1 3 5 7 9 11

2 4 6 8 10 12

]
, and A(3) =

1 3 2 4

5 7 6 8

9 11 10 12

 .
Kilmer and Martin [28] defined MatVec(·) operator to write a tensor into a matrix. According to them

MatVec(A) =



1 2

3 4

5 6

7 8

9 10

11 12


.
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The MatVec(·) operator is also defined as unfold(·) in Kilmer et al. [29]. Now, if we consider the tensor A
as A ∈ CI1×I2×J1 with I1 = I2 = 2, J1 = 3, then using the reshape function as defined above the unfolding of

A is

rsh(A) =


1 5 9

3 7 11

2 6 10

4 8 12

 ,
and if we consider the tensor A as A ∈ CI1×J1×J2 with I1 = 2, J1 = 2, J2 = 3, then the unfolding of A is

rsh(A) =

[
1 2 5 6 9 10

3 4 7 8 11 12

]
.

Further, rshrank(A)=rank(rsh(A)) is defined as the rank of the tensor A, in [46]. For the Einstein product

of two tensors, reshape map satisfies the following property given as Lemma 3.1 in [46].

Lemma 2.5 ([46]).

Let A ∈ CI1×···×IM×J1×···×JN and B ∈ CJ1×···×JN×K1×···×KP . Then,

rsh(A ∗N B) = rsh(A)rsh(B) = AB,

where rsh(A) = A ∈ Cm×n, rsh(B) = B ∈ Cn×l, m = I1 · · · · · IM , n = J1 · · · · · Jn, and p = K1 · · · · ·KP .

Using the same unfolding of tensors several other generalized inverses of tensors are presented in the literature

(for example, see [17]). Also, interested readers are referred to [43] for a brief introduction to tensor rank

and some decompositions of tensors.

3. Weighted singular value decomposition. This section contains some of the main results of this

article. In 2013, Brazell et al. first studied the singular value decomposition (SVD) of a tensor via the

Einstein product, which is a generalization of the SVD of a matrix [10, 11]. In 2011, Kilmer and Martin

[28] defined the T -SVD. Besides applications in image processing [29], the T -SVD was also utilized by Miao

et al. [55] to define generalized tensor functions based on t-product. In 2015, Loperfido [39] investigated

some properties of the SVD of the third multivariate moment and also established that the left singular

vectors corresponding to positive singular values of the third multivariate moment are vectorized, symmetric

matrices. In this section, we prove that any tensor can be decomposed into the tensor Einstein product of

three special tensors. We call it the WSVD of the given tensor as it generalizes the notion of the WSVD

of a matrix [5]. After that, we derive a formula to compute the weighted Moore-Penrose inverse of a given

arbitrary-order tensor. For applications of the WSVD of a matrix, we refer [32, 14, 19, 15] and references

therein. In particular, the WSVD is widely used in solving weighted least-squares solutions [5, 6]. We now

propose the WSVD of an arbitrary-order tensor using the reshaping operation that generalizes Theorem 3.17

of [26], Lemma 3.1 of [25], Theorem 3.2 of [34], and Lemma 2 of [48].

Theorem 3.1. Let A ∈ CI1×···×IM×J1×···×JN with rshrank(A) = r, and M ∈ CI1×···×IM×I1×···×IM ,

N ∈ CJ1×···×JN×J1×···×JN be two Hermitian positive definite tensors. Then, there exist tensors U ∈
CI1×···×IM×I1×···×IM and V ∈ CJ1×···×JN×J1×···×JN satisfying UH∗MM∗MU = I1 and VH∗NN−1∗NV = I2,

where I1 ∈ CI1×···×IM×I1×···×IM and I2 ∈ CJ1×···×JN×J1×···×JN are the identity tensors, such that

(3.13) A = U ∗M S ∗N VH ,
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in which the tensor S = (Si1...iM j1...jN ) ∈ RI1×···×IM×J1×···×JN is defined by

(3.14) Si1···iM j1···jN =

{
µIJ > 0, if I = J ∈ {1, 2, . . . , r},
0, otherwise,

where I = i1 +

M∑
s=2

(is − 1)

s−1∏
u=1

Iu and J = j1 +

N∑
t=2

(jt − 1)

t−1∏
v=1

Jv.

Proof. Let A = rsh(A) ∈ Cm×n, M = rsh(M) ∈ Cm×m, and N = rsh(M) ∈ Cn×n be the reshaping of

the tensors A, M, and N , respectively, where

(3.15) m = I1 · I2 · · · · · IM and n = J1 · J2 · · · · · JN .

The WSVD of the matrix A with respect to the weights M and N is

(3.16) A = USV ∗,

where U ∈ Cm×m and V ∈ Cn×n following U∗MU = I1 and V ∗N−1V = I2, I1 ∈ Cm×m, I2 ∈ Cn×n are the

identity matrices, and S = diag(µ1, µ2, . . . , µr, 0, . . . , 0) ∈ Rm×n, µ1 ≥ µ2 ≥ ... ≥ µr > 0 are the nonzero

(M,N) singular values of A. Since rsh is a bijection, taking the inverse map rsh−1 on both sides of (3.16),

we obtain

rsh−1(A) = rsh−1(USV ∗) = rsh−1(U) ∗M rsh−1(S) ∗N rsh−1(V ∗) = rsh−1(U) ∗M rsh−1(S) ∗N (rsh−1(V ))H ,

which implies that

A = U ∗M S ∗N VH .

Now, we have U∗MU = I1 and V ∗N−1V = I2. Applying the reverse map rsh−1 on both sides in the last

two equalities, we get UH ∗MM∗M U = I1 and VH ∗N N−1 ∗N V = I2. From S = rsh−1(S),

Si1···iM j1···jN =

{
µIJ > 0, if I = J ∈ {1, 2, . . . , r},
0, otherwise.

This completes the proof.

We call (3.13) as the WSVD of the tensor A and µIJ
,s as the (M,N ) singular values of A. We next present

an algorithm for computing the WSVD.

The following example demonstrates Algorithm 1.

Example 3.2. Consider the tensor A ∈ CI1×I2×J1 = C2×2×2 and the two weights M ∈ CI1×I2×I1×I2 =

C2×2×2×2, N ∈ CJ1×J1 = C2×2 such that

A(:, :, 1) A(:, :, 2)

1 0 0 1

0 0 0 0

,

M(:, :, 1, 1) M(:, :, 2, 1) M(:, :, 1, 2) M(:, :, 2, 2)

1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 4

,
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Algorithm 1 Computing WSVD of a tensor

Require: Positive integers M,N, I1, ..., IM , J1, ..., JN ,m, n such that m and n satisfy (3.15).

A ∈ Cm×n, and M ∈ Cm×m, N ∈ Cn×n two Hermitian positive definite matrices.

1: Compute the WSVD of A,

A = USV ∗,

where U ∈ Cm×m and V ∈ Cn×n and S ∈ Cm×n is a diagonal matrix with (M,N) singular

values of A on the main diagonal.

2: Perform the reshaping operations

rsh−1(U) = U ∈ CI1×···×IM×I1×···×IM , rsh−1(V ∗) = VH ∈ CJ1×···×JN×J1×···×JN , rsh−1(S) = S ∈
CI1×···×IM×J1×···×JN .

3: Compute the output

A = U ∗M S ∗N VH .

and

N (:, :)

4 0

0 1

.

On reshaping these tensors A,M, and N , we obtain the matrices A,M, and N , respectively, as follows:

A =


1 0

0 0

0 1

0 0

 , M =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 4

 , and N =

[
4 0

0 1

]
.

Now, we compute the WSVD of the matrix A with respect to the weights M and N , we get A = USV ∗,

where

U =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1
2

 , S =


1 0

0 1
2

0 0

0 0

 , and V =

[
0 2

1 0

]
.

On applying the inverse reshape function on the matrices U, S, and V , we get the tensors U ∈ CI1×I2×I1×I2 =

C2×2×2×2,S ∈ CI1×I2×J1 = C2×2×2, and V ∈ CJ1×J1 = C2×2, respectively as

U(:, :, 1, 1) U(:, :, 2, 1) U(:, :, 1, 2) U(:, :, 2, 2)

0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 1
2

,

S(:, :, 1) S(:, :, 2)

1 0 0 0

0 0 1
2 0

,

and

V(:, :)

0 2

1 0

.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 140-171, January 2024.

149 Numerical range for weighted Moore-Penrose inverse of tensor

Therefore, U ∗2 S ∗1 VH is

U ∗2 S ∗1 VH(:, :, 1) U ∗2 S ∗1 VH(:, :, 2)

1 0 0 1

0 0 0 0

,

which is same as the tensor A, i.e., A = U ∗2 S ∗1 VH .

Next, we provide a result to compute the weighted Moore-Penrose inverse of a tensor A via the WSVD,

A = U ∗M S ∗N VH .

Theorem 3.3. Let A ∈ CI1×···×IM×J1×···×JN with rshrank(A) = r, and M ∈ CI1×···×IM×I1×···×IM ,

N ∈ CJ1×···×JN×J1×···×JN be two Hermitian positive definite tensors. If A = U ∗M S ∗N VH is the WSVD

of the tensor A, then

(3.17) A†M,N = N−1 ∗N V ∗N S† ∗M UH ∗MM,

where S† = (S†j1...jN i1...iM ) ∈ RJ1×···×JN×I1×···×IM is defined by

(3.18) S†j1···jN i1···iM =

{
S−1i1···iM j1···jN , if Si1···iM j1···jN 6= 0,

0, otherwise.

Proof. It can be easily proved by Definition 1.6.

Here, we present an algorithm for computing the weighted Moore-Penrose inverse via the WSVD.

Algorithm 2 Computing the weighted Moore-Penrose inverse of a tensor

Require: Positive integers M,N, I1, ..., IM , J1, ..., JN ,m, n such that m and n satisfy (3.15).

A ∈ Cm×n, and M ∈ Cm×m, N ∈ Cn×n two Hermitian positive definite matrices.

1: Compute the WSVD of A,

A = USV ∗,

where U ∈ Cm×m and V ∈ Cn×n and S ∈ Cm×n is a diagonal matrix with (M,N) singular

values of A on the main diagonal.

2: Perform the reshaping operations

rsh−1(U) = U ∈ CI1×···×IM×I1×···×IM , rsh−1(V ∗) = VH ∈ CJ1×···×JN×J1×···×JN , rsh−1(S) = S ∈
CI1×···×IM×J1×···×JN .

3: Compute the output

A†M,N = N−1 ∗N V ∗N S† ∗M UH ∗MM.

The next example verifies the above algorithm.

Example 3.4. Consider the same tensors A,M, and N as given in Example 3.2. By the same argument,

we have the tensors U ,S, and V. Using (3.18), we get S† ∈ CJ1×I1×I2 = C2×2×2 as

S†(:, :, 1) S†(:, :, 2)

1 0 0 0

0 2 0 0

.

The conjugate transpose UH ∈ CI1×I2×I1×I2 = C2×2×2×2 of the tensor U is
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UH(:, :, 1, 1) UH(:, :, 2, 1) UH(:, :, 1, 2) UH(:, :, 2, 2)

0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 1
2

.

Then, we obtain the tensors B = N−1 ∗1 V, C = B ∗1 S†, D = C ∗2 UH , and E = D ∗2M as follows:

B(:, :)

0 1
2

1 0

,

C(:, :, 1) C(:, :, 2)

0 1 0 0

1 0 0 0

,

D(:, :, 1) D(:, :, 2)

1 0 0 0

0 0 1 0

,

and

E(:, :, 1) E(:, :, 2)

1 0 0 0

0 0 1 0

.

It is clear that the tensor E = N−1 ∗1 V ∗1 S† ∗2 UH ∗2M, which is the weighted Moore-Penrose inverse

A†M,N of A.

The next result can be easily verified using the definition of the weighted Moore-Penrose inverse of a tensor.

Lemma 3.5. Let A ∈ CI1×···×IM×J1×···×JN , and M ∈ CI1×···×IM×I1×···×IM , N ∈ CJ1×···×JN×J1×···×JN
be two Hermitian positive definite tensors. If for any tensor B ∈ CI1×···×IM×J1×···×JN , A = U ∗M B ∗N VH ,

where U ∈ CI1×···×IM×I1×···×IM and V ∈ CJ1×···×JN×J1×···×JN satisfying UH ∗MM∗M U = I1 and VH ∗N
N−1 ∗N V = I2, where I1 ∈ CI1×···×IM×I1×···×IM and I2 ∈ CJ1×···×JN×J1×···×JN are the identity tensors,

then A†M,N = N−1 ∗N V ∗N B† ∗M UH ∗MM.

The above result reduces to the following corollary in the matrix case.

Corollary 3.6. Let A ∈ Cm×n, and M ∈ Cm×m, N ∈ Cn×n be two Hermitian positive definite

matrices. If for any matrix B ∈ Cm×n, A = UBV ∗, where U ∈ Cm×m and V ∈ Cn×n satisfying U∗MU = I1
and V ∗N−1V = I2, where I1 ∈ Cm×m and I2 ∈ Cn×n are the identity matrices, then A†M,N = N−1V B†U∗M.

In the following theorem, we present a representation of the weighted Moore-Penrose inverse A†M,N of A.

Theorem 3.7. Let A ∈ CI1×···×IM×J1×···×JN . If M∈ CI1×···×IM×I1×···×IM and

N ∈ CJ1×···×JN×J1×···×JN are two Hermitian positive definite tensors, then

A†M,N = lim
λ→0

[(λI2 +A#
MN ∗M A)−1 ∗N A#

MN ],

where A#
MN is the weighted conjugate transpose of A, λ ∈ R+, R+ denotes the set of all positive real numbers,

and I2 ∈ CJ1×···×JN×J1×···×JN is the identity tensor.
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Proof. By Theorems 3.1 and 3.3, we have A = U ∗M S∗N VH and A†M,N = N−1∗N V ∗N S†∗M UH ∗MM,

where

Si1···iM j1···jN =

{
µIJ > 0, if I = J ∈ {1, 2, . . . , r},
0, otherwise,

and

S†j1···jN i1···iM =

{
S−1i1···iM j1···jN , if Si1···iM j1···jN 6= 0,

0, otherwise,

where I = i1 +

M∑
s=2

(is−1)

s−1∏
u=1

Iu and J = j1 +

N∑
t=2

(jt−1)

t−1∏
v=1

Jv. Now, using UH ∗MM∗M U = I1 and VH ∗N

N−1 ∗N V = I2, we obtain

A#
MN ∗M A = N−1 ∗N AH ∗MM∗M A

= N−1 ∗N V ∗N SH ∗M UH ∗MM∗M U ∗M S ∗N VH

= (VH)−1 ∗N SH ∗M S ∗N VH .

Therefore, we get

λI2 +A#
MN ∗M A = (VH)−1 ∗N (λI2 + SH ∗M S) ∗N VH ,

and

(λI2 +A#
MN ∗M A)

−1 ∗N A#
MN

= (VH)−1 ∗N (λI2 + SH ∗M S)−1 ∗N VH ∗N N−1 ∗N V ∗N SH ∗M UH ∗MM
= N−1 ∗N V ∗N (λI2 + SH ∗M S)−1 ∗N SH ∗M UH ∗MM.

Now,

SHj1···jN i1···iM = Si1···iM j1···jN =

{
µIJ > 0, if J = I ∈ {1, 2, . . . , r},
0, otherwise,

and

(SH ∗M S)j1···jNk1···kN =

{
µIJ

2, if J = K ∈ {1, 2, . . . , r},
0, otherwise.

So, we obtain

(λI2 + SH ∗M S)−1
j1···jNk1···kN =


1

λ+µIJ
2 , if J = K ∈ {1, 2, . . . , r},

1
λ
, if J = K /∈ {1, 2, . . . , r},

0, otherwise,

and

((λI2 + SH ∗M S)−1 ∗N SH)j1···jN i1···iM =

{
µIJ

λ+µIJ
2 , if J = I ∈ {1, 2, . . . , r},

0, otherwise.
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The last equation implies that lim
λ→0

((λI2 + SH ∗M S)−1 ∗N SH) = S†. Thus, we get

lim
λ→0

[(λI2 +A#
MN ∗M A)

−1 ∗N A#
MN ] = lim

λ→0
[N−1 ∗N V ∗N (λI2 + SH ∗M S)−1 ∗N SH ∗M UH ∗MM]

= N−1 ∗N V ∗N S† ∗M UH ∗MM

= A†M,N .

Same as Theorem 3.7, we can derive the next representation for A†M,N .

Theorem 3.8. Let A ∈ CI1×···×IM×J1×···×JN . If M∈ CI1×···×IM×I1×···×IM and

N ∈ CJ1×···×JN×J1×···×JN are two Hermitian positive definite tensors, then

A†M,N = lim
λ→0

[A#
MN ∗M (λI1 +A ∗N A#

MN )−1],

where A#
MN is the weighted conjugate transpose of A, λ ∈ R+, and I1 ∈ CI1×···×IM×I1×···×IM is the identity

tensor.

By Proposition 2.4 of [25] and Definition 1.6, we can prove the following lemma.

Lemma 3.9. Let B ∈ CI1×···×IN×I1×···×IN be an invertible tensor and let a block tensor A be defined by

A =

[
B O
O O

]
,

where O ∈ CI1×···×IN×I1×···×IN is the zero tensor. Let M,N ∈ C2I1×...×2IN×2I1×...×2IN be two diagonal

tensors with positive diagonal entries. Then,

A†M,N =

[
B−1 O
O O

]
.

The above result reduces to the Moore-Penrose inverse case when we consider identity tensors as weights.

4. Weighted normal tensor. In this section, we first introduce the notions of weighted self-conjugate

and weighted normal tensor, and then exploit their various properties. Further, we show that Theorem 2.2

does not hold if we replace A† by A†M,N . We remark that all the definitions and results of this section are

also new for matrices and one can state them by taking N = 1 in tensor case.

Definition 4.1. Let A ∈ CI1×···×IN×I1×···×IN be an even-order square tensor, and

N ∈ CI1×···×IN×I1×···×IN be a Hermitian positive definite tensor. Then, the tensor A is called weighted

self-conjugate tensor if A#
NN = A, i.e.,

N−1 ∗N AH ∗N N = A.

Definition 4.2. Let A ∈ CI1×···×IN×I1×···×IN be an even-order square tensor, and

N ∈ CI1×···×IN×I1×···×IN be a Hermitian positive definite tensor. Then, the tensor A is called the weighted

normal tensor if

A#
NN ∗N A = A ∗N A#

NN .

In particular, if N is the identity tensor, then the tensor A becomes a normal tensor.
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We next provide an example of a tensor which is weighted self-conjugate as well as a weighted normal tensor.

Example 4.3. Consider A, N ∈ CI1×I2×I1×I2 with I1 = I2 = 2 such that

A(:, :, 1, 1) A(:, :, 2, 1) A(:, :, 1, 2) A(:, :, 2, 2)

1/2 1 1+i/2 0 1/2 2 0 i

1-i 0 0 0 0 -i/2 0 0

,

N (:, :, 1, 1) N (:, :, 2, 1) N (:, :, 1, 2) N (:, :, 2, 2)

2 0 0 0 0 1 0 0

0 0 1 0 0 0 0 2

.

Then, the weighted conjugate transpose of A, A#
NN = A. Therefore, A is a weighted self-conjugate tensor

and also a weighted normal tensor.

Here, we provide an example which shows that A†M,N is not necessarily normal (or Hermitian) tensor even

if A is normal (or Hermitian) or A† is normal (or Hermitian).

Example 4.4. Let A =

(
4 0

0 0

)
∈ C2×2. If M =

(
1 0

0 2

)
and N =

(
2 1

1 2

)
are two Hermitian positive

definite matrices in C2×2, then A† =

(
1
4 0

0 0

)
and A†M,N =

(
1
4 0

− 1
8 0

)
. Thus, we have

AA∗ = A∗A =

(
16 0

0 0

)
,

A†(A†)∗ = (A†)∗A† =

(
1
16 0

0 0

)
,

A†M,N (A†M,N )∗ =

(
1
16 − 1

32

− 1
32

1
64

)
,

(A†M,N )∗A†M,N =

(
5
64 0

0 0

)
.

Clearly, A†M,N (A†M,N )∗ 6= (A†M,N )∗A†M,N , i.e., A†M,N is not normal.

The following result gives a necessary and sufficient condition for the weighted Moore-Penrose inverse of a

tensor to be weighted normal.

Theorem 4.5. Let A ∈ CI1×···×IN×I1×···×IN be an even-order square tensor. If

N ∈ CI1×···×IN×I1×···×IN is a Hermitian positive definite tensor, then

(i) A#
NN = A if and only if ÃH = Ã;

(ii) A ∗N A#
NN = A#

NN ∗N A if and only if Ã ∗N ÃH = ÃH ∗N Ã;

(iii) A†N ,N ∗N (A†N ,N )#NN = (A†N ,N )#NN ∗N A
†
N ,N if and only if Ã† ∗N (Ã†)H = (Ã†)H ∗N Ã†;

(iv) A ∗N A#
NN = A#

NN ∗N A if and only if A†N ,N ∗N (A†N ,N )#NN = (A†N ,N )#NN ∗N A
†
N ,N ,

where AH and A#
NN are the conjugate transpose and the weighted conjugate transpose of the tensor A,

respectively, and Ã = N 1/2 ∗N A ∗N N−1/2.
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Proof. We have

Ã = N 1/2 ∗N A ∗N N−1/2,(4.19)

A#
NN = N−1 ∗N AH ∗N N ,(4.20)

A†N ,N = N−1/2 ∗N Ã† ∗N N 1/2.(4.21)

(i) Suppose that ÃH = Ã. Then,

A#
NN = N−1 ∗N AH ∗N N

= N−1/2 ∗N N−1/2 ∗N AH ∗N N 1/2 ∗N N 1/2

= N−1/2 ∗N ÃH ∗N N 1/2

= N−1/2 ∗N Ã ∗N N 1/2 (since ÃH = Ã)

= A.

Conversely, if A#
NN = A, then

ÃH = N−1/2 ∗N AH ∗N N 1/2

= N 1/2 ∗N N−1 ∗N AH ∗N N ∗N N−1/2

= N 1/2 ∗N A#
NN ∗N N

−1/2

= N 1/2 ∗N A ∗N N−1/2 (since A#
NN = A)

= Ã.

(ii) Suppose that Ã ∗N ÃH = ÃH ∗N Ã. Then,

A ∗N A#
NN = A ∗N N−1 ∗N AH ∗N N

= A ∗N N−1/2 ∗N N−1/2 ∗N AH ∗N N 1/2 ∗N N 1/2

= A ∗N N−1/2 ∗N ÃH ∗N N 1/2 (using (4.19))

= N−1/2 ∗N Ã ∗N ÃH ∗N N 1/2 (using (4.19))

= N−1/2 ∗N ÃH ∗N Ã ∗N N 1/2 (since Ã ∗N ÃH = ÃH ∗N Ã)

= N−1/2 ∗N N−1/2 ∗N AH ∗N N 1/2 ∗N N 1/2 ∗N A ∗N N−1/2 ∗N N 1/2 (using (4.19))

= N−1 ∗N AH ∗N N ∗N A
= A#

NN ∗N A.

Conversely, if A ∗N A#
NN = A#

NN ∗N A, then

Ã ∗N ÃH = N 1/2 ∗N A ∗N N−1/2 ∗N N−1/2 ∗N AH ∗N N 1/2 (using (4.19))

= N 1/2 ∗N A ∗N N−1 ∗N AH ∗N N ∗N N−1/2

= N 1/2 ∗N A ∗N A#
NN ∗N N

−1/2 (using (4.20))

= N 1/2 ∗N A#
NN ∗N A ∗N N

−1/2 (since A ∗N A#
NN = A#

NN ∗N A)

= N 1/2 ∗N N−1 ∗N AH ∗N N ∗N A ∗N N−1/2 (using (4.20))

= N−1/2 ∗N AH ∗N N 1/2 ∗N N 1/2 ∗N A ∗N N−1/2

= ÃH ∗N Ã.

(iii) Similar to part (ii).
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(iv) We have

A ∗N A#
NN = A#

NN ∗N A ⇔ Ã ∗N Ã
H = ÃH ∗N Ã (using part (ii))

⇔ Ã† ∗N (Ã†)H = (Ã†)H ∗N Ã† (since Ã is normal)

⇔ A†N ,N ∗N (A†N ,N )#NN = (A†N ,N )#NN ∗N A
†
N ,N (using part (iii)).

Thus, the claim.

It is known that if λ 6= 0 is an eigenvalue of a normal tensor A, then 1/λ is an eigenvalue of its Moore-

Penrose inverse A†. However, this is not true in the case of the weighted Moore-Penrose inverse A†M,N of

A. The next example is in this direction.

Example 4.6. Let A =

(
1 1

1 1

)
. If M =

(
1 0

0 2

)
and N =

(
3 0

0 1

)
are two Hermitian positive definite

matrices in C2×2, then A†M,N =

(
1
12

1
6

1
4

1
2

)
. Here A is normal, and 2 is an eigenvalue of A but 1/2 is not an

eigenvalue of A†M,N .

The weighted normal tensors fulfill the above requirement, i.e., if λ 6= 0 is an eigenvalue of A, then 1/λ is

an eigenvalue of its weighted Moore-Penrose inverse, in the case of weighted normal tensor. It is shown in

the following theorem.

Theorem 4.7. Let A ∈ CI1×···×IN×I1×···×IN be an even-order square tensor. If

N ∈ CI1×···×IN×I1×···×IN is a Hermitian positive definite tensor, then

(i) λ ∈ σ(A) if and only if λ ∈ σ(Ã);

(ii) λ ∈ σ(A†N ,N ) if and only if λ ∈ σ(Ã†);
(iii) if A is a weighted normal tensor and λ 6= 0, then λ ∈ σ(A) if and only if 1/λ ∈ σ(A†N ,N ).

Proof. (i) Suppose that λ ∈ σ(A). Then, there exists a nonzero tensor X ∈ CI1×···×IN such that

A ∗N X = λX .

Using the expression Ã = N 1/2 ∗N A∗N N−1/2 in the last equation, we obtain Ã ∗N (N 1/2 ∗N X ) =

λ(N 1/2 ∗N X ), which implies that λ ∈ σ(Ã). Conversely, if λ ∈ σ(Ã), then there exists a nonzero

tensor Y ∈ CI1×···×IN such that

Ã ∗N Y = λY.

Again, using the expression Ã = N 1/2∗NA∗NN−1/2 in the last equation, we obtain A∗N (N−1/2∗N
Y) = λ(N−1/2 ∗N Y), which implies that λ ∈ σ(A).

(ii) This part can be proved by following the steps as in part (i).

(iii) Suppose that A is a weighted normal tensor, i.e., A ∗N A#
NN = A#

NN ∗N A, and λ 6= 0. Then,

λ ∈ σ(A)⇔ λ ∈ σ(Ã) (using part (i))

⇔ 1

λ
∈ σ(Ã†) (since Ã is normal using Theorem 4.5(ii))

⇔ 1

λ
∈ σ(A†N ,N ) (using part (ii)).

Hence the proof.
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The next result provides a necessary and sufficient condition for a tensor to commute with its weighted

Moore-Penrose inverse.

Theorem 4.8. Let A ∈ CI1×···×IN×I1×···×IN be an even-order square tensor. If

N ∈ CI1×···×IN×I1×···×IN is a Hermitian positive definite tensor, then A∗NA†N ,N = A†N ,N ∗NA if and only if

Ã ∗N Ã† = Ã† ∗N Ã.

Proof. We have Ã = N 1/2 ∗N A ∗N N−1/2 and A†N ,N = N−1/2 ∗N Ã† ∗N N 1/2. So, Ã ∗N Ã† = N 1/2 ∗N
A∗N N−1/2 ∗N N 1/2 ∗N A†N ,N ∗N N−1/2 = N 1/2 ∗N A∗N A†N ,N ∗N N−1/2. Similarly, we obtain Ã† ∗N Ã =

N 1/2 ∗N A†N ,N ∗N A ∗N N−1/2. Thus, the result follows.

Weighted normality is a sufficient condition for the commutativity of a tensor with its weighted Moore-

Penrose inverse. The following theorem is in this direction.

Theorem 4.9. Let A ∈ CI1×···×IN×I1×···×IN be an even-order square tensor, and

N ∈ CI1×···×IN×I1×···×IN be a Hermitian positive definite tensor. If A is weighted normal, then A∗NA†N ,N =

A†N ,N ∗N A.

Proof. We have Ã = N 1/2 ∗N A∗N N−1/2 and A†N ,N = N−1/2 ∗N Ã† ∗N N 1/2. If A is weighted normal,

then A ∗N A#
NN = A#

NN ∗N A. So, by Theorem 4.5(ii), we find Ã ∗N ÃH = ÃH ∗N Ã, which implies that

Ã ∗N Ã† = Ã† ∗N Ã, by Theorem 3.4 of [21]. Using Theorem 4.9, we get A ∗N A†N ,N = A†N ,N ∗N A.

5. Weighted tensor norm. For two Hermitian positive definite tensors M ∈ CI1×···×IM×I1×···×IM
and N ∈ CJ1×···×JN×J1×···×JN , we define the weighted inner product and their induced weighted tensor

norms here. The weighted inner products in CI1×···×IM and CJ1×···×JN are

〈X ,Y〉M = 〈M ∗M X ,Y〉 , X ,Y ∈ CI1×···×IM

and

〈X ,Y〉N = 〈N ∗N X ,Y〉 , X ,Y ∈ CJ1×···×JN ,

respectively. Then, their induced weighted tensor norms are

‖X‖M =
√
〈X ,X〉M, X ∈ CI1×···×IM

and

‖X‖N =
√
〈X ,X〉N , X ∈ CJ1×···×JN ,

respectively.

Lemma 5.1. For W ∈ CI1×···×IM×J1×···×JN , X ∈ CJ1×···×JN , and Y ∈ CI1×···×IM , we have

〈W ∗N X ,Y〉 =
〈
X ,WH ∗M Y

〉
.
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Proof.

〈W ∗N X ,Y〉 = YH ∗M W ∗N X
=

∑
i1,i2,...,iM

ȳi1i2···iM
( ∑
j1,j2,...,jN

Wi1i2···iM j1j2...jNxj1j2···jN
)

=
∑

i1,i2,...,iM

∑
j1,j2,...,jN

ȳi1i2···iMWi1i2···iM j1j2...jNxj1j2···jN

=
∑

j1,j2,...,jN

( ∑
i1,i2,...,iM

ȳi1i2···iMWi1i2···iM j1j2...jNxj1j2···jN
)

=
∑

j1,j2,...,jN

(
WH ∗M Y

)H
j1j2···jN

xj1j2···jN

=
(
WH ∗M Y

)H ∗N X
=
〈
X ,WH ∗M Y

〉
.

From Lemma 5.1, the next result is easy to deduce.

Lemma 5.2. Let X ∈ CI1×···×IM and Y ∈ CJ1×···×JN . If M∈ CI1×···×IM×I1×···×IM and

N ∈ CJ1×···×JN×J1×···×JN are two Hermitian positive definite tensors, then

(i) ‖X‖M = ‖M1/2 ∗M X‖;
(ii) ‖X‖N = ‖N 1/2 ∗N X‖.

Proof. (i) We can write

‖X‖M =
√
〈X ,X〉M

=
√
〈M ∗M X ,X〉

=
√〈
M1/2 ∗MM1/2 ∗M X ,X

〉
=
√〈
M1/2 ∗M X ,M1/2 ∗M X

〉
= ‖M1/2 ∗M X‖.

Similarly, we can prove (ii).

Let X ,Y ∈ CI1×···×IM with a Hermitian positive definite tensor M∈ CI1×···×IM×I1×···×IM . Then, X and Y
are called M-orthogonal if 〈X ,Y〉M = 0. Next, we prove the weighted Pythagorean theorem for tensors.

Theorem 5.3. Let X ,Y ∈ CI1×···×IM be M-orthogonal. Then,

‖X + Y‖2M = ‖X‖2M + ‖Y‖2M.

Proof. Using Lemma 5.2, we can write

‖X + Y‖2M = ‖M1/2 ∗M (X + Y)‖2

= ‖M1/2 ∗M X‖2 + ‖M1/2 ∗M Y‖2 (since M1/2 ∗M X and M1/2 ∗M Y are orthogonal)

= ‖X‖2M + ‖Y‖2M.
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For a tensor A ∈ CI1×···×IM×J1×···×JN , we define the tensor norm as:

(5.22) ‖A‖ = sup{‖A ∗N X‖ : ‖X‖ = 1, X ∈ CJ1×···×JN }.

By performing the steps of the existing proofs for matrices, we can verify the following.

(i) ‖A‖ = ‖A‖2, where ‖.‖2 is the spectral norm of A.
(ii) ‖A ∗N X‖ ≤ ‖A‖‖X‖.
(iii) ‖A ∗N B‖ ≤ ‖A‖‖B‖, where A ∈ CI1×···×IM×J1×···×JN and B ∈ CJ1×···×JN×J1×I2×···×IL .
(iv) ‖A‖ = ‖AH‖.
(v) ‖AH ∗N A‖ = ‖A‖2.

Now, for tensors A ∈ CI1×···×IM×J1×···×JN and B ∈ CJ1×···×JN×I1×···×IM with two Hermitian positive

definite tensors M ∈ CI1×···×IM×I1×···×IM and N ∈ CJ1×···×JN×J1×···×JN , we define the weighted tensor

norms as:

(5.23) ‖A‖MN = sup{‖A ∗N X‖M : ‖X‖N = 1, X ∈ CJ1×···×JN },

and

(5.24) ‖B‖NM = sup{‖B ∗M X‖N : ‖X‖M = 1, X ∈ CI1×···×IM }.

The following result provides a relation between the weighted tensor norm and the tensor norm.

Lemma 5.4. Let A ∈ CI1×···×IM×J1×···×JN and B ∈ CJ1×···×JN×I1×···×IM . If M∈ CI1×···×IM×I1×···×IM
and N ∈ CJ1×···×JN×J1×···×JN are two Hermitian positive definite tensors, then

(i) ‖A‖MN = ‖M1/2 ∗M A ∗N N−1/2‖;
(ii) ‖B‖NM = ‖N 1/2 ∗N B ∗MM−1/2‖.

Proof. From (5.23), we obtain

‖A‖MN = sup {‖A ∗N X‖M : ‖X‖N = 1, X ∈ CJ1×···×JN }
= sup {‖M1/2 ∗M A ∗N X‖ : ‖N 1/2 ∗N X‖ = 1, X ∈ CJ1×···×JN } (using Lemma 5.2)

= sup {‖M1/2 ∗M A ∗N N−1/2 ∗N N 1/2 ∗N X‖ : ‖N 1/2 ∗N X‖ = 1, X ∈ CJ1×···×JN }
= sup {‖M1/2 ∗M A ∗N N−1/2 ∗N Y‖ : ‖Y‖ = 1, Y ∈ CJ1×···×JN }
= ‖M1/2 ∗M A ∗N N−1/2‖.

Thus, the assertion (i) follows. The assertion (ii) can be proved similarly.

The following lemma shows the consistent property of the weighted tensor norm.

Lemma 5.5. Let A ∈ CI1×···×IM×J1×···×JN , B ∈ CJ1×···×JN×I1×···×IM , X ∈ CJ1×···×JN , and Y ∈
CI1×···×IM . If M ∈ CI1×···×IM×I1×···×IM and N ∈ CJ1×···×JN×J1×···×JN are two Hermitian positive def-

inite tensors, then

(i) ‖A ∗N X‖M ≤ ‖A‖MN ‖X‖N ;

(ii) ‖B ∗M Y‖N ≤ ‖B‖NM ‖Y‖M;

(iii) ‖A ∗N B‖MM ≤ ‖A‖MN ‖B‖NM.
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Proof. (i)

‖A ∗N X‖M = ‖M1/2 ∗M A ∗N X‖ (using Lemma 5.2(i))

= ‖M1/2 ∗M A ∗N N−1/2 ∗N N 1/2 ∗N X‖
≤ ‖M1/2 ∗M A ∗N N−1/2‖ ‖N 1/2 ∗N X‖
= ‖A‖MN ‖X‖N (using Lemma 5.4(i))

(ii) Similar to part (i).

(iii)

‖A ∗N B‖MM = ‖M1/2 ∗M A ∗N B ∗MM−1/2‖ (using Lemma 5.4(i))

= ‖M1/2 ∗M A ∗N N−1/2 ∗N N 1/2 ∗N B ∗MM−1/2‖
≤ ‖M1/2 ∗M A ∗N N−1/2‖ ‖N 1/2 ∗N B ∗MM−1/2‖ (using Lemma 5.4(i))

= ‖A‖MN ‖B‖NM (using Lemma 5.4).

The following lemma comprises some properties of the weighted conjugate transpose with the weighted tensor

norm.

Lemma 5.6. Let A ∈ CI1×···×IM×J1×···×JN . IfM∈ CI1×···×IM×I1×···×IM and N ∈ CJ1×···×JN×J1×···×JN
are two Hermitian positive definite tensors, then

(i) ‖A‖MN = ‖A#
MN ‖NM;

(ii) ‖A‖2MN = ‖A ∗N A#
MN ‖MM = ‖A#

MN ∗M A‖NN .

Proof. (i)

‖A#
MN ‖NM = ‖N 1/2 ∗N A#

MN ∗MM
−1/2‖ (using Lemma 5.4(ii))

= ‖N 1/2 ∗N N−1 ∗N AH ∗MM∗MM−1/2‖
= ‖(M1/2 ∗M A ∗N N−1/2)H‖
= ‖M1/2 ∗M A ∗N N−1/2‖
= ‖A‖MN (using Lemma 5.4(i)).

(ii)

‖A ∗N A#
MN ‖MM = ‖M1/2 ∗M A ∗N A#

MN ∗MM
−1/2‖ (using Lemma 5.4)

= ‖M1/2 ∗M A ∗N N−1 ∗N AH ∗MM∗MM−1/2‖
= ‖(M1/2 ∗M A ∗N N−1/2) ∗N (M1/2 ∗M A ∗N N−1/2)H‖
= ‖M1/2 ∗M A ∗N N−1/2‖2

= ‖A‖2MN (using Lemma 5.4(i)).

The next result defines the weighted tensor norm as the maximum (M,N ) singular value of A.

Theorem 5.7. Let A ∈ CI1×···×IM×J1×···×JN . If M∈ CI1×···×IM×I1×···×IM and

N ∈ CJ1×···×JN×J1×···×JN are two Hermitian positive definite tensors, then

‖A‖MN = µmax and ‖A†M,N ‖NM =
1

µmin
,

where µmax and µmin are the maximum and minimum (M,N ) singular values of A.
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Proof. By Theorems 3.1 and 3.3, we have A = U ∗M S∗N VH and A†M,N = N−1∗N V ∗N S†∗M UH ∗MM,

where

Si1···iM j1···jN =

{
µIJ > 0, if I = J ∈ {1, 2, . . . , r},
0, otherwise,

and

S†j1···jN i1···iM =

{
S−1i1···iM j1···jN , if Si1···iM j1···jN 6= 0,

0, otherwise,

where I = i1 +

M∑
s=2

(is − 1)

s−1∏
u=1

Iu and J = j1 +

N∑
t=2

(jt − 1)

t−1∏
v=1

Jv. Now,

‖A‖2MN = ‖A ∗N A#
MN ‖MM (using Lemma 5.6 (ii))

= ‖U ∗M S ∗N VH ∗N N−1 ∗N V ∗N SH ∗M UH ∗MM‖MM
= ‖U ∗M S ∗N SH ∗M UH ∗MM‖MM (since VH ∗N N−1 ∗N V = I2)

= ‖M1/2 ∗M U ∗M S ∗N SH ∗M UH ∗MM∗MM−1/2‖ (using Lemma 5.4 (i))

= ‖M1/2 ∗M U ∗M S ∗N SH ∗M UH ∗MM1/2‖

= ‖(M1/2 ∗M U) ∗M S ∗N SH ∗M (M1/2 ∗M U)H‖
= µ2

max

Thus, ‖A‖MN = µmax, since M1/2 ∗M U is unitary tensor and

(S ∗N SH)i1···iMk1···kM =

{
µIJ

2, if I = K ∈ {1, 2, . . . , r},
0, otherwise,

where I = i1+

M∑
s=2

(is−1)

s−1∏
u=1

Iu and K = k1+

M∑
t=2

(kt−1)

t−1∏
v=1

Kv. Since the nonzero (M,N ) singular values of

A†M,N are the reciprocals of the nonzero (M,N ) singular values ofA, therefore, we get ‖A†M,N ‖NM = 1
µmin

.

6. Numerical range for the weighted Moore-Penrose inverse of an even-order square tensor.

In this section, we establish several properties of the numerical ranges of a tensor and its weighted Moore-

Penrose inverse. The first result conveys that the spectra of A and A†M,N as well as their numerical ranges

simultaneously contain the origin. Here, Definition 3.12, [33] is used for the determinant of a square tensor.

Theorem 6.1. Let A ∈ CI1×···×IN×I1×···×IN . If M,N ∈ CI1×···×IN×I1×···×IN are two Hermitian posi-

tive definite tensors, then

(i) 0 ∈ σ(A) if and only if 0 ∈ σ(A†M,N );

(ii) 0 ∈W (A) if and only if 0 ∈W (A†M,N ).

Proof. (i) By the properties A ∗N A†M,N ∗N A = A and A†M,N ∗N A ∗N A
†
M,N = A†M,N , we

have that det2(A) det(A†M,N ) = det(A) and det(A) det2(A†M,N ) = det(A†M,N ). Thus, if det(A) =

0, then det(A) det2(A†M,N ) = det(A†M,N ) yields det(A†M,N ) = 0 and if det(A†M,N ) = 0, then

det2(A) det(A†M,N ) = det(A) yields det(A) = 0. Hence, the assertion (i) follows.
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(ii) Here, two cases are possible.

Case 1: Suppose that A is singular. Then, 0 ∈ σ(A) ⊆ W (A) and it is possible if and only if

0 ∈ σ(A†M,N ) ⊆W (A†M,N ).

Case 2: Suppose that A is non-singular. Then, A†M,N = A−1. Now, using (2.10), we have

W (A) =

{
〈A ∗N Y,Y〉
‖Y‖2

: O 6= Y ∈ CI1×···×IN
}
,(6.25)

W (A−1) =

{〈
A−1 ∗N X ,X

〉
‖X‖2

: O 6= X ∈ CI1×···×IN
}

=

{〈
A−1 ∗N A ∗N Y,A ∗N Y

〉
‖A ∗N Y‖2

: X ∈ CI1×···×IN ,A ∗N Y = X

}

=

{〈
AH ∗N A−1 ∗N A ∗N Y,Y

〉
‖A ∗N Y‖2

: X ∈ CI1×···×IN ,A ∗N Y = X

}

=

{〈
AH ∗N Y,Y

〉
‖A ∗N Y‖2

: O 6= Y ∈ CI1×···×IN
}
.(6.26)

If 0 ∈ W (A), then there exists a nonzero tensor Y ∈ CI1×···×IN such that 〈A ∗N Y,Y〉 = 0 by

(6.25), which implies that
〈
AH ∗N Y,Y

〉
= 0. Thus, 0 ∈ W (A†M,N ) due to (6.26). Conversely, if

0 ∈ W (A†M,N ), then there exists a nonzero tensor Y ∈ CI1×···×IN such that
〈
AH ∗N Y,Y

〉
= 0,

which gives 〈A ∗N Y,Y〉 = 0. Thus, 0 ∈W (A). This completes the proof.

Theorems 5.2(i) and 5.4 of [38] are immediate consequences of the above result. Also, the following

corollary generalizes Theorem 2 in [37].

Corollary 6.2. Let A ∈ Cn×n. If M,N ∈ Cn×n are two Hermitian positive definite matrices, then

(i) 0 ∈ σ(A) if and only if 0 ∈ σ(A†M,N );

(ii) 0 ∈W (A) if and only if 0 ∈W (A†M,N ).

As an application of Theorem 6.1, we have the following result.

Theorem 6.3. Let {zi1i2···iN }
Ij
ij=1, for j = 1, 2, ..., N be nonzero complex numbers. If

0 =
∑

i1,i2,...,iN

αi1i2···iN zi1i2···iN ,

for some nonnegative scalars {αi1i2···iN }
Ij
ij=1 for j = 1, 2, ..., N with

∑
i1,i2,...,iN

αi1i2···iN = 1, then there exist

nonnegative scalars {βi1i2···iN }
Ij
ij=1 for j = 1, 2, ..., N with

∑
i1,i2,...,iN

βi1i2···iN = 1 such that

0 =
∑

i1,i2,...,iN

βi1i2···iN
1

zi1i2···iN
.

Proof. Consider the tensor A = (ai1i2···iN j1j2···jN ) ∈ CI1×···×IN×I1×···×IN , where

ai1i2···iN j1j2···jN =

{
zi1i2···iN , if (i1, i2, ..., iN ) = (j1, j2, ..., jN ),

0, otherwise.
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Then, W (A) =

 ∑
i1,i2,...,iN

zi1i2···iN |xi1i2···iN |2 :
∑

i1,i2,...,iN

|xi1i2···iN |2 = 1

, which is a convex polygon with

vertices {zi1i2···iN }
Ij
ij=1. If 0 =

∑
i1,i2,...,iN

αi1i2···iN zi1i2···iN with
∑

i1,i2,...,iN

αi1i2···iN = 1, then 0 ∈W (A). So, by

Theorem 6.1(ii), 0 ∈W (A†M,N ), where A†M,N = (bi1i2···iN j1j2···jN ) ∈ CI1×···×IN×I1×···×IN such that

bi1i2···iN j1j2···jN =

{
1

zi1i2···iN
, if (i1, i2, ..., iN ) = (j1, j2, ..., jN ),

0, otherwise,

a convex polygon with vertices 1
zi1i2···iN

. Therefore, there exist nonnegative scalars {βi1i2···iN }
Ij
ij=1 with∑

i1,i2,...,iN

βi1i2···iN = 1 such that 0 =
∑

i1,i2,...,iN

βi1i2···iN
1

zi1i2···iN
.

Next theorem establishes a relation among σ(A), W (A), and
1

W (A†M,N )
. Here,

1

W (A)
:= {z† : z ∈W (A)}, where z† =

{
1
z , z 6= 0

0, z = 0
(see page 43, [1]).

Theorem 6.4. Let A ∈ CI1×···×IN×I1×···×IN , and M,N ∈ CI1×···×IN×I1×···×IN be two Hermitian posi-

tive definite tensors. If A ∗N A†M,N = A†M,N ∗N A, then

(6.27) σ(A) ⊂W (A)
⋂ 1

W (A†M,N )
.

Proof. Let λ ∈ σ(A). It is well-known that σ(A) ⊆ W (A). If λ = 0, then 0 ∈ W (A) and by Theorem

6.1(ii), 0 ∈ W (A†M,N ). Thus, the inclusion in (6.27) holds. If λ 6= 0, then there exists a unit eigentensor

X ∈ CI1×···×IN such that

(6.28) A ∗N X = λX ,

which implies that

(6.29) A†M,N ∗N X =
1

λ
A†M,N ∗N A ∗N X .

Using (6.28) and the property A ∗N A†M,N ∗N A = A, we obtain

(6.30) A ∗N A†M,N ∗N X = X .

Using (6.29), (6.30), and the condition A ∗N A†M,N = A†M,N ∗N A, we conclude

XH ∗N A†M,N ∗N X =
1

λ
XH ∗N A†M,N ∗N A ∗N X

=
1

λ
XH ∗N A ∗N A†M,N ∗N X

=
1

λ
XH ∗N X =

1

λ
.
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Thus,

λ =
1

XH ∗N A†M,N ∗N X
∈ 1

W (A†M,N )
.

Hence proved.

Our next example shows that the assumption A ∗N A†M,N = A†M,N ∗N A in Theorem 6.4 is essential.

Example 6.5. Let A =

(
1 1

0 0

)
∈ C2×2. If M =

(
1 0

0 2

)
, N =

(
3 0

0 1

)
are two Hermitian positive

definite matrices in C2×2, then A†M,N =

(
1
4 0
3
4 0

)
, AA†M,N =

(
1 0

0 0

)
, and A†M,NA =

(
1
4

1
4

3
4

3
4

)
. So,

AA†M,N 6= A†M,NA. Now,

W (A†M,N ) =

{
1

4
z̄1z1 +

3

4
z̄2z1 : z = (z1, z2)T ∈ C2, |z1|2 + |z2|2 = 1

}
,

1

W (A†M,N )
=
{
z† : z ∈W (A†M,N )

}
.

Let 0 6= α ∈W (A†M,N ). Then,

α =
1

4
z̄1z1 +

3

4
z̄2z1, for some z = (z1, z2)T ∈ C2, |z1|2 + |z2|2 = 1,

|α| ≤ 1

4
|z1|2 +

3

4
|z2||z1|

≤ 1

4
(|z1|2 + |z2|2) +

3

4

(
|z1|2 + |z2|2

2

)
=

1

4
× 1 +

3

8
× 1 =

5

8
< 1.

For any 0 6= β ∈ 1

W (A†M,N )
, we now have β = 1

α for some 0 6= α ∈ W (A†M,N ). So, |β| > 1. Thus, the

eigenvalue 1 of A is not in 1

W (A†M,N )
.

If M and N are identity tensors, then the above theorem coincides with Theorem 5.14, [38]. The following

result generalizes Theorem 5, [37].

Corollary 6.6. Let A ∈ Cn×n be a square matrix, and M,N ∈ Cn×n be two Hermitian positive definite

matrices. If A is weighted EP-matrix, i.e., AA†M,N = A†M,NA, then

σ(A) ⊂W (A)
⋂ 1

W (A†M,N )
.

The next theorem is an application of the WSVD.

Theorem 6.7. Let A ∈ CI1×···×IN×I1×···×IN such that W (A) = W (AH). If

M = N = βI ∈ CI1×···×IN×I1×···×IN are two Hermitian positive definite tensors, then

W (A)
⋂
µ2W (A†M,N ) 6= ∅,

for every (M,N ) singular value µ of A.
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Proof. Let A = U ∗N S ∗N VH be the WSVD of A, where S = diag(µ1, µ2, . . . , µn), µ1 ≥ µ2 ≥ . . . ≥
µn ≥ 0 and n = I1 · I2 · · · · · IN . If µ = 0, then A is singular. Hence, 0 ∈ σ(A) ⊆ W (A). Then, by Theorem

6.1(ii), we have 0 ∈W (A†M,N ). Thus, W (A)
⋂
µ2W (A†M,N ) 6= ∅.

Now, let µ 6= 0. Assume that µ = µ1. Since µ is an (M,N ) singular value of A, therefore, 1 is an (M,N )

singular value of A/µ. Since VH ∗N N−1 ∗N V = I, so we can choose a unit tensor X ∈ CI1×···×IN such that

VH ∗N X ∈ CI1×···×IN , whose all entries are zero except (VH ∗N X )11...1.

XH ∗N (A/µ) ∗N X = XH ∗N U ∗N (S/µ) ∗N VH ∗N X
= (UH ∗N X )H ∗N (S/µ) ∗N (VH ∗N X )

= (UH ∗N X )11...1(VH ∗N X )11...1,

which implies that (UH ∗N X )11...1 (VH ∗N X )11...1 ∈ W (A/µ). Since W (A) = W (AH), therefore, we have

(VH ∗N X )11...1 (UH ∗N X )11...1 ∈W (A/µ). Now,

XH ∗N (µA†M,N ) ∗N X = XH ∗N N−1 ∗N V ∗N (µS†) ∗N UH ∗NM∗N X

= XH ∗N (I/β) ∗N V ∗N (µS†) ∗N UH ∗N (βI) ∗N X
= XH ∗N V ∗N (µS†) ∗N UH ∗N X
= (VH ∗N X )H ∗N (µS†) ∗N (UH ∗N X )

= (VH ∗N X )11...1 (UH ∗N X )11...1,

which implies that (VH ∗N X )11...1 (UH ∗N X )11...1 ∈W (µA†M,N ). Hence,

W (A/µ)
⋂
W (µA†M,N ) 6= ∅,

i.e.,

W (A)
⋂
µ2W (A†M,N ) 6= ∅.

Similarly, we can prove W (A)
⋂
µ2W (A†M,N ) 6= ∅ for the other (M,N ) singular values of A.

Theorem 5.5 [38] is a particular case of the above theorem. It can be verified that Corollary 6.8 generalizes

Theorem 4 in [37].

Corollary 6.8. Let A ∈ Cn×n such that W (A) is symmetric with respect to x-axis, i.e., W (A) =

W (A∗). If M = N = βI ∈ Cn×n are two Hermitian positive definite matrices, then

W (A)
⋂
µ2W (A†M,N ) 6= ∅,

for every (M,N) singular value µ of A.

In the following result, we derive that the numerical ranges for the weighted Moore-Penrose inverse and

the weighted conjugate transpose are equal for a particular type of tensor.

Theorem 6.9. Let A ∈ CI1×···×IN×I1×···×IN , and M,N ∈ CI1×···×IN×I1×···×IN be two Hermitian posi-

tive definite tensors. Let {U1,U2, . . . ,Ur} be anM-orthonormal and {V1,V2, . . . ,Vr} be an N−1-orthonormal

subsets of CI1×···×IN . If A = U1 ∗1 VH1 +U2 ∗1 VH2 + · · ·+Ur ∗1 VHr , then A†M,N = N−1 ∗N (V1 ∗1 UH1 +V2 ∗1
UH2 + · · ·+ Vr ∗1 UHr ) ∗NM and W (A†M,N ) = W (A#

MN ).

Proof. It can be verified by considering X = N−1 ∗N (V1 ∗1 UH1 + · · ·+ Vr ∗1 UHr ) ∗NM and then using

Definition 1.6.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 140-171, January 2024.

165 Numerical range for weighted Moore-Penrose inverse of tensor

The above result reduces to the following corollary when we consider identity tensor as weights.

Corollary 6.10. Let A ∈ CI1×···×IN×I1×···×IN . Let {U1,U2, . . . ,Ur} and {V1,V2, . . . ,Vr} be two or-

thonormal subsets of CI1×···×IN . If A = U1 ∗1 VH1 + U2 ∗1 VH2 + · · ·+ Ur ∗1 VHr , then A† = V1 ∗1 UH1 + V2 ∗1
UH2 + · · ·+ Vr ∗1 UHr and W (A†) = W (AH).

The following corollary is a generalization of Theorem 6 in [37]. We provide its proof as it is different than

the Theorem 6.9.

Corollary 6.11. Let A ∈ Cn×n, and M,N ∈ Cn×n be two Hermitian positive definite matrices. Let

{u1, u2, . . . , ur} be a subset of M -orthonormal vectors and {v1, v2, . . . , vr} be a subset of N−1-orthonormal

vectors of Cn, respectively. If A = u1v
∗
1 + u2v

∗
2 + · · ·+ urv

∗
r , then A†M,N = N−1(v∗1u1 + v∗2u2 + · · ·+ v∗rur)M

and W (A†M,N ) = W (A#), where A# is the weighted conjugate transpose of the matrix A.

Proof. We have that {u1, u2, . . . , ur} is a subset of M -orthonormal vectors and {v1, v2, . . . , vr} is a subset

of N−1-orthonormal vectors of Cn. So, {M1/2u1,M
1/2u2, . . . ,M

1/2ur} and {N−1/2v1, N−1/2v2, . . . ,
N−1/2vr} are subsets of orthonormal vectors of Cn. Extend {M1/2u1,M

1/2u2, . . . ,M
1/2ur} and {N−1/2v1,

N−1/2v2, . . . , N
−1/2vr} to orthonormal bases {M1/2u1, M1/2u2, . . ., M1/2ur, . . ., M

1/2un} and {N−1/2v1,
N−1/2v2, . . . , N

−1/2vr, . . . , N
−1/2vn} of Cn, respectively. Let U = [u1 u2 · · · un] and V = [v1 v2 · · · vn].

Then, U∗MU = I, V ∗N−1V = I, and A = u1v
∗
1 + u2v

∗
2 + · · ·+ urv

∗
r = U(Ir ⊕ 0n−r)V

∗. Thus, by Corollary

3.6, we have

A†M,N = N−1V (Ir ⊕ 0n−r)
†U∗M

= [N−1v1 N
−1v2 · · · N−1vn](Ir ⊕ 0n−r)[Mu1 Mu2 · · · Mun]∗

= N−1(v1u
∗
1 + v2u

∗
2 + · · ·+ vru

∗
r)M = N−1A∗M = A#.

Hence, W (A†M,N ) = W (A#).

As an application of the weighted tensor norm, the following result provides a bound for the product of the

weighted tensor norms of a tensor A and its weighted Moore-Penrose inverse A†M,N in terms of the product

of numerical radii of the tensor Ã and its Moore-Penrose inverse Ã†.

Theorem 6.12. Let O 6= A ∈ CI1×···×IN×I1×···×IN . If M,N ∈ CI1×···×IN×I1×···×IN are two Hermitian

positive definite tensors, then for the weighted tensor norm ‖A‖MN ,

1 ≤ ‖A‖MN ‖A†M,N ‖NM ≤ 4w(Ã)w(Ã†),

where Ã =M1/2 ∗N A ∗N N−1/2 and ‖.‖ is the spectral norm of a tensor.

Proof. From Lemma 5.4(i), we have ‖A‖MN = ‖Ã‖. Now,

‖A†M,N ‖NM = ‖N 1/2 ∗N A†M,N ∗NM
−1/2‖ = ‖N 1/2 ∗N N−1/2 ∗N Ã† ∗NM1/2 ∗NM−1/2‖ = ‖Ã†‖.

From Theorem 5.16 of [38] for the norm ‖.‖, we have

1 ≤ ‖Ã‖‖Ã†‖ ≤ 4w(Ã)w(Ã†).

Therefore, we obtain

1 ≤ ‖A‖MN ‖A†M,N ‖NM ≤ 4w(Ã)w(Ã†),

this completes the proof.
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In particular, the identity weights give Theorem 5.16, [38]. The next corollary is a generalization of Theorem

7, [37].

Corollary 6.13. Let 0 6= A ∈ Cn×n, and M,N ∈ Cn×n be two Hermitian positive definite matrices.

Then, for the weighted matrix norm ‖A‖MN = ‖M1/2AN−1/2‖,

1 ≤ ‖A‖MN‖A†M,N‖NM ≤ 4ω(Ã)ω(Ã†),

where Ã = M1/2AN−1/2, A†M,N = N−1/2Ã†M1/2 and ‖.‖ is the spectral norm.

With respect to the diagonal weights, the weighted Moore-Penrose inverse of a weighted shift matrix is

again a weighted shift matrix; this is shown in the following theorem. Also, for their numerical radii, some

upper bounds are established.

Theorem 6.14. Let A ∈ Cn×n be a weighted shift matrix

(6.31) A =



0 a1 0 · · · 0

0 0 a2 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . an−1

0 0 0 · · · 0


.

If M,N ∈ Cn×n are two positive diagonal matrices, then

(6.32) A†M,N =


0 0 · · · 0 0

1/a1 0 · · · 0 0

0 1/a2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1/an−1 0

 .

Furthermore,

(i) W (A), W (A†M,N ) are circular disks centered at the origin, and

ω(A) ω(A†M,N ) ≤ max|ak|
min|ak|

cos2
(

π

n+ 1

)
,

where minimum is taken over those k with ak 6= 0.

(ii) If akan−k = 1 for all k = 1, 2, . . . , [n/2], then W (A) = W (A†M,N ), and

ω(A) = ω(A†M,N ) ≤ max{|ak|, 1/|ak|} cos

(
π

n+ 1

)
.

Proof. By the definition of the weighted Moore-Penrose inverse of a matrix A, it is easy to compute the

representation of A†M,N in (6.32). By Theorem 3 of [36], W (A) and W (A†M,N ) are circular disks centered at

origin. Again by the same theorem, we have

(6.33) ω(A) ≤ max{|ak|} cos

(
π

n+ 1

)
,
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and

(6.34) ω(A†M,N ) ≤ max{1/|ak|} cos

(
π

n+ 1

)
=

1

min{|ak|}
cos

(
π

n+ 1

)
.

Therefore, from (6.33) and (6.34), the assertion (i) follows.

If akan−k = 1 for all k = 1, 2, . . . , [n/2], then A†M,N = P ∗AP , where

P =


0 0 0 · · · 0 1

0 0 0 · · · 1 0
...

...
... · · ·

...
...

0 1 0 . . . 0 0

1 0 0 · · · 0 0

 .

Thus, W (A) = W (A†M,N ), since P is unitary. Let a = max{|ak|, 1/|ak|}, then 1/a = min{|ak|, 1/|ak|}.
Therefore, the numerical radius inequality (ii) follows from (i).

Instead of diagonal matrices, if we take M and N as identity matrices, then Theorem 6.14 coincides with

Theorem 8, [37].

We end this section with an example in which we plot the numerical ranges of a tensor, and its Moore-

Penrose inverse and weighted Moore-Penrose inverse using Algorithm 3.1 of [38]. To compute the Moore-

Penrose inverse and the weighted Moore-Penrose inverse, we apply Algorithms 1 and 2 here.

Example 6.15. Consider A ∈ C2×3×2×3 and the two weights M,N in C2×3×2×3 such that

A(:, :, 1, 1) A(:, :, 2, 1) A(:, :, 1, 2) A(:, :, 2, 2) A(:, :, 1, 3) A(:, :, 2, 3)

1 1 2 1 1 1 2 2 1 3 3 2 1 1 2 3 3 3

1 1 2 2 2 1 2 2 1 4 4 2 1 1 2 3 3 3

,

M(:, :, 1, 1) M(:, :, 2, 1) M(:, :, 1, 2) M(:, :, 2, 2) M(:, :, 1, 3) M(:, :, 2, 3)

1 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0

0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 3

,

and

N (:, :, 1, 1) N (:, :, 2, 1) N (:, :, 1, 2) N (:, :, 2, 2) N (:, :, 1, 3) N (:, :, 2, 3)

3 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1

.

By Algorithms 1 and 2, the Moore-Penrose inverse and the weighted Moore-Penrose inverse of A are given

as

A†(:, :, 1, 1) A†(:, :, 2, 1) A†(:, :, 1, 2)

-3/26 9/26 -3/26 0 -1/6 0 -3/26 9/26 -3/26

-11/26 -1/13 3/13 1/3 1/6 -1/6 -11/26 -1/13 3/13

A†(:, :, 2, 2) A†(:, :, 1, 3) A†(:, :, 2, 3)

0 -1/6 0 2/13 -5/39 2/13 2/13 -5/39 2/13

1/3 1/6 -1/6 5/78 -5/78 1/39 5/78 -5/78 1/39

and
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A†M,N (:, :, 1, 1) A†M,N (:, :, 2, 1) A†M,N (:, :, 1, 2)

-1/32 7/32 -3/32 1/90 -3/10 1/30 -3/32 21/32 -9/32

-5/32 -3/32 1/8 29/90 31/90 -4/15 -15/32 -9/32 3/8

A†M,N (:, :, 2, 2) A†M,N (:, :, 1, 3) A†M,N (:, :, 2, 3)

1/180 -3/20 1/60 17/300 -13/100 17/100 17/200 -39/200 51/200

29/180 31/180 -2/15 13/300 -13/300 1/25 13/200 -13/200 3/50

,

respectively. Now, applying Algorithm 3.1 of [38] to the tensors A, A†, and A†M,N for 500 different choices

of θ, we obtain Fig. 1, and the colored doted points inside the plotted region represent the eigenvalues of the

corresponding tensor.

2 4 6 8 10 12

-5

-4

-3

-2

-1

1

2

3

4

5

Figure 1: Numerical ranges of the tensors A, A†, and A†M,N .
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7. Conclusions. In this article, we have introduced the notion of the WSVD and derived the formula

for computing the weighted Moore-Penrose inverse of an arbitrary-order tensor using the WSVD. After

that, we have defined the notions of weighted normal tensor and weighted tensor norm. Further, we have

established several properties that examine some relationship between a tensor’s numerical range and its

weighted Moore-Penrose inverse. An upper bound for the product of the numerical radii of a weighted shift

matrix and its weighted Moore-Penrose inverse with diagonal weights has been established. An equality

between the numerical ranges of the weighted Moore-Penrose inverse and the weighted conjugate transpose

for a special tensor has been given. Our work on numerical ranges and numerical radii will also be beneficial

in finding the iterative solution to tensor equations. These theories add new contributions to the theory of

tensors and will be crucial for future research on tensors.
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