
ELA
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Abstract. In this paper, we consider the problem of describing the possible exponents of boolean primitive
circulant matrices. We give a conjecture for the possible such exponents and prove this conjecture in several cases.
In particular, we consider in greater detail the case of matrices whose generating vector has three nonzero entries.
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1. Introduction. A Boolean matrixis a matrix over the binary Boolean algebra{0, 1}.
An n-by-n Boolean matrixC is said to becirculant if each row ofC (except the first one) is
obtained from the preceding row by shifting the elements cyclically 1 column to the right. In
other words, the entries of a circulant matrixC = (cij) are related in the manner:ci+1,j =

ci,j−1, where0 ≤ i ≤ n − 2, 0 ≤ j ≤ n − 1, and the subscripts are computed modulon.
The first row ofC is called thegenerating vector. Here and throughout, we number the rows
and columns of ann-by-n matrix from0 to n − 1.

The set of alln-by-n Boolean circulant matrices forms a multiplicative commutative
semigroupCn with |Cn| = 2n [3, 8]. In 1974, K.H. Kim-Buttler and J.R. Krabill [6], and S.
Schwarz [9] investigated this semigroup thoroughly.

An n-by-n Boolean matrixC is said to beprimitive if there exists a positive integerk
such thatCk = Jn, whereJn is then-by-n matrix whose entries are all ones and the product
is computed in the algebra{0, 1}. The smallest suchk is called theexponentof C, and we
denote it byexp(C). Let us also denote byEn the set{exp(C) : C ∈ Cn, C is primitive}.

In [1], we stated the following question: Given a positive integern, what is the setEn?

The previous question can easily be restated in terms of circulant graphs or bases for
finite cyclic groups, as we show next.
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Let C be a Boolean primitive circulant matrix, and letS be the set of positions cor-
responding to the nonzero entries in the generating vector of C, where the columns are
counted starting with zero instead of one.C is the adjacency matrix of the circulant digraph
Cay(Zn, S). The vertex set of this graph isZn and there is an arc fromu to u + a (modn)

for everyu ∈ Zn and everya ∈ S. A digraphD is calledprimitive if there exists a positive
integerk such that for each ordered paira, b of vertices, there is a directed walk froma to b

of lengthk in D. The smallest such integerk is called theexponentof the primitive digraph
D. Thus, a circulant digraph is primitive if and only if its adjacency matrix is. Moreover, if
they are primitive, they have the same exponent. Therefore,finding the setEn is equivalent
to finding the possible exponents of circulant digraphs of ordern.

Let S be a nonempty subset of the additive groupZn. For a positive integerk, we denote
by kS the set given by

kS = {s1 + s2 + · · · + sk : si ∈ S} ⊂ Zn.

The setkS is called thek-fold sumsetof S.

The setS is said to be abasisfor Zn if there exists a positive integerk such thatkS = Zn.
The smallest suchk is called theorder of S, denoted by order(S). It is well known that the
setS = {s0, s1, . . . , sr} ⊂ Zn is a basis if and only ifgcd(s1 − s0, . . . , sr − s0, n) = 1. We
denote bySn the set of all bases forZn.

In [1], we proved that, given a matrixC in Cn, if S is the set of positions corresponding
to the nonzero entries in the generating vector ofC, thenC is primitive if and only ifS is a
basis forZn. Moreover, ifC is primitive, thenexp(C) = order(S). Therefore, finding the set
En is equivalent to finding the possible orders of bases for the cyclic groupZn. This question
is quite interesting by itself.

Note that the only primitive matrix inC2 is the2-by-2 matrix with all entries equal to
1, soE2 = {1}. From now on, we assume thatn ≥ 3. In [1], we presented a conjecture
concerning the possible exponents attained byn-by-n Boolean primitive circulant matrices
which we consider here in greater detail.

Given a positive integern ≥ 3, let c be the smallest positive integer such that

⌊n

c

⌋

<

⌊

n

c + 1

⌋

+ c. (1.1)

We callc thecritical point of n and we denote it bycn. Clearly,cn ≤
⌊

n
2

⌋

+ 1.

CONJECTURE1. If C is ann-by-n Boolean primitive circulant matrix, then either

exp(C) =

⌊

n

j

⌋

+ k, (1.2)
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for somej ∈ {1, 2, . . . , cn − 1} andk ∈ {−1, 0, 1, . . . , j − 2}, or

exp(C) ≤
⌊

n

cn

⌋

+ cn − 2. (1.3)

Moreover, for everym ≤ ⌊n/cn⌋ + cn − 2, there exists a matrix whose exponent ism.

In the literature, the problem of computing all possible exponents attained by circulant
primitive matrices or, equivalently, by circulant digraphs, has been considered. In [2] and
[11], it is shown that if a circulant matrixC is primitive, then its exponent is eithern − 1,
⌊n/2⌋, ⌊n/2⌋ − 1 or does not exceed⌊n/3⌋ + 1. Matrices with exponentsn − 1, ⌊n/2⌋,
⌊n/2⌋ − 1 are also characterized. All these results can be immediately translated into results
about the possible orders of bases for a finite cyclic group. In a recent preprint [5], the authors
prove that ifS is a basis forZn of order greater thank for some positive integerk, then there
existsdk such that the order ofS is within dk of n/l for some integerl ∈ [1, k]. Notice that
the result we present in Conjecture 1 produces gaps in the setof orders which are larger than
the ones encountered in [5]. Moreover, we show that our gaps should be maximal. In [5],
the authors also prove the existence of the additional gap[⌊n/4⌋ + 3, ⌊n/3⌋ − 2] although
they do not use the techniques presented in the same paper. See [4] for a detailed proof of the
existence of such gap.

In this paper, we give partial results related with Conjecture 1 and give a class of matrices
for which it is shown that the conjecture holds. All the results in the paper are given in terms
of bases forZn since the equivalent formulation of the problem in these terms resulted more
fruitful than the original statement of the problem in termsof matrices.

In Section 2, we give the explicit value of the critical pointcn, as well as some of its
interesting properties. In Section 3, we define Maximal Generalized Gaps and show that the
set of gaps that follow from Conjecture 1 are maximal. In Section 4, we introduce some
concepts and give some results concerning the order of general bases forZn. In Section 5,
we give some results about the order of bases forZn with cardinality3. These results will
allow us to prove Conjecture 1 for some classes of bases forZn in Section 6. In Section 7,
we extend some of the results given in Sections 5 and 6 to general bases forZn. Finally, in
Section 8, we present the conclusions as well as some open questions.

2. The critical point. In this section, we prove thatcn is either⌊ 3
√

n⌋ or ⌊ 3
√

n⌋ + 1.

We first show thatcn ≤ ⌊ 3
√

n⌋ + 1.

LEMMA 2.1. Letn be a positive integer andr = ⌊ 3
√

n⌋ . Then

⌊

n

r + 1

⌋

<

⌊

n

r + 2

⌋

+ r + 1. (2.1)
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Proof. Suppose that
⌊

n

r + 1

⌋

≥
⌊

n

r + 2

⌋

+ r + 1. (2.2)

We have

n = (r + 2)m + t,

wherem =
⌊

n
r+2

⌋

and0 ≤ t < r + 2. Then (2.2) is equivalent to

⌊

t + m

r + 1

⌋

≥ r + 1

which implies that

(r + 1)2 − t ≤ m,

or, equivalently, multiplying byr + 2 and addingt,

(r + 1)2(r + 2) − t(r + 2) + t ≤ n.

Let us show that

(r + 1)3 ≤ (r + 1)2(r + 2) − t(r + 2) + t (2.3)

which leads to a contradiction, asn < (r + 1)3. Notice that

(r + 1)2 − t(r + 1) ≥ (r + 1)2 − (r + 1)(r + 1) = 0,

which implies (2.3).

Next we show thatcn ≥ ⌊ 3
√

n⌋.

LEMMA 2.2. Let n be a positive integer andr = ⌊ 3
√

n⌋ . Let p be an integer such that
0 < p < r. Then

⌊

n

p

⌋

>

⌊

n

p + 1

⌋

+ p. (2.4)

Proof. Suppose that
⌊

n

p + 1

⌋

+ p ≥
⌊

n

p

⌋

.

Then

n ≥
(⌊

n

p

⌋

− p

)

(p + 1).
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We will show that
(⌊

n
p

⌋

− p
)

(p + 1) > n, which gives a contradiction. Thus, (2.4) holds.

We have
(⌊

n

p

⌋

− p

)

(p + 1) =

⌊

n

p

⌋

p +

⌊

n

p

⌋

− p2 − p

> n − p +

⌊

n

p

⌋

− p2 − p

= n +

⌊

n

p

⌋

− p2 − 2p > n,

where the last inequality follows because
⌊

n
p

⌋

− p2 − 2p > 0, as

n ≥ (p + 1)3 = p3 + 3p2 + 3p + 1 > p3 + 2p2 + p.

It follows from Lemmas 2.1 and 2.2 that the smallestcn such that
⌊

n
cn

⌋

<
⌊

n
cn+1

⌋

+ cn

is either⌊ 3
√

n⌋ or ⌊ 3
√

n⌋ + 1.

THEOREM 2.3. Letn be a positive integer andr = ⌊ 3
√

n⌋ . If

⌊n

r

⌋

<

⌊

n

r + 1

⌋

+ r (2.5)

thencn = ⌊ 3
√

n⌋ , otherwisecn = ⌊ 3
√

n⌋ + 1.

We now give some properties ofcn that will be useful later.

LEMMA 2.4. Letn be a positive integer. Thenn ≤ (cn + 1)2(cn − 1).

Proof. If n = (cn + 1)2(cn − 1) + k for some positive integerk, then

⌊

n

cn + 1

⌋

+ cn = c2
n + cn − 1 +

⌊

k

cn + 1

⌋

≤ c2
n + cn − 1 +

⌊

k − 1

cn

⌋

=

⌊

n

cn

⌋

,

which is a contradiction by the definition ofcn.

Before presenting the next results we introduce the following notation: Ifa andb are
integers, withb ≥ a, then[a, b] denotes the set of integers in the real interval[a, b]. Moreover,
[a] denotes the set containing just the integera. If b < a, then[a, b] = ∅.

The next lemma shows that, ifcn ≥ 3, the interval[⌊n/cn⌋ + 2, ⌊n/(cn − 1)⌋ − 1] is
nonempty if and only ifn = 14 or n ≥ 16.

LEMMA 2.5. Let n be a positive integer such thatcn ≥ 3. Then⌊n/(cn − 1)⌋ ≥
⌊n/cn⌋ + 3 if and only ifn = 14 or n ≥ 16.
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Proof. If cn = 3 or cn = 4, then the result can be verified by a direct computation.
Suppose thatcn ≥ 5. Let k − (cn − 1)3. By Theorem 2.3,k ≥ 0. Note that

⌊

n

cn − 1

⌋

≥
⌊

n

cn

⌋

+ 3 (2.6)

if and only if
⌊

k

cn − 1

⌋

≥
⌊

k − 1

cn

⌋

+ 5 − cn.

Since
⌊

k
cn−1

⌋

−
⌊

k−1

cn

⌋

≥ 0, if cn ≥ 5, then the result holds.

The next lemma gives an upper bound for the length of the interval
[⌊

n
cn

⌋

,
⌊

n
cn−1

⌋]

.

LEMMA 2.6. Letn be a positive integer such thatcn ≥ 3.

• If cn = ⌊ 3
√

n⌋, then
⌊

n

cn − 1

⌋

−
⌊

n

cn

⌋

≤ cn + 3.

• If cn = ⌊ 3
√

n⌋ + 1 andn = c3
n − 1, then

⌊

n

cn − 1

⌋

−
⌊

n

cn

⌋

= cn + 2.

• If cn = ⌊ 3
√

n⌋ + 1 andn ≤ c3
n − 2, then

⌊

n

cn − 1

⌋

−
⌊

n

cn

⌋

≤ cn + 1.

Proof. Let n = pcn + q, wherep = ⌊n/cn⌋ and0 ≤ q < cn. Notice that
⌊

n

cn − 1

⌋

−
⌊

n

cn

⌋

=

⌊

p + q

cn − 1

⌋

. (2.7)

Suppose thatcn = ⌊ 3
√

n⌋. By Lemma 2.4,n ≤ (cn + 1)2(cn − 1), and therefore,
⌊

n

cn

⌋

≤ c2
n + cn − 2.

Hence,

p + q ≤
⌊

n

cn

⌋

+ cn − 1 ≤ c2
n + 2cn − 3 = (cn − 1)(cn + 3),

which implies that
⌊

p + q

cn − 1

⌋

≤ cn + 3.
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Suppose thatcn = ⌊ 3
√

n⌋ + 1. Then(cn − 1)3 ≤ n ≤ c3
n − 1. If n = c3

n − 1,

p =

⌊

n

cn

⌋

= c2
n − 1, q = cn − 1 and p + q = c2

n + cn − 2 = (cn − 1)(cn + 2).

Then

⌊

p + q

cn − 1

⌋

= cn + 2.

If cn = ⌊ 3
√

n⌋ + 1 andc3
n − cn ≤ n < c3

n − 1, thenp = c2
n − 1 andq ≤ cn − 2. Therefore,

p + q ≤ c2
n − 1 + cn − 2,

which implies

⌊

p + q

cn − 1

⌋

≤ cn + 1.

If cn = ⌊ 3
√

n⌋ + 1 andn ≤ c3
n − cn − 1, then

p + q ≤ c2
n − 2 + cn − 1,

which implies

⌊

p + q

cn − 1

⌋

≤ cn + 1.

LEMMA 2.7. Letn be a positive integer such thatcn ≥ 3. Then

• if cn = ⌊ 3
√

n⌋, then4cn ≤ ⌊n/cn⌋ + 3;
• if cn = ⌊ 3

√
n⌋ + 1 andn = c3

n − 1, then3cn ≤ ⌊n/cn⌋ + 2.

Proof. If cn = ⌊ 3
√

n⌋, thenn ≥ c3
n, which implies that

⌊

n

cn

⌋

≥ c2
n ≥ 4cn − 3,

for cn ≥ 3. If cn = ⌊ 3
√

n⌋ + 1 andn = c3
n − 1, then

⌊

n

cn

⌋

= c2
n − 1 ≥ 3cn − 2,

for cn ≥ 3.
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3. Maximal generalized gaps.Let n be a positive integer. LetEn = {order(S) : S ∈
Sn}. It is well known [2] thatEn ⊂ [1, n − 1]. We call agap in En a nonempty interval
A ⊂ [1, n − 1] such thatA ∩En = ∅. We say that a gapA in En is maximal ifA′ ∩En 6= ∅
for any intervalA′ ⊂ [1, n − 1], with A strictly contained inA′.

For each positive integern and eachj ∈ {1, 2, . . . , cn − 1}, if

⌊

n

j + 1

⌋

+ j ≤
⌊

n

j

⌋

− 2,

let

Bj,n =

[⌊

n

j + 1

⌋

+ j,

⌊

n

j

⌋

− 2

]

, (3.1)

otherwise letBj,n = ∅.

Clearly, if Conjecture 1 is true andBj,n is nonempty,Bj,n is a gap inEn. Though the
intervalsBj,n are not necessarily maximal gaps inEn, the next theorem shows that, for each
positive integerj, there is an integern, with j ≤ cn−1, such thatBj,n is a maximal gap inEn.

Here, we use the result that, ifb > 1 is a divisor ofn, then order({0, 1, b}) =
⌊

n
b

⌋

+ b − 2,

which is a particular case of Corollary 5.4. Ifa ∈ Zn, we denote by〈a〉 the cyclic group
generated bya in Zn.

THEOREM 3.1. For each positive integerj, there is an integern, with j ≤ cn − 1, such
thatBj,n is a maximal gap inEn.

Proof. We show that for eachj there is an integern, with j ≤ cn − 1, and two bases for

Zn, sayS1 andS2, such that order(S1) =
⌊

n
j+1

⌋

+ j − 1 and order(S2) =
⌊

n
j

⌋

− 1.

Let n = j(j + 1)(j + 3). First, we show thatcn − 1 ≥ j. If j = 1, thenn = 8 and
cn = 3. If j > 1, thenn − (j + 1)3 = j2 − 1 > 0, which implies that 3

√
n > j + 1. Then

cn −1 ≥ ⌊ 3
√

n⌋−1 ≥ 3
√

n−2 > j−1, where the first inequality follows from Theorem 2.3.

Sincej+1 dividesn, by Corollary 5.4, forS1 = {0, 1, j+1}, order(S1) =
⌊

n
j+1

⌋

+j−1.

If j > 1, let S2 = 〈(j + 1)(j + 3)〉 ∪ (1 + 〈(j + 1)(j + 3)〉). Then, fork > 0,

kS2 =
k

⋃

i=1

(i + 〈(j + 1)(j + 3)〉) .

If j = 1, let S2 = {0, 1}. In any case, it is easy to see that order(S2) = (j + 1)(j + 3)− 1 =
⌊

n
j

⌋

− 1.

4. Order of bases forZn. Let T be a subset of the additive groupZn, and letq ∈ Zn.
We defineq + T = {q + t : t ∈ T} andq ∗ T = {qt : t ∈ T}.
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Clearly, if S ⊂ Zn andq ∈ Zn, S is a basis forZn if and only if q + S is a basis forZn.
Moreover, ifS is a basis, order(S) = order(q + S).

LEMMA 4.1. Let n and q be positive integers. IfS ∈ Sn and gcd(q, n) = 1, then
q ∗ S ∈ Sn andorder(S) = order(q ∗ S).

Proof. It is enough to show that, for allk ≥ 1, |q ∗ kS| = |kS|, ask(q ∗ S) = q ∗ (kS).

Let T = kS. Clearly, |q ∗ T | ≤ |T |. Now suppose thatt1, t2 ∈ T with t1 6= t2. Suppose
thatqt1 = qt2 (modn). Then(t1 − t2)q = 0 (modn), or equivalently,(t1 − t2)q = kn for
some positive integerk. Sincegcd(q, n) = 1, t1 − t2 = 0 (modn). As 0 ≤ t1, t2 < n, then
t1 − t2 = 0, which is a contradiction. Thus,|q ∗ T | ≥ |T |, which completes the proof.

We note that, ifgcd(n, q) 6= 1, thenq ∗ S is not a basis forZn.

Let S1, S2 ⊂ Zn. We say thatS1 andS2 are equivalent, and we writeS1 ∼ S2, if there
exist integersq1 andq2, wheregcd(q1, n) = 1, such thatS2 = q2 + q1 ∗ S1. Note that∼ is
an equivalence relation. Clearly, from the observations above, if S1 ∈ Sn andS1 ∼ S2, then
S2 ∈ Sn and order(S1) = order(S2).

Note that ifS = {s1, s2, . . . , st} ∈ Sn, thenS ∼ {0, s2 − s1, . . . , st − s1}. Therefore,
in what follows we assume that0 ∈ S.

REMARK 1. LetS = {0, a} ∈ Sn. Then order(S) = n − 1 sinceS ∼ {0, 1}, asa is a
unit for Zn.

We now introduce some definitions that will be used in the nextsections.

Let S = {0, s1, . . . , st} ∈ Sn. Then any elementq ∈ Zn can be expressed asx1s1 +

· · ·+xtst (modn), for some nonnegative integersx1, . . . , xt. Moreover, ifq 6= 0, the smallest
k such thatq ∈ kS is the minimumx1+· · ·+xt among all the solutions(x1, . . . , xt), xi ≥ 0,

to x1s1 + · · · + xtst = q (modn).

DEFINITION 4.2. LetS = {0, s1, . . . , st} ∈ Sn andq ∈ Zn. If q = 0, then we define
exp(q;S, n) = 1; otherwise we define

exp(q;S, n) := min{x1 + · · · + xt : x1s1 + · · · + xtst = q (modn), xi ≥ 0}.

Clearly, if S is a basis forZn and0 ∈ S, order(S) = max{exp(q;S, n) : q ∈ Zn}.

DEFINITION 4.3. LetS = {0, s1, . . . , st} ∈ Sn, q ∈ Zn andk be a positive integer. If
q 6= 0, we say thatq is (k;S, n)-periodic if k is the smallest nonnegative integer for which
there are nonnegative integersx1, . . . , xt satisfying

x1 + · · · + xt = exp(q;S, n) and x1s1 + · · · + xtst = q + kn.

If q = 0, we say thatq is (0;S, n)-periodic. We say thatS is K-periodic if there exist
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(K;S, n)-periodic elements inZn and there are no(k;S, n)-periodic elements inZn for
k > K.

REMARK 2. If the minimum nonzero element of a basisS of Zn, sayb, is not1, thenS

is not0-periodic as anyb′, with 0 < b′ < b, is not(0;S, n)-periodic.

We finish this section with the following lemma.

LEMMA 4.4. [2] Let S ∈ Sn and m be a divisor ofn. Suppose thatS contains an
element of orderm. Then

order(S) ≤ n

m
+ m − 2.

By Remark 1, all bases forZn, n ≥ 3, with cardinality2 have ordern−1, and therefore,
they satisfy Conjecture 1. In the next section we focus on bases with cardinality3.

5. Order of bases forZn with cardinality 3. By Sn,r we denote the set of all bases for
Zn with cardinalityr.

For a given positive integern, we definepn as follows:

pn =

{ ⌊n/2⌋ + 1, if n is odd
⌊n/2⌋, if n is even.

(5.1)

LEMMA 5.1. Let S = {0, s1, s2} ∈ Sn,3. If gcd(s1, n) = 1 or gcd(s2, n) = 1 or
gcd(s2 − s1, n) = 1, then there existsb ∈ Zn such thatb ≤ pn andS ∼ {0, 1, b}.

Proof. Without loss of generality, suppose that eithergcd(s1, n) = 1 or gcd(s2 −
s1, n) = 1. In the first case,s1 is a unit inZn and

S ∼ S1 = s−1

1 S = {0, 1, s−1

1 s2}.

If s−1

1 s2 ≤ ⌊n/2⌋, the claim holds withb = s−1

1 s2. If s−1

1 s2 > ⌊n/2⌋, then

S ∼ S2 = 1 − S1 = {0, 1, n + 1 − s−1

1 s2}

and the claim holds withb + 1 − s−1

1 s2. In the second case, that is,gcd(s2 − s1, n) = 1, let

S1 = −s1 + S = {0, s2 − s1, n − s1}.

ThenS ∼ S2 = s′S1, wheres′ = (s2 − s1)
−1. Now the argument used above applies to

show the result.

We note that ifgcd(s1, n) 6= 1, gcd(s2, n) 6= 1 andgcd(s2 − s1, n) 6= 1 and one ofs1,

s2, s2 − s1, n − s1, n − s2, n − s2 + s1 is a product of a divisor ofn and a unit inZn, then
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there exista, b ∈ Zn such thata is a divisor ofn, a 6= 1 andS = {0, s1, s2} ∼ {0, a, b}. To
see this, assume, without loss of generality, thats1 < s2. Note that

S ∼ S1 = −s1 + S = {0, n − s1, s2 − s1}
∼ S2 = −s2 + S = {0, n + s1 − s2, n − s2}.

Suppose thats1 is a product of a divisor ofn and a unit. The proof is analogous in the other
mentioned cases, eventually by consideringS1 or S2 instead ofS. If s1|n, then the result is
clear; otherwises1 = d1t1, whered1|n andgcd(n, t1) = 1. Then

S ∼ t−1

1 S = {0, d1, t
−1

1 s2},

and the result follows.

We were not able to prove that every basisS ∈ Sn,3 that is not equivalent to a basis
of the form{0, 1, b} is equivalent to a basis{0, a, b} with a 6= 1 a divisor ofn. However,
numerical experiments show that if these bases exist, they are rare.

THEOREM 5.2. LetS = {0, a, b} ∈ Sn,3, wherea is a divisor ofn anda 6= 1. Then

a − 1 ≤ order(S) ≤ n

a
+ a − 2.

Proof. The inequality on the right follows from Lemma 4.4.

Consider the quotient mapf : Zn → Za. Notice thatT = f(S) = {0, f(b)}. SinceS is
a basis anda dividesn, gcd(a, b) = 1 andf(b) 6= 0. Therefore,T is a basis forZa. Moreover,
by Remark 1, order(T ) = a − 1. Since order(S) ≥ order(T ), we get order(S) ≥ a − 1.

>From now on, we consider basesS of Sn,3 of the form{0, 1, b}. For convenience, we
write exp(q; b, n) instead ofexp(q;S, n); we also say thatS is 0-periodic instead of(0;S, n)-
periodic.

If S = {0, 1, b} ∈ Sn,3, then, considering the standard addition and multiplication in Z,
for k ≥ 1,

kS = [0, k] ∪ [b, b + k − 1] ∪ [2b, 2b + k − 2] ∪ · · · ∪ [(k − 1)b, (k − 1)b + 1] ∪ [kb].

For j = 0, 1, . . . , k, let

Ij,k = [jb, jb + k − j]. (5.2)

THEOREM 5.3. LetS = {0, 1, b} ∈ Sn,3. Then
⌊n

b

⌋

≤ order(S) ≤
⌊n

b

⌋

+ b − 2.
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Proof. Let n = mb + t, with m =
⌊

n
b

⌋

and0 ≤ t < b. Considering the standard
addition and multiplication inZ, the largest element inkS is kb. Thus, ifk = order(S), then
kb ≥ n − 1 = mb + t − 1, which implies the inequality on the left.

We haveI0,b−1 ∪ I1,b−1 = [0, 2b − 2] ⊂ (b − 1)S. Moreover,{0, b, . . . , (m − 1)b} ⊂
(m − 1)S. Thus,

((b − 1) + (m − 1))S = (b − 1)S + (m − 1)S = Zn.

which implies the inequality on the right.

We now focus on0-periodic bases ofSn,3.

COROLLARY 5.4. LetS = {0, 1, b} ∈ Sn,3. If S is 0-periodic, then

order(S) =
⌊n

b

⌋

+ b − 2.

Proof. SupposekS = Zn. Let j0 =
⌊

n
b

⌋

− 1. Note thatk ≥ j0. SinceS is 0-periodic,
necessarily[j0b, j0b + b − 1] ⊂ Ij0,k, which implies that

(⌊n

b

⌋

− 1
)

b + k −
(⌊n

b

⌋

− 1
)

≥
⌊n

b

⌋

b − 1,

that is,k ≥
⌊

n
b

⌋

+ b− 2. Then order(S) ≥
⌊

n
b

⌋

+ b− 2. Since, by Theorem 5.3, order(S) ≤
⌊

n
b

⌋

+ b − 2, the result follows.

We next characterize the0-periodic bases inSn,3. Note that, by Remark 2, we may
assume that these bases are of the form{0, 1, b}. First, we add a technical lemma.

It is clear that ifb andw are positive integers, with b ≥ 2, then the minimumx + y

among all the solutions ofx+ by = w, with x, y ≥ 0, is obtained wheny is y0 =
⌊

w
b

⌋

. Since
x = w − by, the minimum value ofx + y is x0 + y0 = w −

⌊

w
b

⌋

(b − 1). Note also that
x0 = w − by0 < b. We then have the following lemma.

LEMMA 5.5. Let b, q ∈ Zn, with b ≥ 2 andq 6= 0. Then

exp(q; b, n) = min

{

q + kn − (b − 1)

⌊

q + kn

b

⌋

, k ≥ 0

}

.

Note that

exp(q; b, n) ≤ q − (b − 1)
⌊q

b

⌋

≤ q,
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where the first inequality follows from Lemma 5.5.

LEMMA 5.6. Let S = {0, 1, b} ∈ Sn,3. ThenS is 0-periodic if and only if eitherb
dividesn or

(b − 1)
(⌊n

b

⌋

+ 1
)

≤ n. (5.3)

Proof. Suppose thatS is 0-periodic andb is not a divisor ofn. Let q =
⌊

n
b

⌋

b − 1. By
Lemma 5.5 and Definition 4.3,

q − (b − 1)
⌊q

b

⌋

≤ q + n − (b − 1)

⌊

n + q

b

⌋

. (5.4)

As n + q = 2
⌊

n
b

⌋

b + (t − 1), for some1 ≤ t < b, it follows that
⌊

n+q

b

⌋

= 2
⌊

n
b

⌋

. Also,
⌊

q

b

⌋

=
⌊

n
b

⌋

− 1. Thus, (5.4) is equivalent to (5.3).

To prove the converse note that, from Lemma 5.5, ifb dividesn, S is 0-periodic, as, for
anyk > 0,

kn − (b − 1)
kn

b
> 0.

Now suppose that (5.3) holds. According to Lemma 5.5, we needto show that, for anyk > 0

and anyq ∈ Zn\{0},

q − (b − 1)
⌊q

b

⌋

≤ q + kn − (b − 1)

⌊

q + kn

b

⌋

,

or equivalently,

(b − 1)

(⌊

q + kn

b

⌋

−
⌊q

b

⌋

)

≤ kn.

Because of (5.3), it is enough to show that
⌊

q + kn

b

⌋

−
⌊q

b

⌋

≤ k
(⌊n

b

⌋

+ 1
)

.

Forn =
⌊

n
b

⌋

b + t, 0 ≤ t < b,

kn + q = k
⌊n

b

⌋

b + kt + q =
(

k
⌊n

b

⌋

+
⌊q

b

⌋

+ k
)

b + k(t − b) +
(

q −
⌊q

b

⌋

b
)

.

As, k(t − b) + (q −
⌊

q

b

⌋

b) < b, then
⌊

q + kn

b

⌋

≤ k
⌊n

b

⌋

+
⌊q

b

⌋

+ k,

completing the proof.

THEOREM 5.7. Let S = {0, 1, b} ∈ Sn,3. ThenS is 0-periodic if and only if one of the
following conditions is satisfied:
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i) b is a divisor ofn;

ii) b =
⌊

n
j

⌋

+ 1, for some nonnegative integerj. In this case,j is unique and is given

by ⌊n/b⌋ + 1.

Proof. If b is a divisor ofn, then Lemma 5.6 implies thatS is 0-periodic. Now suppose
that b is not a divisor ofn. Let i = ⌊n/b⌋ andn = bi + t, with 0 < t < b. If t < i then
b = ⌊n

i
⌋, otherwiseb < ⌊n

i
⌋. Sincen = (i + 1)b + (t − b) andt − b < 0, it follows that

⌊ n
i+1

⌋ < b. Therefore,
⌊

n

i + 1

⌋

< b ≤
⌊n

i

⌋

.

Suppose thatb =
⌊

n
i+1

⌋

+ 1. Since

b − 1 =

⌊

n

i + 1

⌋

≤ n

i + 1
,

we have

n ≥ (b − 1)(i + 1).

Therefore, by Lemma 5.6,S is 0-periodic.

Now suppose that
⌊

n
i

⌋

≥ b ≥
⌊

n
i+1

⌋

+ 2. Then

n

i + 1
< b − 1

and, by Lemma 5.6,S is not0-periodic.

6. The conjecture for bases inSn,3. In this section, we prove the following result.

THEOREM 6.1. Let S ∈ Sn,3, n ≥ 3. Conjecture 1 holds ifS satisfies one of the
following conditions:

i) S is equivalent to{0, a, b}, wherea is a divisor ofn anda ≥ cn;

ii) S is equivalent to{0, 1, b} for someb ≤ min
{

pn,
⌊

n
cn−1

⌋

− 1
}

;

iii) S is equivalent to a0-periodic basis.

The rest of this section is dedicated to the proof of Theorem 6.1.

We first observe that, in general, ifi andj are positive numbers, then

n

i
+ i <

n

j
+ j

can be written as

(i − j)(n − ij) > 0,
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which is equivalent to

j < min
{

i,
n

i

}

∨ j > max
{

i,
n

i

}

.

LEMMA 6.2. LetS = {0, a, b} ∈ Sn,3, wherea is a divisor ofn such thata ≥ cn. Then

eitherorder(S) ≤
⌊

n
cn

⌋

+ cn − 2 or

n

j
− 1 ≤ order(S) ≤ n

j
+ j − 2, (6.1)

for somej ∈ {1, 2, . . . , cn − 1}.

Proof. Note thatn 6= 3. If n = 4 thencn = a = 2 and order(S) = 2, which implies

that order(S) ≤
⌊

n
cn

⌋

+ cn − 2. If n = 8 thencn = 3 anda = 4; a direct computation

considering all possible values ofb, namely1, 3, 5, 7, shows that order(S) = 4 (in fact, in
this case,S ∼ {0, 1, b′} for someb′ ∈ Zn). Then (6.1) holds withj = 2. Now suppose that

n 6= 4 andn 6= 8. Suppose that order(S) >
⌊

n
cn

⌋

+ cn − 2. By Theorem 5.2,

a − 1 ≤ order(S) ≤ n

a
+ a − 2.

Then

n

cn

+ cn <
n

a
+ a.

Taking into account the observation before this lemma and the fact that forn 6= 3, 4, 8,

cn < n/cn, it follows thata > n/cn, as, by hypothesis,a ≥ cn. Then, becausea dividesn,
a = n

i
for somei ∈ {2, 3, . . . , cn − 1}. Then (6.1) holds withj = i.

LEMMA 6.3. Let S = {0, 1, b} ∈ Sn,3, with b ≤ pn. If S is 0-periodic andb ≥
⌊n/cn⌋ + 2, then there existsi ∈ [2, cn − 1] such that

i +
⌊n

i

⌋

− 3 ≤ order(S) ≤ i +
⌊n

i

⌋

− 2,

Proof. Note thatn > 3 and n 6= 8. If b is a divisor ofn, thenb = n/i for some
i ∈ [2, cn − 1]. By Corollary 5.4, order(S) = n

i
+ i − 2.

If b is not a divisor ofn, then, taking into account Theorem 5.7 ,b = ⌊n/i⌋+ 1 for some
i ∈ [2, cn − 1]. Let m = ⌊n/i⌋ andn = mi + t, 0 ≤ t < i. By Corollary 5.4,

order(S) =

⌊

mi + t

m + 1

⌋

+
⌊n

i

⌋

− 1 =

⌊

t − i

m + 1

⌋

+ i +
⌊n

i

⌋

− 1.
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If m + 1 ≥ i − t, then
⌊

t − i

m + 1

⌋

= −1.

If m + 1 < i − t, then
⌊

t − i

m + 1

⌋

= −2,

asi − t ≤ i ≤ cn − 1 ≤
⌊

n
cn

⌋

− 1 ≤ b − 3 ≤ 2b = 2m + 2. Note thatcn ≤
⌊

n
cn

⌋

for

n 6= 3, 8. Thus, the result follows.

LEMMA 6.4. Let S = {0, 1, b} ∈ Sn,3. If b ∈
[

cn + 1,
⌊

n
cn

⌋

+ 1
]

, thenorder(S) ≤
⌊

n
cn

⌋

+ cn − 2.

Proof. By Theorem 5.3, order(S) ≤
⌊

n
b

⌋

+ b − 2. Thus, it is enough to show that

b +
⌊n

b

⌋

≤ cn +

⌊

n

cn

⌋

. (6.2)

Taking into account the observation before Lemma 6.2, ifcn < min{b, n
b
} then

b +
⌊n

b

⌋

≤ b +
n

b
< cn +

n

cn

,

which implies (6.2), ascn is an integer. Since

cn < min
{

b,
n

b

}

⇔
{

cn < b ≤
⌊

n
cn

⌋

if cn is not a divisor ofn

cn < b ≤ n
cn

− 1 if cn is a divisor ofn
,

we now need to show that (6.2) holds if eitherb =
⌊

n
cn

⌋

+1 or b = n
cn

andcn dividesn. The

latter is immediate. For the first case, note that








n
⌊

n
cn

⌋

+ 1







 = cn − 1,

as, ifn =
⌊

n
cn

⌋

cn + t, with 0 ≤ t < cn, then

n = (cn − 1)

(⌊

n

cn

⌋

+ 1

)

+

(

t − cn +

⌊

n

cn

⌋

+ 1

)

,

with 0 ≤ t − cn +
⌊

n
cn

⌋

+ 1 <
⌊

n
cn

⌋

+ 1.

Next we give a result that allows us to show that the conjecture holds ifS = {0, 1, b},
with b ≤ pn andb ∈ [⌊n/cn⌋+ 2, ⌊n/(cn − 1)⌋− 1]. Note that⌊n/cn⌋+ 2 ≤ pn if and only
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if cn ≥ 3. Also, by Lemma 2.5, forcn ≥ 3 the previous interval is nonempty if and only if
n = 14 or n ≥ 16. Finally, observe that⌊n/b⌋ = cn − 1.

We think the method used to prove the conjecture in this case might be generalizable to
the cases in whichb ∈ [⌊ n

cn−k
⌋, ⌊ n

cn−k+1
⌋ − 1], with 1 ≤ k ≤ cn − 3, when this interval is

nonempty. Some results presented in Section 2 will be used.

LEMMA 6.5. Letn be a positive integer such thatcn ≥ 3, b ∈
[

⌊ n
cn

⌋ + 2, ⌊ n
cn−1

⌋ − 1
]

andt = n − (cn − 1)b. If

⌊

n

cn

⌋

+ 1 < b − t, (6.3)

then eithercn = ⌊ 3
√

n⌋, or cn = ⌊ 3
√

n⌋ + 1 andn = c3
n − 1. Moreover,3cn ≤ ⌊n/cn⌋ + 2.

Proof. Let m = cn − 1 andr = ⌊n/cn⌋+ cn − 2. First we show that if (6.3) holds, then

b =
⌊

n
cn−1

⌋

−1. Suppose thatb ≤
⌊

n
cn−1

⌋

−2. Thent ≥ 2(cn −1) and, taking into account

Lemma 2.6, we get

b − t ≤
⌊

n

cn − 1

⌋

− 2 − 2(cn − 1) ≤
⌊

n

cn

⌋

+ 1,

a contradiction. Now suppose thatb =
⌊

n
cn−1

⌋

− 1 and (6.3) holds. Thent ≥ cn − 1. If

cn = ⌊ 3
√

n⌋ + 1 andn ≤ c3
n − 2, then, taking into account Lemma 2.6,

b − t ≤
⌊

n

cn − 1

⌋

− 1 − (cn − 1) ≤
⌊

n

cn

⌋

+ 1,

a contradiction. Thus,cn = ⌊ 3
√

n⌋ or cn = ⌊ 3
√

n⌋ + 1 andn = c3
n − 1. Taking into account

Lemma 2.7, the result follows.

LEMMA 6.6. Let S = {0, 1, b} ∈ Sn,3, with cn ≥ 3. Suppose thatb ∈ [⌊n/cn⌋ +

2, ⌊n/(cn − 1)⌋ − 1]. Then

order({0, 1, b}) ≤
⌊

n

cn

⌋

+ cn − 2.

Proof. Note thatn = 14 or n ≥ 16 for the interval[⌊n/cn⌋ + 2, ⌊n/(cn − 1)⌋ − 1] not

to be empty. Letr =
⌊

n
cn

⌋

+ cn − 2 andn = (cn − 1)b + t for some0 < t < b. Note that

t ≥ cn − 1. Let m = ⌊n/b⌋ = cn − 1. Sincecn ≤ ⌊n/cn⌋, 2m ≤ r.

Let

k1(i) = ib and k2(i) = i(b − 1) + r, for i ∈ {0, 1, . . . ,m},
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k1(i) = ib − n and k2(i) = i(b − 1) + r − n, for i ∈ {m + 1,m + 2, . . . , 2m},

and

k1(i) = ib − 2n and k2(i) = i(b − 1) + r − 2n, for i ∈ {2m + 1, 2m + 2, . . . , 3m}.

Consider the following intervals inZ : Ii = [k1(i), k2(i)], i ∈ {0, 1, . . . , 3m}. Note that, for
eachi = 0, 1, . . . , 3m, k1(i) < k2(i) andk1(i) < n. Also, 0 ≤ k1(i), for i = 0, 1, . . . , 3m,

i 6= 2m + 1. We haverS ≡ ⋃r

i=0
Ii (modn). We next show that if

b − t ≤ ⌊n/cn⌋ + 1, (6.4)

then
⋃2m

i=0
Ii ≡ Zn (modn); if

⌊n/cn⌋ + 1 < b − t, (6.5)

then
⋃3m

i=0
Ii ≡ Zn (modn), which impliesrS = Zn. Note that2m < r and, by Lemma 6.5,

if (6.5) holds,3m ≤ r.

Consider the intervalsIi, i = 0, 1, . . . , 3m, ordered in the following way:

I0, I2m+1, Im+1, I1, I2m+2, Im+2, . . . , I3m, I2m, Im.

Clearly, forj = 1, 2, . . . ,m,

k1(j − 1) ≤ k1(m + j) ≤ k1(j) andk1(2m + j) ≤ k1(m + j).

We show that, for eachj = 1, 2, . . . ,m,

(i) k2(m + j) + 1 ≥ k1(j);
(ii) k2(j − 1) + 1 ≥ k1(m + j) if (6.4) holds;
(iii) k2(j − 1) + 1 ≥ k1(2m + j) ≥ k1(j − 1) if (6.5) holds;
(iv) k2(2m + j) + 1 ≥ k1(m + j) if (6.5) holds;
(v) k2(m) ≥ n − 1,

which completes the proof.

Condition (i) follows easily taking into account thatcn + t ≤ ⌊ n
cn

⌋ + 1, as

t − (cn − 1)b ≤ n − (cn − 1)

(⌊

n

cn

⌋

+ 2

)

=

(

n − cn

⌊

n

cn

⌋)

+

⌊

n

cn

⌋

− 2(cn − 1)

≤ cn − 1 +

⌊

n

cn

⌋

− 2(cn − 1) =

⌊

n

cn

⌋

− cn + 1.

Condition (ii) follows from a simple calculation.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 640-660, October 2010



ELA

658 M.I. Bueno and S. Furtado

Now suppose that (6.5) holds. The first inequality in condition (iii) holds as

b − 2t ≤
⌊

n

cn − 1

⌋

− 1 − 2(cn − 1) ≤
⌊

n

cn

⌋

+ 1 ≤
⌊

n

cn

⌋

+ cn − j,

where the second inequality follows from Lemma 2.6. Since wehave shown in (i) thatt ≤
⌊

n
cn

⌋

− cn + 1, then

b > ⌊n/cn⌋ + 1 + t > 2t,

which implies the second inequality.

Condition (iv) holds if2cn + t ≤ ⌊n/cn⌋ + 2. By Lemma 6.5 eithercn = ⌊ 3
√

n⌋ or
cn = ⌊ 3

√
n⌋ + 1 andn = c3

n − 1. If cn = ⌊ 3
√

n⌋, by Lemma 2.6,

t ≤
⌊

n

cn − 1

⌋

− 1 −
⌊

n

cn

⌋

− 1 ≤ cn + 3 − 2.

Thus, taking into account Lemma 2.7,

2cn + t ≤ 3cn + 1 ≤
⌊

n

cn

⌋

+ 2.

If cn = ⌊ 3
√

n⌋ + 1 andn = c3
n − 1, by Lemma 2.6,

t ≤
⌊

n

cn − 1

⌋

− 1 −
⌊

n

cn

⌋

− 1 ≤ cn + 2 − 2.

By Lemma 2.7,

2cn + t ≤ 3cn ≤
⌊

n

cn

⌋

+ 2.

Finally, note that condition (v) is equivalent tot ≤ ⌊n/cn⌋, which holds ascn ≥ 3 and
we have shown thatt + cn ≤ ⌊n/cn⌋ + 1.

Proof of Theorem 6.1.It follows from Lemma 6.2 that if condition i) holds then Conjec-
ture 1 is satisfied.

Now suppose thatS = {0, 1, b}, with b ≤ pn. If b ≤ cn, Conjecture 1 holds by

Theorem 5.3; ifb ∈ [cn + 1,
⌊

n
cn

⌋

+ 1], the conjecture holds by Lemma 6.4; ifb ∈
[⌊

n
cn

⌋

+ 2,
⌊

n
cn−1

⌋

− 1
]

then cn ≥ 3 and Conjecture 1 holds by Lemma 6.6. Finally, if

b ≥ ⌊n/cn⌋+2 andS is 0 -periodic, Conjecture 1 holds by Lemma 6.3. Since two equivalent
bases have the same order, the result follows.
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7. The conjecture for bases with cardinality larger than 3. In this section, we include
some partial results regarding Conjecture 1 for bases with cardinality larger than 3.

The next lemma shows that to prove Conjecture 1 it is enough toconsider basesS for
Zn such that

|S| ≤ max

{

n

d

(⌊

d − 2

⌊n/cn⌋ + cn − 3

⌋

+ 1

)

: d|n, d ≥ ⌊n/cn⌋ + cn − 1

}

.

LEMMA 7.1. [7]Letn be a positive integer andr ∈ [2, n − 1]. LetS ∈ Sn be such that
order(S) ≥ r. Then

|S| ≤ max

{

n

d

(⌊

d − 2

r − 1

⌋

+ 1

)

: d|n, d ≥ r + 1

}

.

COROLLARY 7.2. If S ∈ Sn is equivalent to{0, 1, s1, . . . , sr} ∈ Sn, with 1 < s1 <

· · · < sr, then

⌊

n

sr

⌋

≤ order(S) ≤ min
i∈{1,2,...,r}

{⌊

n

si

⌋

+ si − 2

}

.

Proof. The proof of the inequality on the left is analogous to the one given in the proof
of the left inequality in Theorem 5.3. The inequality on the right follows from the fact that
order(S) ≤ mini{order({0, 1, si})} and Theorem 5.3.

We then have the following consequence of Corollary 7.2, Lemmas 6.4 and 6.6 and
Theorem 5.3.

COROLLARY 7.3. If S ∈ Sn is equivalent to{0, 1, s1, . . . , sr} and there existsi ∈
{1, 2, . . . , r} such thatsi ∈

[

cn,
⌊

n
cn−1

⌋

− 1
]

, thenS satisfies Conjecture 1.

COROLLARY 7.4. If S ∈ Sn is equivalent toS′ = {0, s1, . . . , sr} andS′ contains an
element of orderm, with m ∈ {cn, . . . , n

cn

}, thenS satisfies Conjecture 1.

Proof. By Lemma 4.4,

order(S) ≤ n

m
+ m − 2.

Taking into account the observation before Lemma 6.2, ifm is a divisor ofn such thatm ∈
{c, . . . , n

c
}, then n

m
+ m ≤ n

cn

+ cn, which implies thatn
m

+ m ≤
⌊

n
cn

⌋

+ cn and the result

follows.
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8. Conclusions and open problems.Given a positive integern ≥ 3, we defined the
critical pointcn and conjectured that all intervals of the form[⌊n/i⌋+ i−1, ⌊n/(i−1)⌋−2],

with 2 ≤ i < cn, are gaps in the setEn of orders of bases forZn. It was already known that
bases with cardinality2 have ordern − 1, and therefore, they satisfy our conjecture.

In this paper, we have proven some partial results regardingbases of cardinality3 and
larger. The main result is Theorem 23. However, there are many open questions still to
answer. For bases with cardinality3, it needs to be proven that the conjecture holds when a
basisS is equivalent to{0, 1, b} with b ∈ [⌊n/(cn − 1)⌋, pn], wherepn is defined in (5.1).
We think that in order to prove this result the concept of K-periodicity needs to be studied in
greater detail. If a basisS is equivalent to{0, a, b}, wherea is a divisor ofn, a 6= 1, it is
still an open question if the conjecture holds whena < cn. Though we did not show that all
bases forZn with cardinality3 are equivalent to a set of the form{0, 1, b} or {0, a, b}, where
a 6= 1 is a divisor ofn, at least for almost all bases this seems to happen. If there exist bases
for Zn which are not equivalent to sets of any of those two types, theconjecture should also
be proven for them.

Finally, we have only proven that the conjecture holds for very specific bases forZn with
cardinality larger than3, so there is a lot to be done concerning those bases.
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