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A CHARACTERIZATION OF STRONG REGULARITY

OF INTERVAL MATRICES∗

JIRI ROHN†

Abstract. As the main result of this paper it is proved that an interval matrix [Ac −∆, Ac +∆]

is strongly regular if and only if the matrix inequality M(I − |I − RAc| − |R|∆) ≥ I has a solution,

where M and R are real square matrices and M is nonnegative. Several consequences of this result

are drawn.
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1. Introduction. In this paper, we use the following notations: I is the unit

matrix, ̺(A) denotes the spectral radius of A, for A = (aij) we denote its absolute

value by |A| = (|aij |), and matrix inequalities are understood componentwise.

An n × n interval matrix

A = [Ac − ∆, Ac + ∆] = {A | |A − Ac| ≤ ∆ }

is called strongly regular [3] if Ac is nonsingular and

̺(|A−1
c |∆) < 1 (1.1)

holds. In view of well-known properties of nonnegative matrices (see the equivalence

of (i) and (ii) in Theorem 2.1 below), the condition (1.1) can be equivalently written

as

(I − |A−1
c |∆)−1 ≥ 0. (1.2)

Evaluation of the left-hand side of (1.2) requires computation of two exact inverses.

In this paper, we show that the condition (1.2) can be equivalently replaced by the

condition of solvability of the matrix inequality

M(I − |I − RAc| − |R|∆) ≥ I, (1.3)
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where M,R ∈ R
n×n and M is required to be nonnegative. In the preliminary an-

nouncement [6] from 1994, which was never followed by a full paper, this author

mentioned that “it can be shown that matrices R and M ≥ 0 satisfying (1.3) exist if

and only if (1.1) holds”. Now, almost exactly 16 years after writing [6], the author

has returned to the task of filling in this gap. This is done in Theorem 3.1 below

whose consequence (Theorem 3.2) also states that if the inequality (1.3) has a solu-

tion M ≥ 0 and R, then it also has a particular solution M0 = (I − |A−1
c |∆)−1 ≥ 0

and R0 = A−1
c . Thus, M and R can be viewed as approximations of the exact inverses

M0 and R0. In the last Theorem 4.1 we sum up some consequences of solvability of

(1.3). In particular, we prove that if M ≥ 0, R solve (1.3), then

|A−1 − R| ≤ (M − I)|R|

holds for each A ∈ A. We do not give any applications of these results here, having

in mind writing another paper about these issues.

2. Auxiliary results. In the proofs to follow, we shall essentially use spectral

properties of nonnegative matrices that are summed up in the following two theorems.

The proofs can be found in Horn and Johnson [4] or Meyer [5].

Theorem 2.1. For a nonnegative square matrix G, the following assertions are

equivalent:

(i) ̺(G) < 1,

(ii) I − G is nonsingular and (I − G)−1 ≥ 0,

(iii) Gj → 0 as j → ∞,

(iv) Gx < x for some x > 0.

Moreover, if any of these conditions is met, then (I − G)−1 =
∑

∞

j=0
Gj.

Theorem 2.2. If A,B ∈ R
n×n satisfy |A| ≤ B, then ̺(A) ≤ ̺(|A|) ≤ ̺(B).

3. Characterization. In this section, we show that strong regularity of [Ac −

∆, Ac + ∆] is equivalent to solvability of the matrix inequality

M(I − |I − RAc| − |R|∆) ≥ I, (3.1)

where M,R ∈ R
n×n, and M is required to be nonnegative. Alternatively, we can also

write (3.1) as

M(I − G) ≥ I, (3.2)

where
G = |I − RAc| + |R|∆ (3.3)

is a nonnegative matrix. We have this result.
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Theorem 3.1. An interval matrix A = [Ac − ∆, Ac + ∆] is strongly regular if

and only if the inequality (3.1) has a solution M , R, where M ≥ 0.

Proof. Let (3.1) have a solution M ≥ 0 and R. Then for G given by (3.3), we

have (3.2), which can be written as

I + MG ≤ M.

Postmultiplying this inequality by G and adding I to both sides we obtain

I + G + MG2 ≤ I + MG ≤ M,

and by induction,

k∑

j=0

Gj + MGk+1 ≤ M

for k = 0, 1, 2, . . . In view of nonnegativity of M , this shows that the nonnegative

matrix series
∑

∞

j=0
Gj satisfies

∞∑

j=0

Gj ≤ M, (3.4)

hence it is convergent, so that Gj → 0, and consequently

̺(G) < 1, (3.5)

by Theorem 2.1. Now we have

I − RAc ≤ |I − RAc| ≤ G,

and hence, by Theorem 2.2,

̺(I − RAc) ≤ ̺(|I − RAc|) ≤ ̺(G) < 1. (3.6)

Since ̺(I − RAc) < 1, the matrix

RAc = I − (I − RAc) (3.7)

is nonsingular, which gives that both Ac and R are nonsingular. Moreover, (3.7) and

Theorem 2.1 imply that

A−1
c R−1 = (RAc)

−1 =

∞∑

j=0

(I − RAc)
j .
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Hence,

A−1
c =

∞∑

j=0

(I − RAc)
jR,

and thus also

|A−1
c | ≤

∞∑

j=0

|I − RAc|
j |R| = (I − |I − RAc|)

−1|R|

(because
∑

∞

j=0
|I − RAc|

j is again convergent by (3.6)), and

|A−1
c |∆ ≤ (I − |I − RAc|)

−1|R|∆. (3.8)

Since ̺(G) < 1, Theorem 2.1 implies existence of an x > 0 satisfying Gx < x, i.e.,

|I − RAc|x + |R|∆x < x,

hence

|R|∆x < (I − |I − RAc|)x

and

(I − |I − RAc|)
−1|R|∆x < x (3.9)

in view of (3.6). Now, from (3.8) and (3.9), we finally obtain

|A−1
c |∆x ≤ (I − |I − RAc|)

−1|R|∆x < x,

where x > 0, hence ̺(|A−1
c |∆) < 1 by Theorem 2.1, which proves that A is strongly

regular. Conversely, if A is strongly regular, then (I − |A−1
c |∆)−1 ≥ 0 again by

Theorem 2.1 and

M0 = (I − |A−1
c |∆)−1 ≥ 0, (3.10)

R0 = A−1
c (3.11)

satisfy (3.1) as an equation.

Thus, we have also proved the following result.

Theorem 3.2. If the inequality (3.1) has a solution M ≥ 0 and R, then it also

has a particular solution M0 ≥ 0 and R0 given by (3.10) and (3.11).
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4. Consequences. Below, we list some consequences of solvability of the in-

equality (3.1).

Theorem 4.1. Let (3.1) have a solution M ≥ 0 and R. Then we have:

(a) ̺(|I − RAc| + |R|∆) < 1,

(b) (I − |I − RAc| − |R|∆)−1 ≤ M ,

(c) ̺(I − RAc) < 1,

(d) R is nonsingular,

(e) [R−1 − ∆, R−1 + ∆] is strongly regular,

(f) each A ∈ [Ac − ∆, Ac + ∆] is nonsingular and A−1 =
∑

∞

j=0
(I − RA)jR,

(g) |A−1 − R| ≤ (M − I)|R| for each A ∈ A.

Proof. The assertions (a), (c) and (d) have been proved in the proof of Theorem

3.1, and (b) is a consequence of (3.4). From (a), it follows that ̺(|R|∆) ≤ ̺(|I −

RAc| + |R|∆) < 1, which means that [R−1 − ∆, R−1 + ∆] is strongly regular by

definition, thus proving (e). To prove the remaining two assertions, take an A ∈ A.

Then it satisfies the identity

RA = I − (I − RA) (4.1)

and since

|I − RA| = |I − RAc + R(Ac − A)| ≤ |I − RAc| + |R|∆ = G, (4.2)

there holds

̺(I − RA) ≤ ̺(G) < 1

by Theorem 2.2 and (3.5), so that (4.1) shows that RA is nonsingular, hence A is

nonsingular. Next, from (4.1), it follows

A−1R−1 =

∞∑

j=0

(I − RA)j ,

hence

A−1 =
∞∑

j=0

(I − RA)jR, (4.3)

which proves (f). Finally, from (4.3), (4.2) and (3.4), we have that

|A−1 − R| ≤

∞∑

j=1

(|I − RAc| + |R|∆)j |R| = (

∞∑

j=0

Gj − I)|R| ≤ (M − I)|R|,

which concludes the proof.
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We conclude this note by describing how the results presented here can be used

to gather information about the inverse interval matrix. A square interval matrix A

is called regular if each A ∈ A is nonsingular; a strongly regular interval matrix is

regular (see Beeck [1]). For a regular interval matrix A, its inverse interval matrix

A−1 is defined as the narrowest interval matrix containing the set {A−1 | A ∈ A }.

Computing the inverse interval matrix is NP-hard (see Coxson [2]). Therefore, in

practical computations we usually resort to enclosures of the inverse, i.e., to inter-

val matrices containing A−1, but not necessarily the minimal ones with respect to

inclusion. The assertion (g) of Theorem 4.1 says that if M ≥ 0 and R solve (3.1),

then

[R − (M − I)|R|, R + (M − I)|R|]

is an enclosure of [Ac − ∆, Ac + ∆]−1.
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