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TIGHT BOUNDS ON THE ALGEBRAIC CONNECTIVITY

OF A BALANCED BINARY TREE�

JASON J. MOLITIERNOy, MICHAEL NEUMANNy, AND BRYAN L. SHADERz

Abstract. In this paper, quite tight lower and upper bounds are obtained on the algebraic con-
nectivity, namely, the second-smallest eigenvalue of the Laplacian matrix, of an unweighted balanced
binary tree with k levels and hence n = 2k � 1 vertices. This is accomplished by considering the
inverse of a matrix of order k � 1 readily obtained from the Laplacian matrix. It is shown that the
algebraic connectivity is 1=(2k � 2k + 3) +O(1=22k).
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1. Introduction. In this paper we improve known lower and upper bounds on
the algebraic connectivity, namely, the second-smallest eigenvalue of the Laplacian
matrix1, of the balanced binary tree Bk of k levels and hence n = 2k � 1 vertices.
Speci�cally, in [9, Lemma 6.1], Guattery and Miller quote an earlier result of theirs
in [8] in which they have shown that the algebraic connectivity, � (Bk), of Bk satis�es

1

n
� �(Bk) � 2

n
:

Our new upper bound is

� (Bk) � 1

(2k � 2k + 3)� 2k � 2

2k�1 � 1

and our new lower bound is
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We comment that for large k the di�erence between the denominators in the lower
bound and the upper bound is approximately
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which implies that the algebraic connectivity of the balanced binary tree is 1=(2k �
2k + 3) +O(1=22k).

We prove our main results in Section 3, while in Section 2 we review necessary
preliminaries and also describe some motivation for our work here.

We comment that two other lower estimates for �(Bk) can be obtained as spe-
cial cases of two general lower estimates on the algebraic connectivity of a graph G.
The �rst lower estimate, equaling 1=[2(2k� 3)2], is due to Friedland [6, Theorem 2.6]
and involves the so-called Cheeger lower bound. The second lower bound, equaling
3 �

p
9� 1=(2k�1 � 1)2, is due to Berman and Zhang [1, Theorem 2.2]. It can be

readily checked that our new lower bound is better than the two bounds just men-
tioned.

2. Preliminaries. Let G be a graph with vertices 1, 2, . . . , n. Denote the degree
of vertex i by deg(i). The Laplacian (matrix) of G is the n� n matrix L = [`ij ] with

`ij =

8<
:

deg(i) if i = j,
�1 if i 6= j and i is adjacent to j,
0 otherwise:

The Laplacian L of a graph G is a useful algebraic tool for assessing certain
properties of the graph. Perhaps the most well-known property of L is the matrix-
tree theorem due to Cayley [2] (see also Chaiken [3]), which relates the Laplacian
to the number of spanning trees of G. Numerous other properties of G, related to
the connectivity and the isoperimetric number of G, are re
ected by the spectrum
of L (see [14, 16, 17] and the references therein). Since L is a symmetric, positive
semide�nite, and singular matrix, its eigenvalues are nonnegative real numbers, and
so they can be arranged in nondecreasing order:

0 = �1 � �2 � � � � � �n:

Fiedler [5] observed that the second-smallest eigenvalue, �(G) := �2, of L provides
a measure of connectivity and he called �(G) the algebraic connectivity of G. In
particular he has shown that �(G) > 0 if and only if G is a connected graph.

The algebraic connectivity of a graph G and its applications have been exten-
sively studied in the literature; we cite the following papers and the references quoted
therein: Grone and Merris [7], Merris [14, 15], Powers [19], Pothen, Simon, and Liou
[18], Guattery and Miller [9], and Kirkland, Neumann, and Shader [12, 11, 13].

As an example of the usage of algebraic connectivity we give the problem of
�nding separators for graphs. Separators are edges or vertices which, if removed
from the graph, break it into separate components. This problem is an important
component of many graph algorithms. Many popular separator algorithms involve
spectral methods, in particular the Laplacian L of the underlying graph G. We refer
the reader to [9] for a more detailed discussion. Typically, the algebraic connectivity
�(G) and a corresponding eigenvector u are computed. The best threshold cut method
can be described as follows. Let n be the number of vertices of G. Given a nonempty,
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proper subset X of vertices of G we de�ne the cut quotient of X to be

j@X j
minfjX j; jXjg ;

where j@X j is the number of edges in G with exactly one vertex in X . The minimum
of the cut quotients is the isoperimetric number, i(G), of G. It is well known that

i(G) � �(G)
2

:

The best threshold cut method strives to �nd a set X for which the cut quotient of
X is close to the minimum i(G). This is achieved as follows.

(i) Associate with each vertex, i, the value of the ith entry of u.
(ii) Sort the vertices according to their value. For each index 1 � i � n � 1,

compute the cut quotient for the separator obtained by splitting the vertices
into those with sorted index less than i and those with sorted index greater
than i.

(iii) Choose the split from (ii) that provides the smallest cut quotient.
As noted in [9], until recently, there has not been a rigorous analysis of the quality

of separators produced by such algorithms. In [9], the complete balanced binary trees
are used as building blocks to construct graphs for which the best threshold cut
method does poorly. An essential ingredient in their work is their bound

1

n
� �(Bk) � 2

n

on the algebraic connectivity for a complete balanced binary tree.

3. Tight Bounds on � (Bk). As before, let Bk denote the balanced binary tree
with k � 2 levels so that Bk has n := 2k � 1 vertices. We now relabel the vertices
of Bk so that 1 is the root vertex, the vertices on the left branch of 1 precede those
on the right branch, and the vertices on the ith level precede those on level i+ 1 for
i = 2; 3; : : : ; k � 1. For example, for k = 3, we have the labeling illustrated below.

�
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The following notation is used throughout this section. If N is an m�m matrix,
each of whose eigenvalues is real, then the eigenvalues of N are denoted by �i(N),
i = 1; 2; : : : ;m, where

�1(N) � �2(N) � � � � � �m�1(N) � �m(N):
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The trace and adjoint of N are denoted by tr(N) and adj(N), respectively.
We begin by showing that the problem of determining � (Bk) can be transformed

to that of determining the smallest eigenvalue of a principal submatrix of the Laplacian
of order 2k�1 � 1.

Proposition 3.1. Let Lk be the Laplacian matrix of Bk. Then

� (Bk) = �1(Lk(1; 1));(1)

where Lk(1; 1) is the principal submatrix of Lk obtained by deleting its �rst row and
column.

Proof. Note that Lk has the form

2
666666666666664

2 �1 0 � � � 0 �1 0 � � � 0

�1
0
...
0

C O

�1
0
...
0

O C

3
777777777777775

;

where C is a matrix of order 2k�1 � 1. It follows that each eigenvalue of Lk(1; 1)
has multiplicity at least two and hence, by the Cauchy interlacing property (see [10]),
�1(Lk(1; 1)) = �2(Lk).

Next, let Q = (qi;j) be the (n� 1)� (k � 1) matrix with

qi;j =

�
1 if vertex i+ 1 is on level j + 1 of Bk,
0 otherwise,

and de�ne the (k � 1)� (k � 1) tridiagonal matrix

Fk�1 :=

2
6666666666664

3 �2 0 � � � � � � � � � 0

�1 3 �2 . . .
. . .

...

0 �1 . . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
0 0 �1 3 �2
0 � � � � � � � � � 0 � 1 1

3
7777777777775
:

Concerning Fk�1 we claim the following proposition.
Proposition 3.2. Let Lk = [`i;j ] be the Laplacian matrix of Bk. Then

(a) Lk(1; 1) Q = QFk�1,
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(b) each eigenvalue of Fk�1 is an eigenvalue of Lk(1; 1),
(c) each eigenvalue of Fk�1 is real,
(d) �1(Fk�1) = �1(Lk(1; 1)), and
(e) tr(F�1k�1) = 2k � (k + 1).

Proof. Part (a) follows from the observation that for 1 � i � j � k,
(i) If jj � ij > 1, then there are no edges joining a vertex in level i of Bk to a vertex
in level j.
(ii) If j � i = 1, then each vertex in level i of Bk is joined to exactly two vertices in
level j.
(iii) If j � i = �1, then each vertex in level i of Bk is joined to exactly one vertex in
level j.
(iv) If v is in level i, then

`v;v =

(
2 if i = 1,
1 if i = k,
3 otherwise.

Now let (�; x) be an eigenpair of Fk�1. Then (a) implies that Lk(1; 1)(Qx) =
�(Qx). Since the columns of Q are linearly independent, it follows that Qx 6= 0.
Hence (�;Qx) is an eigenpair of Lk(1; 1) and so (b) holds. Part (c) follows from (b)
and the fact that Lk(1; 1) is a real symmetric matrix. Adopting the notation in the
proof of Proposition 3.1, we see that Lk(1; 1) is the direct sum of two copies of the
matrix C. Since C is a principal submatrix of a Laplacian matrix and is irreducible,
C is a nonsingularM -matrix. Hence C has a nonnegative eigenvector v corresponding
to the eigenvalue �1(C) = �1(Lk(1; 1)).

It is now easy to verify that

[vT 0]Lk(1; 1) = �1(LK(1; 1))[v
T 0]:

The fact that v is a nonnegative eigenvector implies that [vT 0]Q 6= 0. This along with
(a) implies that [vT 0]Q is a left-eigenvector of Fk�1 corresponding to the eigenvalue
�1(Lk(1; 1)). Part (d) now follows from (b).

Finally, we prove (e). As can be readily checked, the matrix Fk�1 admits the
following factorization as the product of an upper triangular matrix and a lower
triangular matrix:

Fk�1 =

2
6666666666664

1 �2 0 :: :: 0
0 1 �2 0 0

0 1 �2
0 1 ::

...
. . . :: ::

...
. . . :: �2 0

0 1 �2
0 0 : : : 0 1

3
7777777777775

2
666666666664

1 0 :: :: 0
�1 1

�1 1
:: ::

:: ::
...

:: ::
:: 1 0

�1 1

3
777777777775
;
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and thus we have the LU-factorization

F�1k�1 =

2
6666666664

1
1 1

1
... ::

::
1 1
1 : : : 1 1

3
7777777775

2
666666664

1 2 22 23 :: :: 2k�2

1 2 22 :: :: 2k�3

1 :: :: :: ::
:: :: :: 23

:: :: 22

1 2
1

3
777777775
:

But then
�
F�1k�1

�
i;i

= 2i�1, so that, easily, tr
�
F�1k�1

�
=
Pk�1

i=1

�
2i � 1

�
= 2k� (k+1).

It follows from Proposition 3.2 that to either determine exactly or approximately
�1(L(1; 1)), it suÆces to consider the problem of determining exactly or approximately
the smallest eigenvalue of Fk�1. We begin by noting that for any m � 1, if D is the
m�m diagonal matrix whose (i; i)th entry is 2i=2, i = 1; 2; : : : ;m, then the matrix

Gm := DFmD
�1 =

2
6666666666664

3 �p2 0 � � � � � � � � � 0

�p2 3 �p2 . . .
. . .

...

0 �p2 . . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 0 �p2 3 �p2
0 � � � � � � � � � 0 �p2 1

3
7777777777775

(2)

is (diagonally) similar to Fm and hence it has the same eigenvalues as Fm.

Now let Sm�1 = Gm(m;m) be the leading principal submatrix of Gm of order
m � 1. Note that Sm�1 is a symmetric, tridiagonal matrix each of whose diagonal
entries is 3 and each of whose super- and subdiagonal entries is �p2. Some additional
properties of the matrices S1, S2, . . . , are the following.

Lemma 3.3. (a) det(St) = 2t+1 � 1.

(b) tr(S�1t ) = t� 2 +
2t+ 2

2t+1 � 1
, provided that t � 2.

Proof. We prove (a) by induction on t. If t = 1, then detS1 = 3 = 22 � 1.

Assume that t � 2 and proceed by induction. Note that by Laplace expansion
along the last row,

det(St) = 3 det(St�1)� (
p
2)2 det(St�2)

= 3(2t � 1)� 2(2t�1 � 1)
= 2t+1 � 1;

as desired.
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Next note that if we set detS0 = 1, then

tr (adj(St)) =
Pt�1

j=0 det(Sj) det(St�1�j)

=
Pt�1

j=0(2
j+1 � 1)(2t�j � 1)

=
Pt�1

j=0 2
t+1 + 1� 2j+1 � 2t�j

= t2t+1 + t� 2(2 + 22 + � � �+ 2t)

= t2t+1 + t� 2(2t+1 � 2)

= (t� 2)2t+1 + t+ 4:

Statement (b) now follows from (a).
We shall now use Lemma 3.3 to obtain a lower bound on �1(Gm). Since the

eigenvalues of Sm�1 interlace the eigenvalues of Gm, and as the eigenvalues of Gm are
those of Fm, we can write that

�1(Fm) � �1(Sm�1) � �2(Fm) � � � � � �m�1(Sm�1) � �m(Fm):

Furthermore Gm is a nonsingularM -matrix; each of its eigenvalues is positive, as are
those of Sm�1. Hence the eigenvalues of F

�1
m interlace those of S�1m�1. That is,

�1(F
�1
m ) � �1(S

�1
m�1) � �2(F

�1
m ) � � � � � �m�1(S

�1
m�1) � �m(F

�1
m ):

Thus,

tr(F�1m ) =

mX
i=1

�i(F
�1
m )

�
 
m�1X
i=1

�i(S
�1
m�1)

!
+ �m(F

�1
m )

= tr(S�1m�1) + �m(F
�1
m ):

Hence we have that

tr(F�1m )� tr
�
S�1m�1

� � �m(F
�1
m ):(3)

This essentially proves the following lemma.
Lemma 3.4. Let Gm be the matrix given in (2) with m � 3. Then

�1(Gm) � 1

2m+1 � 2m+ 1� 2m

2m � 1

:(4)
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Proof. Recall that that the eigenvalues of Gm are the reciprocals of the eigenvalues
of the matrix F�1m used above. Thus (4) follows from (3) and the trace formulas in
Proposition 3.2 (with m = k � 1) and Lemma 3.3b (with t = m� 1).

To obtain an upper bound on �1(Gm), we consider the following t � t matrix
which, for t = m, is readily seen to be a perturbation by a positive semide�nite
matrix of Gm:

Ht :=

2
6666666666664

3 �p2 0 � � � � � � � � � 0

�p2 3 �p2 . . .
. . .

...

0 �p2 . . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 0 �p2 3 �p2
0 � � � � � � � � � 0 �p2 3�p

2

3
7777777777775
:(5)

Thus, from Weyl's theorem on the perturbation of eigenvalues of symmetric matrices
(see p. 181 of Horn and Johnson [10]), we have that

�i(Gm) � �i(Hm); i = 1; : : : ;m:(6)

We comment that from Elliot [4], it can be deduced that the eigenvalues of Ht

are given by

�i(Ht) = 3� 2
p
2 cos

�
(2i� 1)�

2t+ 1

�
; i = 1; : : : ; t:(7)

We proceed now to prove for Ht a result similar to Lemma 3.3.
Lemma 3.5. For Ht as given in (5), the following conditions hold:

(a) det(Ht) = 2t+1 � 1�p
2(2t � 1).

(b) tr
�
H�1
t

�
= t� 2 +

2t+ 2�p
2 (2t+ 1� 2t)

2t+1 � 1�p
2(2t � 1)

, provided that t � 2.

Proof. Statement (a) clearly holds if t = 1. If t � 2, then by the linearity of
the determinant we see that det(Ht) = det(St)�

p
2 det(St�1). Thus part (a) follows

from the formula for the determinant of St�1 and St, which is given in Lemma 3.3a.
For t � 2, the (i; i)th entry of adj(Ht) is det(St�1) det(Ht�i) (we set det(S0) = 1

and det(H0) = 1 here). Hence it follows that

tr(adj(Ht)) = 2t � 1 +
Pt�1

i=1(2
i � 1)(2t�i+1 � 1�p

2(2t�i � 1))

= (t� 2)2t+1 + t+ 4�p
2((t� 3)2t + t+ 3);

with the last inequality coming from arithmetic simpli�cation using formulas for geo-
metric sums. Statement (b) now follows from the above trace formula, (a), and some
additional arithmetic simpli�cation.
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To obtain an upper bound on �1(Gm), we once again resort to working with
inverses. From (6) and the fact that the eigenvalues of Fm are the same as those of
Gm, we have that

�i(F
�1
m ) � �i(H

�1
m ); i = 1; 2; : : : ;m:

This implies that

�m(F
�1
m ) + tr(H�1

m )� �m(H
�1
m ) � tr(F�1m ):

Substituting in the appropriate trace formulas from Lemmas 3.3 and 3.5 yields

�m(F
�1
m ) � 2m+1 � 2m� 2m+ 2�p

2 (2m+ 1� 2m)

2m+1 � 1�p
2 (2m � 1)

+ �m(H
�1
m ):

If we now make use of the fact that �m(H
�1
m ) is the reciprocal of the smallest eigen-

value of Hm, we arrive, using (7), at the following lower bound on the �1(Gm).
Lemma 3.6. Let Gm be the matrix given in (2) with m � 3. Then

�1(Gm) � 1

2m+1 � 2m� 2m+ 2�p
2 (2m+ 1� 2m)

2m+1 � 1�p
2 (2m � 1)

+
1

3� 2
p
2 cos

�
�

2m+ 1

� :

The goal of our paper is to provide good lower and upper bounds on

�(Bk) = �1(Lk(1; 1)) = �1(Fk�1) = �1(Gk�1):

Thus, by using Lemmas 3.4 and 3.6 (with m = k � 1), we obtain the main result of
this paper.

Theorem 3.7. Let Bk be the balanced binary tree on k � 4 levels. Then

�(Bk) � 1

(2k � 2k + 3)� 2k � 2

2k�1 � 1

and

�(Bk) � 1

(2k � 2k + 2)� 2k �p
2
�
2k � 1� 2k�1

�
2k � 1�p

2 (2k�1 � 1)
+

1

3� 2
p
2 cos

�
�

2k � 1

� :
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