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ON THE GAPS IN THE SET OF EXPONENTS OF BOOLEAN
PRIMITIVE CIRCULANT MATRICES *

MARIBEL |. BUENOT AND SUSANA FURTADO

Abstract. In this paper, we consider the problem of describing the iplesexponents of boolean primitive
circulant matrices. We give a conjecture for the possiblé xponents and prove this conjecture in several cases.
In particular, we consider in greater detail the case of megrivhose generating vector has three nonzero entries.
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1. Introduction. A Boolean matrixs a matrix over the binary Boolean algelfa 1}.
An n-by-n Boolean matrixC' is said to becirculantif each row ofC (except the first one) is
obtained from the preceding row by shifting the elementdicgity 1 column to the right. In
other words, the entries of a circulant matéix= (c;;) are related in the mannet;; ; =
¢ij—1,where0 < i <n-2,0<j<n-—1,and the subscripts are computed modulo
The first row ofC is called thegenerating vectarHere and throughout, we number the rows
and columns of am-by-n matrix from0 ton — 1.

The set of alln-by-n Boolean circulant matrices forms a multiplicative comntivia
semigroupC’,, with |C,,| = 2™ [3, 8]. In 1974, K.H. Kim-Buttler and J.R. Krabill [6], and S.
Schwarz [9] investigated this semigroup thoroughly.

An n-by-n Boolean matrixC is said to beprimitive if there exists a positive integér
such thaC* = J,,, whereJ,, is then-by-n matrix whose entries are all ones and the product
is computed in the algebrg), 1}. The smallest such is called theexponenbf C, and we
denote it byexp(C). Let us also denote b, the se{exp(C) : C € C,,, C'is primitive}.

In [1], we stated the following question: Given a positiveegern, what is the set,,?

The previous question can easily be restated in terms afilaimt graphs or bases for
finite cyclic groups, as we show next.
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Let C be a Boolean primitive circulant matrix, and |8tbe the set of positions cor-
responding to the nonzero entries in the generating vedtar,owvhere the columns are
counted starting with zero instead of or@.is the adjacency matrix of the circulant digraph
Cay(Zy, S). The vertex set of this graph i, and there is an arc fromto u + a (modn)
for everyu € Z,, and everys € S. A digraphD is calledprimitive if there exists a positive
integerk such that for each ordered pairb of vertices, there is a directed walk fromto b
of lengthk in D. The smallest such integéris called theexponenbf the primitive digraph
D. Thus, a circulant digraph is primitive if and only if its adgncy matrix is. Moreover, if
they are primitive, they have the same exponent. Therefioging the sett,, is equivalent
to finding the possible exponents of circulant digraphs déon.

Let S be a nonempty subset of the additive gr@dup For a positive integek, we denote
by kS the set given by

kES={s1+ss+--+5s,:5 €S} CZ,.

The setkS is called thek-fold sumsebf S.

The sefS is said to be dasisfor Z,, if there exists a positive integérsuch thakS = Z,,.
The smallest such is called theorder of .S, denoted by ord¢ss). It is well known that the
setS = {so, s1,-.., 8-} C Zy is abasis if and only igcd(s; — sg, ..., s — sg,n) = 1. We
denote bys,, the set of all bases fdf,, .

In [1], we proved that, given a matrix in C,,, if S is the set of positions corresponding
to the nonzero entries in the generating vecto€'othenC is primitive if and only if S is a
basis folZ,,. Moreover, ifC'is primitive, therexp(C') = order(.S). Therefore, finding the set
E,, is equivalent to finding the possible orders of bases forylakagroupZ,,. This question
is quite interesting by itself.

Note that the only primitive matrix its is the 2-by-2 matrix with all entries equal to
1, so E; = {1}. From now on, we assume that> 3. In [1], we presented a conjecture
concerning the possible exponents attainedvlyy-n Boolean primitive circulant matrices
which we consider here in greater detail.

Given a positive integet > 3, let ¢ be the smallest positive integer such that

2] < | 2] +e (L)

We callc thecritical point of n and we denote it by,,. Clearly,c,, < | %] + 1.

CONJECTUREL. If C'is ann-by-n Boolean primitive circulant matrix, then either

exp(C) = BJ +E, 1.2)
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forsomej € {1,2,...,¢, — 1} andk € {-1,0,1,...,5 — 2}, 0r

n

exp(C) < { J +en — 2. (1.3)

Cn
Moreover, for everyn < |n/c,]| + ¢, — 2, there exists a matrix whose exponentris

In the literature, the problem of computing all possible @xgnts attained by circulant
primitive matrices or, equivalently, by circulant digrapthas been considered. In [2] and
[11], it is shown that if a circulant matri€’' is primitive, then its exponent is either— 1,
[n/2], [n/2] — 1 or does not exceeftr/3] + 1. Matrices with exponents — 1, |n/2],
[n/2| — 1 are also characterized. All these results can be immeyliateislated into results
about the possible orders of bases for a finite cyclic group.recent preprint [5], the authors
prove that ifS is a basis fofZ,, of order greater thah for some positive integék, then there
existsdy, such that the order of is within dj, of n/I for some integet € [1, k]. Notice that
the result we present in Conjecture 1 produces gaps in thed eeders which are larger than
the ones encountered in [5]. Moreover, we show that our gapgld be maximal. In [5],
the authors also prove the existence of the additional[gapt| + 3, [n/3] — 2] although
they do not use the techniques presented in the same papdd] $& a detailed proof of the
existence of such gap.

In this paper, we give partial results related with Conjeetuand give a class of matrices
for which it is shown that the conjecture holds. All the reésih the paper are given in terms
of bases fofZ,, since the equivalent formulation of the problem in thesmeresulted more
fruitful than the original statement of the problem in terofisnatrices.

In Section 2, we give the explicit value of the critical point as well as some of its
interesting properties. In Section 3, we define Maximal Galired Gaps and show that the
set of gaps that follow from Conjecture 1 are maximal. In Bec, we introduce some
concepts and give some results concerning the order of gidmeses fo#Z,,. In Section 5,
we give some results about the order of baseZfomwith cardinality3. These results will
allow us to prove Conjecture 1 for some classes of base€s,fan Section 6. In Section 7,
we extend some of the results given in Sections 5 and 6 to gelbbases fo#Z,,. Finally, in
Section 8, we present the conclusions as well as some opstianse

2. The critical point. In this section, we prove that, is either| ¢/n] or | ¢/n] + 1.
We first show that,, < | ¢/n| + 1.

LEMMA 2.1. Letn be a positive integer and= | &/n| . Then

n n
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Proof. Suppose that

LLJELLJHH. 2.2)

We have
n=(r+2)m-+t,

wherem = L—%J and0 <t < r + 2. Then (2.2) is equivalent to

t
{ +mJ >r+1

r+1

which implies that
(r+1)2—t<m,
or, equivalently, multiplying by- 4+ 2 and adding,
(r+12(r+2)—tr+2)+t<n.
Let us show that
(r+12<(r+12(r+2) —tr+2)+t (2.3)
which leads to a contradiction, as< (r + 1)3. Notice that
(r+12—tlr+1)>(r+1)>—(r+1)(r+1) =0,
which implies (2.3)00
Next we show that,, > | ¢/n].

LEMMA 2.2. Letn be a positive integer and = | ¢/n] . Letp be an integer such that
0<p<r. Then

n n
> 1] v ey

Proof. Suppose that

LﬁJ*W m
(o

Then
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n
p

(] loe[2)-+-

We will show thatq J — p) (p + 1) > n, which gives a contradiction. Thus, (2.4) holds.

We have

where the last inequality follows becauh@J —p?—2p>0,as

n>p+1P=p>+3p> +3p+1>p>+ 2 +p. O

It follows from Lemmas 2.1 and 2.2 that the smallessuch that{iJ < LLJ +cp
is either| &/n| or | ¢/n| + 1.

THEOREM2.3. Letn be a positive integer and= | ¢/n] . If

L;J < L"—IrflJ tr (2:5)

thenc,, = | &/n|, otherwisec,, = | &/n| + 1.

We now give some properties of that will be useful later.
LEMMA 2.4.Letn be a positive integer. Then< (c,, + 1)%(c, — 1).

Proof. If n = (¢, + 1)%(¢,, — 1) + k for some positive integet, then

n 9 k 9 k-1 n
+cp=c, +cp,—1+ <c +cn—1+ =|—1,
cn+1 c, +1 Cn Cn

which is a contradiction by the definition ef . O

Before presenting the next results we introduce the folowiotation: Ifa andb are
integers, withb > a, then[a, b] denotes the set of integers in the real intefwab]. Moreover,
[a] denotes the set containing just the integelf b < a, then[a, b] = @.

The next lemma shows that, df, > 3, the interval[[n/c,| + 2, [n/(c, — 1)] — 1] is
nonempty if and only if» = 14 orn > 16.

LEMMA 2.5. Letn be a positive integer such that, > 3. Then|n/(c, — 1)] >
[n/cn] + 3 ifand only ifn = 14 or n > 16.
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Proof. If ¢,, = 3 or ¢, = 4, then the result can be verified by a direct computation.
Suppose that, > 5. Letk — (¢, — 1)3. By Theorem 2.3k > 0. Note that

{ L VJ+3 (2.6)

cn — 1] Cn,

Z +5_Cn~
cp—1 | Cn

Since{ k J — V“J >0, if ¢, > 5, then the result holdél

if and only if

cn—1 Cn

The next lemma gives an upper bound for the length of the\jatiﬂcﬂ , {LH .

cn—1

LEMMA 2.6. Letn be a positive integer such that > 3.

o If ¢, = |¥n],then

n n
- — <ec,+3
Lcn — 1] | Cn
o If ¢, = |Yn| +1andn =c3 — 1, then
n _ =c, + 2.
lcn — 1] | cn |
o If ¢, = |¥n|] +1andn < ¢ — 2, then
r . <c,+1
len—1]  |en

Proof. Letn = pc,, + g, wherep = |n/c, | and0 < ¢ < ¢,. Notice that
e M e @)
cn— 1 Cn cp — 1
Suppose that,, = | ¢/n]. By Lemma2.4n < (¢, + 1)?(¢,, — 1), and therefore,

{nJ Sci—i—cn—Q.

Cn

Hence,

mn

which implies that

VHQJ <cn+3.
cp—1
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Suppose that, = [ ¢/n] + 1. Then(c, — 1) <n<c - 1. lfn=¢ -1,

—LnJ—cil, g=cn—1 and p+qg=c2 +c,—2=(c, —1)(cn +2).

VHQJ e

Cn —
If c, = [¢/n] +1anded — ¢, <n <2 —1,thenp=c2 —1andq < ¢, — 2. Therefore,
pPta<c—l+cn—2

which implies

{ijqJ <cp+1.
Ccp — 1

If ¢, = |¢n] +1andn <c — ¢, —1,then
p—i—qgci—Q—&-cn—l,

which implies

LerqJ <ec,+1. 0O
¢, —1
LEMMA 2.7. Letn be a positive integer such that > 3. Then

e ifc, = |¥/n], thende, < |n/c,] +3;
o ifc, =|¥n]+1andn =c3 — 1, then3c, < [n/c,]| + 2.

Proof. If ¢, = | /n], thenn > ¢2, which implies that

{HJ > 2 > de, — 3,

Cn

forc, >3.1fc, = | ¥n] +1andn = ¢ — 1, then

{HJ =c2 —12>3c, -2,

Cn

fore, > 3.0
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3. Maximal generalized gaps.Let n be a positive integer. Let,, = {order(S) : S €
Sn}. It is well known [2] thatE,, C [1,n — 1]. We call agapin E,, a nonempty interval
A C[1,n—1]suchthatAn E,, = 0. We say thata gag in E,, is maximal ifA'N E,, # 0
for any intervalA’ C [1,n — 1], with A strictly contained inA’.

For each positive integerand eacly € {1,2,...,¢, — 1}, if

let
)

Clearly, if Conjecture 1 is true anB; ,, is nonempty,B; ,, is a gap in&,. Though the
intervals; ,, are not necessarily maximal gapsh, the next theorem shows that, for each
positive integey, there is an integet, with j < ¢,,—1, such thatB; ,, is a maximal gap it&,, .
Here, we use the result that lif> 1 is a divisor ofn, then ordef{0,1,b}) = || +b—2,
which is a particular case of Corollary 5.4. dfe Z,,, we denote bya) the cyclic group
generated by in Z,,.

otherwise letB; ,, = 0.

THEOREM 3.1. For each positive integef, there is an integen, with j < ¢,, — 1, such
that B; ,, is a maximal gap irE,,.

Proof. We show that for eaclithere is an integet, with j < ¢,, — 1, and two bases for
Z,, sayS; andSs, such that ord€iS;) = L%J + 7 — 1 and ordefSs) = EJ —1.

Letn = j(j + 1)(j + 3). First, we show that,, — 1 > j. If j = 1, thenn = 8 and
¢, = 3.1f j > 1,thenn — (j + 1)® = j2 — 1 > 0, which implies thaty/n > j + 1. Then
en—12> | ¥/n]—1> ¥n—-2> j—1,where the first inequality follows from Theorem 2.3.

Sincej+1 dividesn, by Corollary 5.4, forS; = {0, 1, j+1}, order(S;) = L%J +j5—1.
Ifji>1letSe=(G+DGE+3) U1+ {({F+1)(5+3))). Then, fork > 0,

k
RSy = (i +((G+ 1) +3)).
i=1
If j =1,letSy = {0,1}. Inany case, itis easy to see that o) = (j + 1)(j +3) — 1 =
H ~ 1.0

J

4. Order of bases forZ,,. LetT be a subset of the additive grodp, and letq € Z,,.
We defineg + T ={g+t:teT}andg+«T = {qt : t € T'}.
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Clearly, if S C Z,, andq € Z,,, S is a basis foZ,, if and only if ¢ + S is a basis foZ,,.
Moreover, if S is a basis, ordés) = order(q + 5).

LEMMA 4.1. Letn and g be positive integers. If € S, andged(q,n) = 1, then
g S €S, andorderS) = orderq x S).

Proof. It is enough to show that, for all > 1, |g * kS| = |kS|, ask(q * S) = ¢ * (kS).
LetT = kS. Clearly, |g x T| < |T|. Now suppose that;,to € T with t; # t5. Suppose
thatqt; = qt2 (modn). Then(t; — t2)g = 0 (modn), or equivalently(t; — t2)g = kn for
some positive integek. Sinceged(g,n) = 1,t; — to = 0 (modn). As0 < t1,t2 < n, then
t; — to = 0, which is a contradiction. Thugg = T'| > |T'|, which completes the proofl

We note that, iged(n, ¢) # 1, theng x S is not a basis foZ,,.

Let Sy,S, C Z,. We say thatS; and S, are equivalent, and we writg ~ S, if there
exist integerg;; andgs, whereged(q;,n) = 1, such thatSs = ¢2 + ¢1 * S;. Note that~ is
an equivalence relation. Clearly, from the observatiormvabhif S; € S,, andS; ~ S, then
Sy € S, and ordefS;) = order(Ss).

Note that ifS = {s1,2,...,8:} € Sy, thenS ~ {0,s5 — s1,...,s: — s1}. Therefore,
in what follows we assume thate S.

REMARK 1. LetS = {0,a} € S,,. Then ordetS) = n — 1 sinceS ~ {0,1}, asa is a
unit for Z,,.

We now introduce some definitions that will be used in the sextions.

LetS = {0,s1,...,8:} € S,. Then any element € Z,, can be expressed ass; +
---+x8; (modn), for some nonnegative integers, . . . , x;. Moreover, ifg # 0, the smallest
k such thay € kS is the minimume; +- - -+, among all the solutiong&e, . .., x¢), x; > 0,
toxysy + -+ + x¢s¢ = g (Modn).

DEFINITION 4.2. LetS = {0, s1,...,8:} € S, andq € Z,. If ¢ = 0, then we define
exp(q; S,n) = 1; otherwise we define

exp(g; S,n) ;== min{xy + -+ x4 : 181 + - -+ + x8¢ = ¢ (Mmodn), z; > 0}.

Clearly, if S is a basis fofZ,, and0 € S, ordel(.S) = max{exp(q; S,n) : ¢ € Z,}.

DEFINITION 4.3. LetS = {0, s1,...,8:} € S, ¢ € Z,, andk be a positive integer. If
q # 0, we say thay is (k; S, n)-periodic if k is the smallest nonnegative integer for which
there are nonnegative integers . . ., x; satisfying

1+ -+ x =exp(q; S,n) and x181 + -+ x8; = q + kn.

If ¢ = 0, we say thalg is (0; S,n)-periodic. We say that is K-periodic if there exist
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(K; S, n)-periodic elements irZ,, and there are ngk; S, n)-periodic elements itZ,, for
k> K.

REMARK 2. If the minimum nonzero element of a basi®f Z,,, sayb, is not1, thenS
is not0-periodic as any’, with 0 < " < b, is not(0; S, n)-periodic.

We finish this section with the following lemma.

LEMMA 4.4. [2]Let S € S, andm be a divisor ofn. Suppose thab contains an
element of ordefn. Then

order(S) < — +m —2.

By Remark 1, all bases f&,,, n > 3, with cardinality2 have orden — 1, and therefore,
they satisfy Conjecture 1. In the next section we focus oedasth cardinality3.

5. Order of bases forZ,, with cardinality 3. By .S, , we denote the set of all bases for
Z,, with cardinalityr.

For a given positive integet, we definep,, as follows:

» { [n/2] +1, ifnisodd

[n/2], if n is even. (5.1)

LEmMmMA 5.1. Let S = {0, 1,52} € Sps. If ged(s1,n) = 1 or ged(se,n) = 1 or
ged(se — s1,m) = 1, then there exists € Z,, such that < p,, andS ~ {0,1,b}.

Proof. Without loss of generality, suppose that either(s;,n) = 1 or ged(s2 —
s1,n) = 1. In the first casey; is a unitinZ,, and

S~ S =578 =1{0,1,57"s2}.
If s71s2 < [n/2], the claim holds withh = s] *so. If s7 sy > [n/2], then
S~Sy=1-05; :{071,n+1—sf152}
and the claim holds with + 1 — s;lsz. In the second case, that ig:d(s2 — s1,n) = 1, let
S1=-51+5={0,89—s1,n— 81}

ThenS ~ S, = §'Sy, wheres’ = (s3 — s1)~%. Now the argument used above applies to
show the result]

We note that ifgcd(s1,n) # 1, ged(s2,n) # 1 andged(se — s1,m) # 1 and one ofsy,
Sg,82 — 81, — 81, — S92, M — So + s1 IS @ product of a divisor of, and a unit inZ,,, then
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there exist, b € Z,, such that is a divisor ofn, a # 1 andS = {0, s1,s2} ~ {0,a,b}. TO
see this, assume, without loss of generality, that s,. Note that

S~51:—81+S:{O,n—31,52—51}
NSQ:—32+S:{O,n—|—81—82,n—82}.

Suppose that; is a product of a divisor ofi and a unit. The proof is analogous in the other
mentioned cases, eventually by considerfigor S instead ofS. If s1|n, then the result is
clear; otherwise, = d;t1, whered; |n andged(n,¢1) = 1. Then

S ~ tflS = {O,dl,ﬁflsg},
and the result follows.

We were not able to prove that every baSis= 5, 3 that is not equivalent to a basis
of the form{0, 1, b} is equivalent to a basif), a, b} with a # 1 a divisor ofn. However,
numerical experiments show that if these bases exist, tteesage.

THEOREMb.2. Let S = {0, a,b} € S, 3, Wherea is a divisor ofn anda # 1. Then

a—1<orde(S) < —+a-—2.

n
a
Proof. The inequality on the right follows from Lemma 4.4.

Consider the quotient map: Z,, — Z,. Notice thatl’ = f(S) = {0, f(b)}. SinceS'is
abasis and dividesn, gcd(a, b) = 1 andf(b) # 0. ThereforeI' is a basis foZ,. Moreover,
by Remark 1, ordéf") = a — 1. Since ordefS) > orde(T'), we get ordefS) > a — 1.0

>From now on, we consider baséf S, 3 of the form{0,1,b}. For convenience, we
write exp(q; b, n) instead okxp(g; S, n); we also say thaf is 0-periodic instead of0; S, n)-
periodic.

If S ={0,1,b} € S, 3, then, considering the standard addition and multiplocatn Z,
fork > 1,

kS =[0,k]Ub,b+k—1JU[2b,2b+ k —2]U---U[(k —1)b, (k — 1)b+ 1] U [kb].
Forj=0,1,...,k,let

Ik = [jb, jb+k — j]. (5.2)

THEOREMb5.3. LetS = {0,1,b} € S, 5. Then

{%J < orderS) < {%J +b—2.
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Proof. Letn = mb +t, with m = [%| and0 < ¢ < b. Considering the standard

addition and multiplication itZ, the largest element ikS is kb. Thus, ifk = order(.S), then
kb>n—1=mb+t— 1, which implies the inequality on the left.

We havely,—1 U 1 ,—1 = [0,2b — 2] C (b—1)S. Moreover,{0,b,...,(m — 1)b} C
(m —1)S. Thus,

(b=1) 4+ (m—1))8 = (b—1)S + (m —1)S = Z,.

which implies the inequality on the rigHf.
We now focus or)-periodic bases a§, 3.

COROLLARY 5.4.LetS = {0,1,b} € Sy, 3. If S is0-periodic, then

order(S) = [%J +b—2.

Proof. SupposeS = Z,. Let jo = |%| — 1. Note thatk > j,. SincesS is 0-periodic,
necessarilyjob, job + b — 1] C I;, &, which implies that

(1-)re= (13102 3]

thatis,k > [%| +b—2. Then orde(S) > | 2| +b — 2. Since, by Theorem 5.3, ordéf) <
| 2| + b — 2, the result followsO

We next characterize th@periodic bases irb,, 5. Note that, by Remark 2, we may
assume that these bases are of the fon1, b}. First, we add a technical lemma.

It is clear that ifb andw are positive integerswith b > 2, then the minimume + y
among all the solutions of + by = w, with z, y > 0, is obtained whemy isyo = [ % |. Since
z = w — by, the minimum value ofc + y is zo + yo = w — [ %] (b — 1). Note also that
x9 = w — by < b. We then have the following lemma.

LEMMA 5.5.Letb, q € Z,, withb > 2 andq # 0. Then

exp(q;b,n) = min{q+/m— (b—1) V*f”J k> 0}.

Note that

exp(g;b,n) < q—(b—1) [%J <q,
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where the first inequality follows from Lemma 5.5.

LEMMA 5.6. Let S = {0,1,b} € S, 3. ThenS is 0-periodic if and only if eitherb
dividesn or

(b—1) Q%J + 1) <n. (5.3)

Proof. Suppose tha$ is 0-periodic and is not a divisor ofn. Letq = | %] b — 1. By
Lemma 5.5 and Definition 4.3,

g— (-1 [%J §q+n(b1){

nt qJ . (5.4)
Asn+q=2[%|b+ (t—1), for somel < ¢ < b, it follows that || = 2| %] . Also,
|4] = |#]| — 1. Thus, (5.4) is equivalent to (5.3).

To prove the converse note that, from Lemma 5.5,dfvidesn, S is 0-periodic, as, for
anyk > 0,
k
ken — (b— 1)7” > 0.

Now suppose that (5.3) holds. According to Lemma 5.5, we testow that, for any > 0
and anyg € Z,,\{0},

g—(b—1) [%J <q+lm—(b—1){ .

q+kn q
(b—1) Q - J - M) < kn.
Because of (5.3), it is enough to show that
q+kn q n
{ b J‘ HE(HED)
Forn=|%|b+t0<t<b,

kn+q=k[%Jb+kt+q= (kgjﬂ%hk)bw(t—bw(q— HDE

q—l—knJ

or equivalently,

As, k(t —b) + (¢ — | L] b) < b, then

5 g+ g 5

completing the proofl

THEOREMb5.7. LetS = {0, 1,b} € S, 3. ThenS is 0-periodic if and only if one of the
following conditions is satisfied:
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i) bisadivisor ofn;
i) b= m + 1, for some nonnegative integgrin this case,j is unique and is given
by |n/b] + 1.
Proof. If b is a divisor ofn, then Lemma 5.6 implies th& is 0-periodic. Now suppose

thatb is not a divisor ofn. Leti = [n/b] andn = bi + ¢, with 0 < t < b. If t < i then
b= |%], otherwiseb < |%]. Sincen = (i + 1)b + (¢ — b) andt — b < 0, it follows that

| -2 | < b. Therefore,
n n
<|=1.
LHLIJ <bs |7

i+1
Suppose thai = L%J + 1. Since

we have

Therefore, by Lemma 5.6 is 0-periodic.

Now suppose thatZ | > b > L%J +2. Then

n
— <b-1
t+1

and, by Lemma 5.6$ is not0-periodic.O
6. The conjecture for bases inS,, 3. In this section, we prove the following result.

THEOREM 6.1. Let S € S, 3, n > 3. Conjecture 1 holds if5 satisfies one of the
following conditions:

i) Sis equivalent td{0, a, b}, wherea is a divisor ofn anda > ¢,;
i) Sisequivalenttd0, 1,b} for someb < min {pn, {ﬁJ - 1} ;
iif) Sis equivalent to &-periodic basis.

The rest of this section is dedicated to the proof of Theorelm 6

We first observe that, in generaliind;j are positive numbers, then
n . n .
-+ < =<4+
? J
can be written as

(i =3j)(n —1ij) >0,
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which is equivalent to
< mln{u—,} V> max{z,f}.
1 1

LEMMA 6.2.LetS = {0,a,b} € Sy, 3, Wherea is a divisor ofn. such thata > ¢,,. Then
eitherorder(S) < L%J +ec, —20r
n

" 1 <orde(s) < X 4j—2 (6.1)
J J
forsomej € {1,2,...,¢, — 1}.

Proof. Note thatn # 3. If n = 4 thenc¢,, = a = 2 and ordefS) = 2, which implies
that orde(S) < L%J + ¢, — 2. If n = 8 thene¢,, = 3 anda = 4; a direct computation

considering all possible values bf namely1, 3,5, 7, shows that ordéS) = 4 (in fact, in
this caseS ~ {0,1,b'} for someb’ € Z,,). Then (6.1) holds witlj = 2. Now suppose that

n # 4 andn # 8. Suppose that ordes) > LﬂJ + ¢, — 2. By Theorem 5.2,

a—1<orde(S) < —+a—2.

Then

n n
— +cp < —+a.
Cn a

Taking into account the observation before this lemma aedfdlet that forn # 3,4, 8,
¢n < njcy, itfollows thata > n/c,, as, by hypothesis; > ¢,,. Then, because dividesn,
a = 2 forsomei € {2,3,...,¢, — 1}. Then (6.1) holds witly = .0

LEMMA 6.3. LetS = {0,1,b} € S, 3, withd < p,. If S is 0-periodic andb >
[n/cn] + 2, then there existé € [2, ¢, — 1] such that

i+ {%J — 3 < orde(S) <i+ {%J o9,

Proof. Note thatn > 3 andn # 8. If b is a divisor ofn, thenb = n/i for some
i € [2,¢, — 1]. By Corollary 5.4, ordeS) = & +i — 2.

If bis not a divisor ofn, then, taking into account Theorem 545 |n/i| + 1 for some
i € [2,¢, —1]. Letm = [n/i] andn = mi +t,0 < ¢t < i. By Corollary 5.4,

o -2 2] 1[5 <211




Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 20, pp. 640-660, October 2010

On the Exponent of Boolean Primitive Circulant Matrices 655

Ifm+1>1:—t then

t—1
=—1.
|m+1 |
If m+1<1:—t, then
fi
) Y
|m+1 |

asi—t<i<e—1<[2]-1<b-3<2 =2m+2 Notethat, < | 2| for
n # 3,8. Thus, the result followd]

LEMMA 6.4, LetS = {0,1,b} € S, 3. Ifb € [cn +1, {%J + 1} , thenorder(S) <
LLJ +cp— 2.

Proof. By Theorem 5.3, ordés) < | % | + b — 2. Thus, it is enough to show that

b+ [%J <ent {”J . 6.2)

n

Taking into account the observation before Lemma 6.2, ik min{b, 7 } then
n
b
which implies (6.2), as,, is an integer. Since

. n e <b< {ﬂJ if ¢,, is not a divisor ofn
cn<m1n{b,f} & Cn i . o
b ¢ <b< 2 —1 fif ¢, isadivisor ofn

b+ 3] b+ T <t

b n

b

we now need to show that (6.2) holds if eitlies {ﬂJ +1orb =+ andc, dividesn. The

Cn

latter is immediate. For the first case, note that
n
2] +1

as, ifn = LﬂJ cn +t,with 0 <t < ¢,, then

et (2] ) (e 2])

With0 <t — ¢+ | 2] +1< | 2] +1.0

:Cn_la

n

Next we give a result that allows us to show that the conjechalds ifS = {0, 1, b},
with b < p, andb € [|n/c,| +2, [n/(cn, —1)] — 1]. Note that|n/c, | + 2 < p,, if and only
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if ¢, > 3. Also, by Lemma 2.5, for,, > 3 the previous interval is nonempty if and only if
n = 14 orn > 16. Finally, observe thaltn/b| = ¢, — 1.

We think the method used to prove the conjecture in this caghtrbe generalizable to
the cases in which € [| " |, | ;=75 ] — 1], with 1 < k < ¢, — 3, when this interval is
nonempty. Some results presented in Section 2 will be used.

LEMMA 6.5. Letn be a positive integer such that > 3,b € |[ 2] +2,[ 5] -1
andt =n — (¢, — 1)b. If

VJ Fl<b-t, (6.3)

Cn
then eithere,, = | §/n|, orc, = | ¥n] + 1 andn = ¢3 — 1. Moreover3c,, < [n/c,| + 2.

Proof. Letm = ¢, — 1 andr = |n/c,] + ¢, — 2. First we show that if (6.3) holds, then

b= Lnn_lJ — 1. Suppose that < Lnn_lJ —2. Thent > 2(¢, — 1) and, taking into account

Lemma 2.6, we get

Cn — Cn

b—tg{ n 1J—2—2(cn—1)§ VJJFL

a contradiction. Now suppose thiat= {#J — 1 and (6.3) holds. Theh > ¢, — 1. If
¢, = | ¥/n] +1andn < ¢ — 2, then, taking into account Lemma 2.6,

b—tg{ n 1J—1—(cn—1)§{nJ+1,

Cn — Cn

a contradiction. Thus;, = |¥/n] orc, = [ ¢/n] + 1 andn = ¢3 — 1. Taking into account
Lemma 2.7, the result follow$l

LEMMA 6.6. LetS = {0,1,b} € S, 3, with¢,, > 3. Suppose that € [|n/c,| +
2,|n/(c, —1)] —1]. Then

order({0,1,b}) < VJ Y —2.

Cn

Proof. Note thath = 14 or n > 16 for the interval[|n/c, | + 2, [n/(¢, — 1)] — 1] not
to be empty. Let = LﬂJ + ¢, —2andn = (¢, — 1)b + t for some0 < ¢ < b. Note that
t>cy,—1.Letm = |n/b] =c¢, — 1. Sincec, < |n/c,|,2m <.

Let

k1(i) =ib and kz(i) = i(b—1) +r, for i € {0,1,...,m},
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k(i) =ib—mn and ka(i) =i(b—1)+r—m, for ie {m+1,m+2,...,2m},
and
k1(i) =ib—2n and ka(i) = i(b—1)+r—2n, for i€ {2m+1,2m +2,...,3m}.

Consider the following intervals ii : I; = [k1(4), k2(i)], ¢ € {0,1,...,3m}. Note that, for
eachi =0,1,...,3m, ki1(i) < kg( ) andkq (i) < n. Also,0 < ki(i),fori =0,1,...,3m,
i # 2m+ 1. We haverS = |J/_, I; (modn). We next show that if

b—t<|n/en] +1, (6.4)
then{ ™, I, = Z,, (modn); if
[n/en] +1<b—t, (6.5)

thenU3m I, = Z,, (modn), which impliesrS = Z,,. Note tham < r and, by Lemma 6.5,
if (6.5) holds,3m < r.

Consider the intervalg;, i = 0,1, ..., 3m, ordered in the following way:
IO; 12m+17 Im+1; Ila I2m+27 InL+2a e 7I3ma IZma Im
Clearly, forj =1,2,...,m,

ki(5—1) <ki(m+j) < ki(j) andky (2m + j) < ki (m + j).

We show that, foreach=1,2,...,m,

() k2(m+j)+1>ki(5);
(i) ko(j —1)+ 1> ki(m + j) if (6.4) holds;
(i) k2(j— 1) +1>ki(2m+j) > ki(j — 1) if (6.5) holds;
(iv) ko(2m+7)+ 1> ki(m+ j)if (6.5) holds;
2(m

V) k

which completes the proof.

) >n-—1,
Condition (i) follows easily taking into account that + ¢ < | = J +1,as
n n n
_ _ <mn— _ _ — _ _ R _
t—(chn—1)b<n—(c,—1) (L”J —|—2) (n Cn L”J) + LnJ 2(cn — 1)

gcnl+VJ2(cn1) VJo,ﬁL
Cn

Cn

Condition (ii) follows from a simple calculation.
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Now suppose that (6.5) holds. The first inequality in cowditjiii) holds as

b—2t§\‘ n1J—1—2(Cn—1)§LHJ+1S{SJ+C7L_j7

C’ﬂ n

Cn

where the second inequality follows from Lemma 2.6. Sincehaxe shown in (i) that <
LiJ — ¢, +1,then

Cn
b> |n/c,] +1+1>2t,

which implies the second inequality.

Condition (iv) holds if2¢c,, + ¢t < [n/c,| + 2. By Lemma 6.5 eithet,, = | ¢/n| or
cn=|¥n]+1andn=c —1.1f ¢, = [ ¢/n], by Lemma 2.6,

t<{ i J—l—{nJ—1<cn+3—2.
cp — 1 Cn

Thus, taking into account Lemma 2.7,

%, +t<3c, +1< VJ 1o

Cn

If ¢, = | ¥/n] +1andn = ¢ — 1, by Lemma 2.6,

tg{ i J—l—vJ—1§cn+2—2.
Ccp — 1 Cn

By Lemma 2.7,

2en 4+t < 3¢, < VJ s

n

Finally, note that condition (v) is equivalentto< |n/c, ], which holds as;,, > 3 and
we have shown that+ ¢, < |n/c,| + 1.0

Proof of Theorem 6.1t follows from Lemma 6.2 that if condition i) holds then Cenj
ture 1 is satisfied.

Now suppose that = {0,1,b}, with b < p,. If b < ¢,, Conjecture 1 holds by
Theorem 5.3; ifb € [c, + 1, {%J + 1], the conjecture holds by Lemma 6.4; uf €

H%J + 2, Lﬂ"—_lJ — 1} thenc,, > 3 and Conjecture 1 holds by Lemma 6.6. Finally, if

b> |n/c,|+2andS is 0 -periodic, Conjecture 1 holds by Lemma 6.3. Since two edeinta
bases have the same order, the result follows.
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7. The conjecture for bases with cardinality larger than 3. In this section, we include
some partial results regarding Conjecture 1 for bases \aittiiicality larger than 3.

The next lemma shows that to prove Conjecture 1 it is enougionsider baseS§ for
Z,, such that

5| <maX{Z QW)J +1> cdln, d> |n/en) +cn—1}.

LEMMA 7.1. [7]Letn be a positive integer and € [2,n — 1]. LetS € S,, be such that
order(S) > r. Then

|S§max{3(ﬁ:ﬂ +1> - dn, d2r+1}.

COROLLARY 7.2. If S € S, is equivalent to{0, 1, s1,...,8,.} € Sy, with1 < s1 <
<o < s, then

\‘nJ <orde(S) < min { {nJ + 55 — 2} .
Sy i€{1,2,..7} | | 8s

Proof. The proof of the inequality on the left is analogous to the given in the proof
of the left inequality in Theorem 5.3. The inequality on tlight follows from the fact that
order(S) < min;{order({0, 1, s;})} and Theorem 5.31

We then have the following consequence of Corollary 7.2, e 6.4 and 6.6 and
Theorem 5.3.

COROLLARY 7.3. If S € S, is equivalent t0{0,1, s1,...,s,} and there exists €
{1,2,...,7} such thats; € [cn, {ﬁJ — 1} , thenS satisfies Conjecture 1.

COROLLARY 7.4.If S € S, is equivalent taS" = {0, s1,..., s} and S’ contains an
element of ordern, withm € {c,, ..., 2=}, thenS satisfies Conjecture 1.

Proof. By Lemma 4.4,

order(S) < — +m — 2.

n
m
Taking into account the observation before Lemma 6.2 i a divisor ofn such thatn €

{e,..., 2}, then +-m < 2 + ¢, which implies that™ +m < LﬂJ + ¢, and the result
follows.O
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8. Conclusions and open problemsGiven a positive integer. > 3, we defined the
critical pointc,, and conjectured that all intervals of the foftm/i| +:—1, [n/(i—1)| —2],
with 2 < i < ¢,, are gaps in the séi,, of orders of bases fdZ,,. It was already known that
bases with cardinalitg have orden — 1, and therefore, they satisfy our conjecture.

In this paper, we have proven some partial results regatisgs of cardinality and
larger. The main result is Theorem 23. However, there areynopen questions still to
answer. For bases with cardinaliyit needs to be proven that the conjecture holds when a
basisS is equivalent to{0, 1, b} with b € [|n/(¢, — 1)], pn], Wherep,, is defined in (5.1).
We think that in order to prove this result the concept of Kigaicity needs to be studied in
greater detail. If a basiS is equivalent to{0, a, b}, wherea is a divisor ofn, a # 1, itis
still an open question if the conjecture holds wher c¢,,. Though we did not show that all
bases foZ,, with cardinality3 are equivalent to a set of the forffi, 1, b} or {0, a, b}, where
a # 1is a divisor ofn, at least for almost all bases this seems to happen. If tixesebases
for Z,, which are not equivalent to sets of any of those two types¢timecture should also
be proven for them.

Finally, we have only proven that the conjecture holds foyepecific bases fd£,, with
cardinality larger thas, so there is a lot to be done concerning those bases.
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