
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 607-620, November 2023.

WEAK LOG-MAJORIZATION AND INEQUALITIES OF POWER MEANS∗

MIRAN JEONG† AND SEJONG KIM†

Abstract. As noncommutative versions of the quasi-arithmetic mean, we consider the Lim–Pálfia’s power mean, Rényi

right mean, and Rényi power means. We prove that the Lim–Pálfia’s power mean of order t ∈ [−1, 0) is weakly log-majorized

by the log-Euclidean mean and fulfills the Ando–Hiai inequality. We establish the log-majorization relationship between the

Rényi relative entropy and the product of square roots of given variables. Furthermore, we show the norm inequalities among

power means and provide the boundedness of Rényi power mean in terms of the quasi-arithmetic mean.
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1. Introduction. Throughout the paper, Cm×m is the set of all m × m complex matrices, Hm is

the real vector space of m × m Hermitian matrices, and Pm ⊂ Hm is the open convex cone of m × m

positive definite matrices. For A,B ∈ Hm, the Loewner order A ≥ (>)B means that A − B is positive

semi-definite (resp. positive definite). We denote by s(X) the m-tuple of all singular values of a complex

matrix X, and denote by λ(X) the m-tuple of all eigenvalues of a Hermitian matrix X in decreasing order:

λ1(X) ≥ λ2(X) ≥ · · · ≥ λm(X).

Let x, y be two m-tuples of positive real numbers. We denote by x↓ = (x↓1, . . . , x
↓
m) the rearrangement

of x in decreasing order. The notation x ≺log y represents that x is log-majorized by y, that is,

(1.1)

k∏
i=1

x↓i ≤
k∏

i=1

y↓i ,

for 1 ≤ k ≤ m − 1 and the equality holds for k = m. We say that x is weakly log-majorized by y, denoted

by x ≺w log y, if (1.1) is true for k = 1, 2, . . . ,m. For simplicity, given A,B ∈ Pm, we write A ≺log B if

λ(A) ≺log λ(B), and A ≺w log B if λ(A) ≺w log λ(B).

For given A1, . . . , An ∈ Pm, the quasi-arithmetic mean (generalized or power mean) of order t(6= 0) ∈ R
is defined by

Qt(ω;A1, . . . , An) :=

 n∑
j=1

wjA
t
j

 1
t

,

where ω = (w1, . . . , wn) is a positive probability vector. Note that

lim
t→0
Qt(ω;A1, . . . , An) = exp

 n∑
j=1

wj logAj

 ,
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where the right-hand side is called the log-Euclidean mean of A1, . . . , An. Log-majorization properties and

operator inequalities of the quasi-arithmetic mean have been studied [7, 9, 23]. As noncommutative versions

of the quasi-arithmetic mean, we investigate in this paper the Lim–Pálfia’s power mean, Rényi right mean

and Rényi power mean.

(I) The Lim–Pálfia’s power mean Pt(ω;A1, . . . , An) of order t ∈ (0, 1] is defined as the unique positive definite

solution of

X =

n∑
i=1

wi(X#tAi),

where A#tB = A1/2(A−1/2BA−1/2)tA1/2 is known as the weighted geometric mean of A,B ∈ Pm. For

t ∈ [−1, 0) we define Pt(ω;A1, . . . , An) = P−t(ω;A−11 , . . . , A−1n )−1. See [22] for more information. We

show in Section 3 that the sequence Pt(ω;Ap
1, . . . , A

p
n)1/p for t ∈ [−1, 0) is weakly log-majorized by the

log-Euclidean mean for any p > 0:

Pt(ω;Ap
1, . . . , A

p
n)1/p ≺w log exp

 n∑
j=1

wj logAj

 ,

and the power mean Pt satisfies the Ando–Hiai inequality: Pt(ω;A1, . . . , An) ≤ I implies Pt(ω;Ap
1, . . . ,

Ap
n)1/p ≤ I. This provides an affirmative answer for the monotone convergence of Lim–Pálfia’s power means

in terms of the weak log-majorization, but it is an open question:

Pt(ω;Ap
1, . . . , A

p
n)1/p ↗≺w log

exp

 n∑
j=1

wj logAj

 as p↘ 0.

Here, the above symbol ↗≺w log
means that Lim–Pálfia’s power means satisfy the following properties: for

0 < p ≤ q

(i) Pt(ω;Ap
1, . . . , A

p
n)1/p ≺w log exp

(∑n
j=1 wj logAj

)
,

(ii) lim
p→0+

Pt(ω;Ap
1, . . . , A

p
n)1/p = exp

(∑n
j=1 wj logAj

)
,

(iii) Pt(ω;Ap
1, . . . , A

p
n)1/p �w log Pt(ω;Aq

1, . . . , A
q
n)1/q.

(II) Recently, a new barycenter minimizing the weighted sum of quantum divergences, called the t-z Rényi

right mean, has been introduced in [10]. Indeed, for 0 < t ≤ z < 1

Ωt,z(ω;A1, . . . , An) := arg min
X∈Pm

n∑
j=1

wjΦt,z(Aj , X),

where Φt,z(A,B) = tr((1− t)A+ tB)− tr(A
1−t
2z B

t
zA

1−t
2z )z is the t-z Bures–Wasserstein quantum divergence

of A,B ∈ Pm. Here, Qt,z(A,B) = (A
1−t
2z B

t
zA

1−t
2z )z is known as the t-z Rényi relative entropy of A,B. The

t-z Rényi right mean coincides with the unique positive definite solution of the equation

X =

n∑
j=1

wj

(
X

t
2zA

1−t
z

j X
t
2z

)z
,

which obtained by vanishing the gradient of objective function. For t = z = 1/2, the t-z Rényi right mean

Ωt,z coincides with the Wasserstein mean: see [1, 2, 8, 17] for more information. We show in Section 4 the



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 607-620, November 2023.

609 Weak log-majorization and inequalities of power means

log-majorization relationship between the t-z Rényi relative entropy Qt,z(A,B) and A1/2B1/2 and establish

norm inequalities among the power means.

(III) Dumitru and Franco [12] have defined the Rényi power mean Rt,z(ω;A1, . . . , An) as the unique positive

definite solution of the equation

X =

n∑
j=1

wj

(
A

1−t
2z

j X
t
zA

1−t
2z

j

)z
,

and proved the norm inequality between Rt,z and Q1−t with respect to the p-norm for p ≥ 2. Note that for

commuting variables

Rt,z = Ωt,z = P1−t = Q1−t.

We show in Section 5 the boundedness of Rényi power mean Rt,z in terms of the quasi-arithmetic mean.

2. Antisymmetric tensor power and homogeneous matrix means. A crucial tool in the theory

of log-majorization is the antisymmetric tensor power (or the compound matrix). Note that for A ≥ 0 and

1 ≤ k ≤ m,

(2.2)

k∏
i=1

λi(A) = λ1(ΛkA),

where ΛkA denotes the kth antisymmetric tensor power of A. By the definition of log-majorization, A ≺log B

for A,B > 0 if and only if λ1(ΛkA) ≤ λ1(ΛkB) for 1 ≤ k ≤ m − 1, and detA = detB. We give a list of

fundamental properties of the antisymmetric tensor powers by [6] and [14].

Lemma 2.1. Let A,B ∈ Pm, and I the identity matrix with certain dimension.

(1) Λk(cI) = ckI for any constant c

(2) Λk(XY ) = Λk(X)Λk(Y ) for any X,Y ∈ Cm×m
(3) (Λk(A))r = Λk(Ar) for any r ∈ R
(4) ΛkA ≤ ΛkB whenever A ≤ B.

Another interesting property is that the weak log-majorization implies the weak majorization. More precisely,

A ≺w log B implies A ≺w B, where A ≺w B means that

k∑
i=1

λi(A) ≤
k∑

i=1

λi(B), 1 ≤ k ≤ m.

Note that A ≺w B if and only if |||A||| ≤ |||B||| for any unitarily invariant norm ||| · |||. One can easily see

from Lemma 2.1 (4) and (2.2) that A ≤ B for A,B ∈ Pm implies A ≺w log B, so A ≺w B.

Let ∆n be the simplex of all positive probability vectors in Rn. A (multivariable) matrix mean on the

open convex cone Pm is the map G : ∆n × Pn
m → Pm satisfying the idempotency: G(ω;A, . . . , A) = A for

any ω ∈ ∆n and A ∈ Pm. The matrix mean is said to be homogeneous if G(ω; cA) = cG(ω;A) for any c > 0,

where A = (A1, . . . , An) ∈ Pn
m.

Lemma 2.2. Let G1, G2 : ∆n × Pn
m → Pm be homogeneous matrix means satisfying

(2.3) G2(ω;A) ≤ I implies G1(ω;A) ≤ I,
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for any ω ∈ ∆n and A = (A1, . . . , An) ∈ Pn
m. Then ‖G1(ω;A)‖ ≤ ‖G2(ω;A)‖, where ‖·‖ denotes the operator

norm. In addition, if such homogeneous matrix means Gi for i = 1, 2 are preserved by the antisymmetric

tensor power:

ΛkGi(ω;A) = Gi(ω; ΛkA),

where ΛkA = (ΛkA1, . . . ,Λ
kAn), then G1(ω;A) ≺w log G2(ω;A).

Proof. Let κ = ‖G2(ω;A)‖. Then G2(ω;A) ≤ κI, and

G2

(
ω;

1

κ
A
)

=
1

κ
G2(ω;A) ≤ I,

since G2 is homogeneous. By (2.3) and the homogeneity of G1

1

κ
G1(ω;A) = G1

(
ω;

1

κ
A
)
≤ I.

Thus, G1(ω;A) ≤ κI, which implies ‖G1(ω;A)‖ ≤ ‖G2(ω;A)‖.

Additionally, assume that Gi for i = 1, 2 are preserved by the antisymmetric tensor power. Then using

fundamental properties of the antisymmetric tensor powers in Lemma 2.1, (2.3) yields

ΛkG2(ω;A) ≤ I =⇒ ΛkG1(ω;A) ≤ I.

So λ1(ΛkG1(ω;A)) ≤ λ1(ΛkG2(ω;A)), equivalently G1(ω;A) ≺w log G2(ω;A).

3. Log-majorization of the Lim–Pálfia’s power mean. Let A = (A1, . . . , An) ∈ Pn
m. For conve-

nience, we denote

Ap := (Ap
1, . . . , A

p
n) ∈ Pn

m,

for any p ∈ R.

For t ∈ (0, 1] we denote by Pt(ω;A) the unique positive definite solution of

X =

n∑
i=1

wi(X#tAi).

For t ∈ [−1, 0) we define Pt(ω;A) = P−t(ω;A−1)−1. We call Pt(ω;A) the Lim–Pálfia’s power mean of order

t for A1, . . . , An. Note that

P1(ω;A) =

n∑
j=1

wjAj = A(ω;A) and P−1(ω;A) =

 n∑
j=1

wjA
−1
j

−1 = H(ω;A),

where A and H denote the arithmetic and harmonic means, respectively. One can easily see that for

commuting A1, . . . , An

Pt(ω;A) =

(
n∑

i=1

wiA
t
i

)1/t

= Qt(ω;A),

where Qt denotes the quasi-arithmetic mean of order t; it can be defined for all t ∈ R, and

lim
t→0
Qt(ω;A) = exp

(
n∑

i=1

wi logAi

)
.
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The remarkable consequence of power means appeared in [21, 22] is that Pt converges monotonically to the

Cartan mean Λ as t→ 0 such that

(3.4) P−t ≤ P−s ≤ · · · ≤ Λ = lim
t→0

Pt ≤ · · · ≤ Ps ≤ Pt,

for 0 < s ≤ t ≤ 1, where the Cartan mean Λ is the least squares mean for the Riemannian trace metric dR:

Λ(ω;A1, . . . , An) := arg min
X∈Pm

n∑
j=1

wjd
2
R(Aj , X),

and dR(A,B) = ‖ logA−1/2BA−1/2‖2.

Remark 3.1. Note that Lim–Pálfia’s power mean and Cartan mean are homogeneous. So applying

Lemma 2.2 with the monotonicity (3.4) of Lim–Pálfia’s power means yields that

Pt(ω;A) ↘�w log
Λ(ω;A) as t↘ 0,

Pt(ω;A) ↗≺w log
Λ(ω;A) as t↗ 0.

Theorem 3.2. [26, Theorem 1] Let A = (A1, . . . , An) ∈ Pn
m and ω = (w1, . . . , wn) ∈ ∆n. Then

n∑
j=1

wj logAj ≤ 0 implies Λ(ω;A) ≤ I.

Proposition 3.3. Let A = (A1, . . . , An) ∈ Pn
m, ω = (w1, . . . , wn) ∈ ∆n, and 0 < t ≤ 1. Then for any

p > 0

(3.5) ‖P−t(ω;Ap)1/p‖ ≤

∥∥∥∥∥∥exp

 n∑
j=1

wj logAj

∥∥∥∥∥∥ ≤ ‖Pt(ω;Ap)1/p‖.

Furthermore,

(3.6) P−t(ω;Ap)1/p ≺w log exp

 n∑
j=1

wj logAj

 .

Proof. Let p > 0. Since the Lim–Pálfia’s power mean and log-Euclidean mean are homogeneous, by

Lemma 2.2 it is enough for the second inequality of (3.5) to show that for 0 < t ≤ 1

Pt(ω;Ap)1/p ≤ I implies exp

 n∑
j=1

wj logAj

 ≤ I.

Assume that Pt(ω;Ap) ≤ I for 0 < t ≤ 1. By (3.4) Λ(ω;Ap) ≤ I, and Λ(ω;Ap)1/p ≤ I. Taking the limit as

p→ 0+ and applying the Lie–Trotter formula of the Cartan mean [16] imply that

exp

 n∑
j=1

wj logAj

 ≤ I.
Now assume that exp(

∑n
j=1 wj logAj) ≤ I. Since the logarithmic map is operator monotone, we have∑n

j=1 wj logAj ≤ 0. Then,
∑n

j=1 wj logAp
j = p

∑n
j=1 wj logAj ≤ 0 for any p > 0. By Theorem 3.2
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Λ(ω;Ap) ≤ I,

and by (3.4) P−t(ω;Ap) ≤ I for 0 < t ≤ 1. This completes the proof of (3.5).

Furthermore, by (3.4) ΛkP−t(ω;Ap) ≤ ΛkΛ(ω;Ap) for the kth antisymmetric tensor power Λk. So

λ1(ΛkP−t(ω;Ap)) ≤ λ1(ΛkΛ(ω;Ap)), and by Lemma 2.1 (3)

λ1(ΛkP−t(ω;Ap)1/p) = λ1(ΛkP−t(ω;Ap))1/p ≤ λ1(ΛkΛ(ω;Ap))1/p = λ1(ΛkΛ(ω;Ap)1/p).

Since Λ(ω;A) ≺log exp
(∑n

j=1 wj logAj

)
by [8, Theorem 1], we conclude that

P−t(ω;Ap)1/p ≺w log Λ(ω;Ap)1/p ≺log exp

 n∑
j=1

wj logAj

 .

Remark 3.4. Note from [22, Proposition 3.5] that for t ∈ (0, 1]

detP−t(ω;A) ≤
n∏

j=1

(detAj)
wj ,

so (3.6) must be the weak log-majorization.

A variant of Ando–Hiai inequality for power means has been shown in [23, Corollary 3.2]: for t ∈ (0, 1]

Pt(ω;A) ≤ I implies P t
p
(ω;Ap) ≤ I for all p ≥ 1.

We provide different types of Ando–Hiai inequality for power means using Jensen inequalities [13]. Let X

be a contraction. For any A > 0, we have

(3.7) (XAX∗)p ≤ XApX∗ if 1 ≤ p ≤ 2,

and

(3.8) (XAX∗)p ≥ XApX∗ if 0 ≤ p ≤ 1.

Theorem 3.5. Let p ≥ 1. Then

(i) if Pt(ω;A) ≥ I then Pt(ω;A) ≤ Pt(ω;Ap) for 0 < t ≤ 1, and

(ii) if Pt(ω;A) ≤ I then Pt(ω;A) ≥ Pt(ω;Ap) for −1 ≤ t < 0.

Proof. We first consider 1 ≤ p ≤ 2. Assume that X := Pt(ω;A) ≥ I for 0 < t ≤ 1. Then by taking the

congruence transformation

I =

n∑
j=1

wj(X
−1/2AjX

−1/2)t =

n∑
j=1

wj

[
(X−1/2AjX

−1/2)p
]t/p

.

Since 0 < t/p ≤ 1, the above identity reduces to

I = Pt/p(ω; (X−1/2A1X
−1/2)p, . . . , (X−1/2AnX

−1/2)p).

Since X−1/2 ≤ I, Hansen’s inequality (3.7) and the monotonicity of power means yield

I ≤ Pt/p(ω;X−1/2Ap
1X
−1/2, . . . , X−1/2Ap

nX
−1/2).
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Taking the congruence transformation by X1/2 implies that X ≤ Pt/p(ω;Ap). Since 0 < t/p ≤ t ≤ 1, we

obtain from (3.4)

X ≤ Pt/p(ω;Ap) ≤ Pt(ω;Ap).

Replacing Aj by A2
j we can extend the interval [2, 4], and successfully for all p ≥ 1.

Assume that X := Pt(ω;A) ≤ I for −1 ≤ t < 0. Then X−1 = P−t(ω;A−1) ≥ I. By (i) with 0 < −t ≤ 1

X−1 ≤ P−t(ω;A−p),

equivalently, X ≥ P−t(ω;A−p)−1 = Pt(ω;Ap).

Remark 3.6. We give another proof for Theorem 3.5 (i). Let 1 ≤ p ≤ 2. Assume that X = Pt(ω;A) ≥ I
for 0 < t ≤ 1. Since the map A ∈ Pm 7→ Ap is operator convex,

I =

 n∑
j=1

wj(X
−1/2AjX

−1/2)t

p

≤
n∑

j=1

wj(X
−1/2AjX

−1/2)pt.

By (3.7) and the monotonicity of the power map A ∈ Pm 7→ At,

I ≤
n∑

j=1

wj(X
−1/2Ap

jX
−1/2)t.

Taking congruence transformation by X1/2 implies

X ≤
n∑

j=1

wjX
1/2(X−1/2Ap

jX
−1/2)tX1/2 =

n∑
j=1

wjX#tA
p
j =: f(X).

Since the map f is operator monotone on Pm, we have X ≤ f(X) ≤ f2(X) ≤ · · · ≤ fk(X) for all k ≥ 1.

Taking the limit as k → ∞ yields X ≤ Pt(ω;Ap) for 1 ≤ p ≤ 2. Replacing Aj by A2
j , we can extend the

interval [2, 4], and successfully for all p ≥ 1.

Applying Lemma 2.2 to Theorem 3.5 (ii) we obtain

Corollary 3.7. Let −1 ≤ t < 0. Then

‖Pt(ω;Ap)1/p‖ ≤ ‖Pt(ω;A)‖,

for p ≥ 1, where ‖ · ‖ denotes the operator norm.

Remark 3.8. The following is the unique characterization of the Cartan mean among other multivariable

geometric means satisfying the Ando–Li–Mathias axioms:

(3.9) Λ(ω;A) ≤ I implies Λ(ω;Ap) ≤ I,

for all p ≥ 1. This is known as the Ando–Hiai inequality; see [26, Theorem 3, Corollary 6]. We can derive

it by using Theorem 3.5 (ii). Indeed, assume that Λ(ω;A) ≤ I. Then by (3.4) Pt(ω;A) ≤ I for −1 ≤ t < 0,

and by Theorem 3.5 (ii) Pt(ω;Ap) ≤ I. Taking the limit as t→ 0− yields Λ(ω;Ap) ≤ I.

Theorem 3.9. Let A = (A1, . . . , An) ∈ Pn
m, and ω = (w1, . . . , wn) ∈ ∆n. Then

Λ(ω;Ap)1/p ↗≺log
exp

 n∑
j=1

wj logAj

 as p↘ 0.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 607-620, November 2023.

M. Jeong and S. Kim 614

Proof. Note from [8] that

lim
p→0

Λ(ω;Ap)1/p = exp

 n∑
j=1

wj logAj

 ,

and

Λ(ω;Ap)1/p ≺log exp

 n∑
j=1

wj logAj

 .

So it is enough to show that Λ(ω;Aq)1/q ≺log Λ(ω;Ap)1/p for 0 < p ≤ q. By (3.9), if Λ(ω;A) ≤ I, then

Λ(ω;Ar) ≤ I for any r ≥ 1 so Λ(ω;Ar)1/r ≤ I.

Since the Cartan mean and Λ(ω;Ar)1/r are preserved by the antisymmetric tensor power and homoge-

neous, from Lemma 2.2 we have Λ(ω;Ar)1/r ≺log Λ(ω;A) for all r ≥ 1. Letting r = q/p for 0 < p ≤ q and

replacing Aj by Ap
j , we obtain Λ(ω;Aq)1/q ≺log Λ(ω;Ap)1/p.

Remark 3.10. Ando and Hiai [3, 4] have shown that (Ap#tB
p)1/p converges increasingly to the log-

Euclidean mean as p→ 0+ with respect to the log-majorization:

(Ap#tB
p)1/p ↗≺log

exp((1− t) logA+ t logB) as p↘ 0.

Theorem 3.9 is a generalization of the Ando–Hiai’s log-majorization result to multivariable geometric mean,

which is the Cartan mean.

Remark 3.11. Since the Lim–Pálfia’s power mean satisfies the arithmetic-power-harmonic mean in-

equalities:

H(ω;A) =

 n∑
j=1

wjA
−1
j

−1 ≤ Pt(ω;A) ≤
n∑

j=1

wjAj = A(ω;A),

for any nonzero t ∈ [−1, 1], it satisfies from [16, Theorem 4.2]

lim
p→0

Pt(ω;Ap)1/p = exp

 n∑
j=1

wj logAj

 .

Moreover, Pt(ω;Ap)1/p ≺w log exp
(∑n

j=1 wj logAj

)
for t ∈ [−1, 0) by Proposition 3.3. One can naturally

ask that the Lim–Pálfia’s power mean Pt(ω;Ap)1/p for t ∈ [−1, 0) converges increasingly to the log-Euclidean

mean as p→ 0+ with respect to the weak log-majorization. In order to show this, it remains an open problem

as follows: for 0 < p ≤ q
Pt(ω;Aq)1/q ≺w log Pt(ω;Ap)1/p.

4. Log-majorization of the t-z Rényi right mean. Let A,B ∈ Pm. For 0 ≤ t ≤ 1 and z > 0

Qt,z(A,B) =
(
A

1−t
2z B

t
zA

1−t
2z

)z
is the matrix version of the t-z Rényi relative entropy [5, 24]. Especially, Qt,t(A,B) is known as the

sandwiched Rényi relative entropy [25]. This can be considered as a noncommutative version of geometric

mean in the sense that Qt,z(A,B) = A1−tBt for commuting A and B. From this point of view, it is

interesting to find a log-majorization relation between Qt,z(A,B) and A1/2B1/2.
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Theorem 4.1. Let A,B ∈ Pm. For 0 ≤ t ≤ 1/2 and t ≤ z ≤ 1,

(i) λ(Qt,z(A,B)) ≺log s(A
1/2B1/2), and

(ii) s(At− 1
2Qt,z(A,B)B

1
2−t) ≺log s(A

1/2B1/2).

Proof. Note that s(A1/2B1/2) = λ((A1/2BA1/2)1/2). Since Qt,z(A,B) and (A1/2BA1/2)1/2 are invariant

under the antisymmetric tensor product and homogeneous, it is enough from Lemma 2.2 to show that

(i) A1/2BA1/2 ≤ I implies Qt,z(A,B) ≤ I,

(ii) A1/2BA1/2 ≤ I implies At− 1
2Qt,z(A,B)B1−2tQt,z(A,B)At− 1

2 ≤ I.

Let 0 ≤ t ≤ 1/2 and t ≤ z ≤ 1.

(i) We first prove it when B ≥ I. Assuming that A1/2BA1/2 ≤ I, we have B ≤ A−1 so B
t
z ≤ A−

t
z by the

Loewner–Heinz inequality with 0 < t ≤ z ≤ 1. Then

Qt,z(A,B) ≤
(
A

1−t
2z A−

t
zA

1−t
2z

)z
= A1−2t ≤ I,

since A ≤ B−1 ≤ I and 1− 2t ≥ 0. So (i) holds when B ≥ I.

Let λm := min{λi(B) : 1 ≤ i ≤ m}. Then, λ−1m B ≥ I. By the preceding argument

λ−1m Qt,z(A,B) = Qt,z(λ−1m A, λ−1m B)

≺log ((λ−1m A)1/2(λ−1m B)(λ−1m A)1/2)1/2 = λ−1m (A1/2BA1/2)1/2,

which completes the proof of (i).

(ii) Assume that A1/2BA1/2 ≤ I. Then B ≤ A−1, and B1−2t ≤ A2t−1 by the Loewner–Heinz inequality

since 2t ∈ [0, 1]. Therefore, we have

At− 1
2Qt,z(A,B)B1−2tQt,z(A,B)At− 1

2 ≤ At− 1
2Qt,z(A,B)A2t−1Qt,z(A,B)At− 1

2

=
(
At− 1

2Qt,z(A,B)At− 1
2

)2
.

Since B ≤ A−1 and 0 ≤ t ≤ z ≤ 1, we obtain Qt,z(A,B) ≤ A1−2t by the Loewner–Heinz inequality. So

At− 1
2Qt,z(A,B)At− 1

2 ≤ I,

and thus, At− 1
2Qt,z(A,B)B1−2tQt,z(A,B)At− 1

2 ≤ I. Moreover,

det
[
At− 1

2Qt,z(A,B)B1−2tQt,z(A,B)At− 1
2

]
= det(AB) = det(A1/2BA1/2),

and hence, (ii) holds for t ∈ [0, 1/2].

The t-z Rényi right mean Ωt,z is defined as

Ωt,z(ω;A) = arg min
X∈Pm

n∑
j=1

wjΦt,z(Aj , X).

Since the map A ∈ Pm 7→ trAt for t ∈ (0, 1) is strictly concave, the map X ∈ Pm 7→ Φt,z(A,X) is strictly

convex for 0 < t ≤ z < 1. So one can see that Ωt,z(ω;A) coincides with the unique positive definite solution

of the matrix nonlinear equation
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(4.10) X =

n∑
j=1

wjQ1−t,z(X,Aj).

Note that (4.10) is equivalent to

X1− t
z =

n∑
j=1

wjX
− t

z #zA
1−t
z

j .

See [10, 15, 18] for more details.

Theorem 4.2. [18, Theorem 3.2] Let 0 < t ≤ z < 1. If Ωt,z(ω;A) ≤ I then

Ωt,z(ω;A)1−
t
z ≥ A(ω;A1−t).

If Ωt,z(ω;A) ≥ I, then the reverse inequality holds.

Theorem 4.3. [11, Theorem 13] Let 0 < t ≤ z < 1. Then we have

1 + z − t
1− t

I − z

1− t

n∑
j=1

wjA
− 1−t

z
j ≤ Ωt,z(ω;A) ≤

1 + z − t
1− t

I − z

1− t

n∑
j=1

wjA
1−t
z

j

−1 ,
where the second inequality holds when (1 + z − t)I − z

∑n
j=1 wjA

1−t
z

j is invertible.

Theorem 4.4. For 0 < t ≤ z < 1,

‖P1−t(ω;A)‖ ≤ ‖Ωt,z(ω;A)‖ ≤ ‖Q 1−t
z

(ω;A)‖.

Furthermore, ‖Q t−1
z

(ω;A)‖ ≤ ‖Ωt,z(ω;A)‖.

Proof. Let 0 < t ≤ z < 1. Since the Rényi right mean Ωt,z, power mean P1−t, and quasi-arithmetic

mean Q 1−t
z

are all homogeneous, it is enough from Lemma 2.2 to show that for each cases

Ωt,z(ω;A) ≤ I implies P1−t(ω;A) ≤ I,

Q 1−t
z

(ω;A) ≤ I implies Ωt,z(ω;A) ≤ I.

By Theorem 4.2, Ωt,z(ω;A) ≤ I implies that

n∑
j=1

wjA
1−t
j ≤ Ωt,z(ω;A)1−

t
z ≤ I,

and hence, Q1−t(ω;A) =
(∑n

j=1 wjA
1−t
j

) 1
1−t ≤ I. By [23, Theorem 3.1] P1−t(ω;A) ≤ I. Next, we assume

Q 1−t
z

(ω;A) ≤ I. Then
∑n

j=1 wjA
1−t
z

j ≤ I so one can see that

1 + z − t
1− t

I − z

1− t

n∑
j=1

wjA
1−t
z

j ≥ I.

By assumption, the second inequality in Theorem 4.3 holds, and hence, we have

Ωt,z(ω;A)
1−t
z ≤

1 + z − t
1− t

I − z

1− t

n∑
j=1

wjA
1−t
z

j

−1 ≤ I.
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Moreover, assuming that Ωt,z(ω;A) ≤ I yields

1 + z − t
1− t

I − z

1− t

n∑
j=1

wjA
− 1−t

z
j ≤ I,

by Theorem 4.3. Then
∑n

j=1 wjA
t−1
z

j ≥ I, and hence, Q t−1
z

(ω;A) ≤ I since t ∈ (0, 1). This completes the

proof.

5. Boundedness of the Rényi power mean. Another type of the Rényi power mean has been

introduced in [12], as a unique positive definite solution of the equation

(5.11) X =
n∑

j=1

wjQt,z(Aj , X) =

n∑
j=1

wj

(
A

1−t
2z

j X
t
zA

1−t
2z

j

)z
.

We denote it as Rt,z(ω;A). We see the inequalities between the Rényi power mean and quasi-arithmetic

mean by using Jensen-type inequalities.

Theorem 5.1. Let 0 < t ≤ z < 1. If Rt,z(ω;A) ≤ I then

Rt,z(ω;A) ≤ Q 1
p
(ω;A1−t) =

 n∑
j=1

wjA
1−t
p

j

p

,

for all p such that p ≤ z.

Proof. Let X = Rt,z(ω;A) ≤ I for 0 < t ≤ z < 1. Since X
t
z ≤ I, we have A

1−t
2z

j X
t
zA

1−t
2z

j ≤ A
1−t
z

j for

each j = 1, . . . , n. Then from the equation (5.12)

X =

n∑
j=1

wj

(
A

1−t
2z

j X
t
zA

1−t
2z

j

)z
≤

n∑
j=1

wjA
1−t
j .

Since the map Pm 3 A 7→ Az is concave, we obtain

X ≤
n∑

j=1

wjA
1−t
j ≤

 n∑
j=1

wjA
1−t
z

j

z

= Q 1
z
(ω;A1−t).

Moreover, Qp is monotone on p ∈ (−∞,−1] ∪ [1,∞) from [19, Theorem 5.1] so

Q 1
z
(ω;A1−t) ≤ Q 1

p
(ω;A1−t),

for 0 < p ≤ z < 1. Hence, we completes the proof.

Lemma 5.2. Let 0 < t ≤ z < 1.

(1) If Aj ≤ I for all j, then Rt,z(ω;A) ≤ I.

(2) If Aj ≥ I for all j, then Rt,z(ω;A) ≥ I.

Proof. Assume that Aj ≤ I for all j. Let X = Rt,z(ω;A) for 0 < t ≤ z < 1. Suppose that λ1(X) > 1.

Since X ≤ λ1(X)I,

X =

n∑
j=1

wj

(
A

1−t
2z

j X
t
zA

1−t
2z

j

)z
≤ λ1(X)t

n∑
j=1

wjA
1−t
j ≤ λ1(X)tI.
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This inequality implies that λ1(X) ≤ λ1(X)t, which is a contradiction because λ1(X) > 1 and 0 < t < 1. So

λ1(X) ≤ 1, equivalently X ≤ I.

In order to prove (2), suppose that λm(X) < 1. Since X ≥ λm(X)I, the similar argument as above

yields λm(X) ≥ λm(X)t, but it is a contradiction. Thus, λm(X) ≥ 1, equivalently X ≥ I.

In the following, we denote as λM := max{λ1(Aj) : 1 ≤ j ≤ n}.

Corollary 5.3. Let 0 < t ≤ z < 1. Then for all p such that p ≤ z

Rt,z(ω;A) ≤ λtMQ 1
p
(ω;A1−t).

Proof. Since λ−1M Aj ≤ I for all j, we have Rt,z

(
ω;λ−1M A

)
≤ I by Lemma 5.2 (1). From Theorem 5.1

together with the homogeneity of the Rényi power mean,

λ−1M Rt,z(ω;A) = Rt,z

(
ω;λ−1M A

)
≤

 n∑
j=1

wj(λ
−1
M Aj)

1−t
p

p

= λt−1M

 n∑
j=1

wjA
1−t
p

j

p

.

By simplifying the terms of λM , we complete the proof.

Theorem 5.4. Let 0 < t ≤ z < 1. Then

Rt,z(ω;A)
1−t
2 ≥ λ−

(1−t)(1−z)
2z

M

n∑
j=1

wjA
1−t
2z

j .

Proof. We first assume that Aj ≤ I for all j. Let X = Rt,z(ω;A) for 0 < t ≤ z < 1. By (3.8)

X =

n∑
j=1

wj

(
A

1−t
2z

j X
t
zA

1−t
2z

j

)z
≥

n∑
j=1

wjA
1−t
2z

j XtA
1−t
2z

j .

Taking the congruence transformation by X
t
2 and applying the convexity of a square map yield

X1+t ≥
n∑

j=1

wj

(
X

t
2A

1−t
2z

j X
t
2

)2
≥

 n∑
j=1

wjX
t
2A

1−t
2z

j X
t
2

2

.

Since the square root map is operator monotone, we have X
1+t
2 ≥

∑n
j=1 wjX

t
2A

1−t
2z

j X
t
2 . Taking the congru-

ence transformation by X−t/2, we obtain

(5.12) X
1−t
2 ≥

n∑
j=1

wjA
1−t
2z

j .

Now, replacing Aj by λ−1M Aj(≤ I) for all j in (5.13), we have

Rt,z

(
ω;λ−1M A

) 1−t
2 ≥

n∑
j=1

wj

(
λ−1M Aj

) 1−t
2z .

Since the Rényi power mean Rt,z is homogeneous, it reduces to

λ
t−1
2

M Rt,z (ω;A)
1−t
2 ≥ λ

t−1
2z

M

n∑
j=1

wjA
1−t
2z

j .

By simplifying the terms of λM , we obtain the desired inequality.
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Remark 5.5. The multivariable matrix mean on the open convex cone Pm can be defined as a map G :

∆n × Pn
m → Pm satisfying the idempotency: G(ω;A, . . . , A) = A for any ω ∈ ∆n and A ∈ Pm. Boundedness

of the multivariable matrix mean plays an important role in operator inequality and majorization. Especially,

the multivariable matrix mean G satisfying the arithmetic-G-harmonic mean inequalities n∑
j=1

wjA
−1
j

−1 ≤ G(ω;A1, . . . , An) ≤
n∑

j=1

wjAj ,

fulfills the extended version of Lie–Trotter formula [16]:

(5.13) lim
s→0

G(ω;As
1, . . . , A

s
n)1/s = exp

 n∑
j=1

wj logAj

 .

See [17, 20] for more information. We here have established boundedness of the Rényi power mean, but it is

still open whether (5.14) holds for the Rényi power mean.
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