ERRATUM TO "PERIODIC TWO-DIMENSIONAL DESCRIPTOR SYSTEMS"*

PETER BENNER[†] AND PAUL VAN DOOREN[‡]

Abstract. We point out a mistake in a corollary of the above paper.

Key words. Multi-dimensional systems, periodic Schur form, commuting systems, simultaneous triangularization.

AMS subject classifications. 15A22, 12A27, 93AXX.

The matrix $\Phi := D^{-1}CB^{-1}A$ of the periodic system

$$Bx_{k+1,\ell} = Ax_{k,\ell}, \quad Dx_{k+1,\ell+1} = Cx_{k+1,\ell}$$

is called its *monodromy matrix*. The following corollary, stated in [1] as Corollary 4.3, is only true for the "if" part. The "only if" part is not correct.

COROLLARY 4.3. Let the $n \times n$ complex matrices B and D be invertible and let the monodromy matrix $\Phi := D^{-1}CB^{-1}A$ be a simple matrix. Then there exists a periodic Schur form

(4.1)
$$\begin{bmatrix} -\hat{A} & z\hat{B} \\ z\hat{D} & -\hat{C} \end{bmatrix} := \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \begin{bmatrix} -A & zB \\ zD & -C \end{bmatrix} \begin{bmatrix} Q_1^* \\ Q_2^* \end{bmatrix},$$

where $Q_1 = Q_2$ if and only if the matrices $B^{-1}A$ and $D^{-1}C$ commute.

That the condition $Q_1 = Q_2$ is not sufficient for the commutativity of $B^{-1}A$ and $D^{-1}C$, follows from the following counter example. If the matrices A, B, C and D are all upper triangular and B and D are invertible, then the pencil (4.1) is already in its periodic Schur form and $Q_1 = Q_2 = Z_1 = Z_2 = I_n$. But this would imply that all such upper-triangular matrices commute, which is obviously incorrect.

The references to this corollary in [1] should also be replaced by references to Theorem 4.1, which proves the "if" part. These corrections do not affect the other results of this paper.

REFERENCES

 P. Benner and P. Van Dooren. Periodic Two-Dimensional Descriptor Systems. Electronic Journal of Linear Algebra, 39:472–490, 2023.

^{*}Received by the editors on January 19, 2024. Accepted for publication on January 20, 2024. Handling Editor: Froilán Dopico. Corresponding Author: Paul Van Dooren.

[†]Dynamics of Complex Technical Systems, Max Planck Institute Magdeburg, Germany (benner@mpi-magdeburg.mpg.de) [‡]Mathematical Engineering Department, ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium (paul.vandooren@uclouvain.be)