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THE VERTEX CONNECTIVITY AND THE THIRD LARGEST EIGENVALUE IN

REGULAR (MULTI-)GRAPHS∗

TINGYAN MA† , LIGONG WANG† , AND YANG HU†

Abstract. Let G be a simple graph or a multigraph. The vertex connectivity κ(G) of G is the minimum size of a vertex

set S such that G−S is disconnected or has only one vertex. We denote by λ3(G) the third largest eigenvalue of the adjacency

matrix of G. In this paper, we present an upper bound for λ3(G) in a d-regular (multi-)graph G which guarantees that

κ(G) ≥ t + 1, which is based on the result of Abiad et al. [Spectral bounds for the connectivity of regular graphs with given

order. Electron. J. Linear Algebra 34:428–443, 2018]. Furthermore, we improve the upper bound for λ3(G) in a d-regular

multigraph which assures that κ(G) ≥ 2.
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1. Introduction. Throughout this paper, we consider finite undirected (multi-)graphs. A simple graph

is a graph without multiple edges or loops. A multigraph is a graph with multiple edges but no loops. Notice

that a simple graph is a special case of a multigraph. Let G = (V (G), E(G)) be a (multi-)graph with vertex

set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. We use n = |V (G)| and m = |E(G)| to

denote the order and size of G, respectively. The degree dG(v) of a vertex v in G is the number of edges of

G incident with v. A (multi-)graph G is d-regular if dG(v) = d for each v ∈ V (G). For two disjoint vertex

subsets V1 and V2 of G, we denote [V1, V2] to be the number of edges each of which has one vertex in V1

and the other vertex in V2. Let G1 and G2 be two vertex-disjoint graphs, and we denote by G1 ∪ G2 the

disjoint union of G1 and G2. Let G[S] be the induced subgraph of G whose vertex set is S and whose edge

set consists of all edges of G which have both end points in S. A vertex cut of G is a subset S of V (G)

such that G− S is disconnected or has only one vertex. A k-vertex cut is a vertex cut of k elements. For a

(multi-)graph G, the vertex connectivity κ(G) is the minimum k for which G has a k-vertex cut. G is said

to be k-vertex-connected if κ(G) ≥ k. Similarly, the edge connectivity κ′(G) is the minimum k for which G

has a k-edge cut. For undefined terms and notions, one can refer to [3] and [4].

The adjacency matrix A(G) of a (multi-)graph G is an n × n matrix in which the (i, j)-entry equal

to the number of edges joining vi and vj . D(G) = diag(d1, d2, . . . , dn) is the diagonal matrix of vertex

degrees of G. Let L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) be the Laplacian matrix and the

signless Laplacian matrix of G, respectively. We denote the eigenvalues of A(G), L(G), and Q(G) by

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G), 0 = µ1(G) ≤ µ2(G) ≤ · · · ≤ µn(G), and q1(G) ≥ q2(G) ≥ · · · ≥ qn(G),

respectively. In general, the largest eigenvalues of A(G), L(G), and Q(G) are named as the spectral radius,

the Laplacian spectral radius, and the signless Laplacian spectral radius of G, respectively. For a d-regular

(multi-)graph G, we know that λ1(G) = d and λi(G) = d − µi(G) for i = 1, 2, . . . , n. Thus, we can use
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the Laplacian eigenvalues to express the adjacency eigenvalues for a d-regular (multi-)graph G. The second

smallest Laplacian eigenvalue µ2(G) of L(G) is called as the algebraic connectivity of G.

In 1973, Fiedler [11] first obtained the following relation between the vertex connectivity κ(G) and the

algebraic connectivity µ2(G) of a simple non-complete graph G.

Theorem 1.1. ([11]) If G is a simple non-complete graph, then κ(G) ≥ µ2(G).

Stimulated by Fiedler’s above work, many scholars studied a lot of research about the relationships

between the connectivity and the eigenvalues of a graph G over the past 50 years. The results on algebraic

connectivity can be found in the survey [2]. In 2016, Cioabǎ and Gu [7] established the following theorem

that relates the vertex connectivity and the second largest eigenvalue.

Theorem 1.2. ([7]) For any connected d-regular simple graph G with d ≥ 3, if

λ2(G) <

{
d−2+

√
d2+12

2 if d is even,
d−2+

√
d2+8

2 if d is odd,

then κ(G) ≥ 2.

In 2018, Abiad et al. [1] raised and addressed the following research problem.

Problem 1.3. ([1]) For a d-regular (multi-)graph G of a given order and for 1 ≤ t ≤ d− 1, what is the

best upper bound for λ2(G) which guarantees that κ′(G) ≥ t+ 1 or that κ(G) ≥ t+ 1?

Theorem 1.4. ([1]) Let G be an n-vertex d-regular (multi-)graph, which is not obtained by duplicating

edges in a complete graph on at most t+ 1 vertices. Let

φ(d, t) =


2 if G is a multigraph and t = 1,

1 if G is a multigraph and t ≥ 2,

d+1 if G is a simple graph and t = 1,

d+1-t if G is a simple graph and t ≥ 2,

where 1 ≤ t ≤ d− 1. If λ2(G) < d− dt
2φ(d,t) −

dt
2(n−φ(d,t)) , then κ(G) ≥ t+ 1.

For the special case where the graph G is a multigraph and t = 1, Abiad et al. [1] got the following

result.

Theorem 1.5. ([1]) Let G be an n-vertex d-regular multigraph with n ≥ 5 and d ≥ 3. If λ2(G) < 8n−25
9n−25d,

then κ(G) ≥ 2.

Recently, Liu et al. [20] characterized the following bounds about λ2(G), µ2(G), or q2(G) which guarantee

that κ(G) ≥ k for a simple graph G.

Theorem 1.6. ([20]) Let G be a simple graph of order n with maximum degree ∆ and minimum degree

δ ≥ k ≥ 2. Define α = d 1
2 (δ + 1 +

√
(δ + 1)2 − 2(k − 1)∆)e and

φ(δ,∆, k) =

{
(δ − k + 2)(n− δ + k − 2) if ∆ ≥ 2(δ − k + 2),

α(n− α) if δ ≤ ∆ < 2(δ − k + 2).

If λ2(G) < δ − (k−1)∆n
2φ(δ,∆,k) , or µ2(G) > (k−1)∆n

2φ(δ,∆,k) , or q2(G) < 2δ − (k−1)∆n
2φ(δ,∆,k) , then κ(G) ≥ k.
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Theorem 1.7. ([20]) Let G be d-regular simple graph of order n with d ≥ k ≥ 2. Define β = d 1
2 (d+ 1 +√

(d+ 1)2 − 2(k − 1)d)e and

ϕ(d, k) =


(d+ 1)(n− d− 1) if k = 2,

(d− k + 2)(n− d+ k − 2) if k ≥ 3 and d ≤ 2k − 4,

β(n− β) if k ≥ 3 and d > 2k − 4.

If λ2(G) < d− (k−1)dn
2ϕ(d,k) , then κ(G) ≥ k.

Theorem 1.8. ([20]) Let G be a simple bipartite graph of order n with maximum degree ∆ and minimum

degree δ ≥ k ≥ 2. Define γ = d(δ +
√
δ2 − (k − 1)∆)e and

ψ(δ,∆, k) =

{
(2δ − k + 1)(n− 2δ + k − 1) if ∆ ≥ 2δ − k + 1,

γ(n− γ) if δ ≤ ∆ < 2δ − k + 1.

If λ2(G) < δ − (k−1)∆n
2ψ(δ,∆,k) , or µ2(G) > (k−1)∆n

2ψ(δ,∆,k) , or q2(G) < 2δ − (k−1)∆n
2ψ(δ,∆,k) , then κ(G) ≥ k.

Motivated by the results of Liu et al. [20]. Hong et al. [13] found better bounds on λ2(G), µ2(G), or

q2(G) which guarantee that κ(G) ≥ k.

Theorem 1.9. ([13]) Let G be a simple graph of order n with maximum degree ∆ and minimum degree

δ ≥ k for any integer k > 0. Let

H(δ,∆, k) =
(k − 1)∆n

(n− k + 1)(k − 1) + 4(δ − k + 2)(n− δ − 1)
.

If λ2(G) < δ −H(δ,∆, k), or µ2(G) > H(δ,∆, k), or q2(G) < 2δ −H(δ,∆, k), then κ(G) ≥ k.

In the following, O [21] extended Fiedler’s result [11] to multigraphs.

Theorem 1.10. ([21]) For any multigraph G whose underlying graph is not a complete graph, we have

µ2(G) ≤ κ(G)m(G), where m(G) = maxu,v∈E(G)m(u, v) and denote m(u, v) by the number of edges between

any two vertices u and v.

Theorem 1.11. ([21]) If G is a d-regular multigraph with µ2(G) > d
4 , except for the d-regular multigraph

of order 2, then κ(G) ≥ 2.

The problem for involving relationships between the graph parameters and eigenvalues of simple graphs

was earlier intensively investigated in [5, 6, 8, 9, 16, 17, 20, 23, 24] by many researchers. Nevertheless, the

relationships between the vertex connectivity and the third (or fourth) largest eigenvalue in (multi-)graphs

was less studied. The results about the third largest eigenvalue of graphs are found in [18, 22]. Later,

Duan et al. [10] gave the relationships between λ3(G), µ3(G), or q3(G) and edge connectivity κ′(G) ≥ k

or spanning tree packing number τ(G) ≥ k of a (multi-)graph G. Moreover, Hu et al. [15] investigated

the bounds on λ4(G), µ4(G), and q4(G) which guarantee that edge connectivity κ′(G) ≥ k or spanning tree

packing number τ(G) ≥ k for a (multi-)graph G, respectively.

These former results motivated the current research. According to the above discussion, in this paper, we

extend earlier results of Abiad et al. [1] and determine the bounds of third largest eigenvalue of a connected

d-regular (multi-)graph G which guarantees that κ(G) ≥ t+ 1 as follows.
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Theorem 1.12. For a connected d-regular (multi-)graph G with a vertex cut C, we partition the vertex

set V (G) into three parts A, B, and C with a := |A|, b := |B|, and c := |C|.
(i) If n ≥ 2a+ c (that is a ≤ b) and

λ3(G) <


1−d

2 if G is a multigraph and t = 1,

1− dt if G is a multigraph and t ≥ 2,
1−d
1+d if G is a simple graph and t = 1,
1−dt

2+d−t if G is a simple graph and t ≥ 2,

where 1 ≤ t ≤ d− 1, then κ(G) ≥ t+ 1.

(ii) If 2b+ c < n < 2a+ c (that is b < a) and

λ3(G) ≤


2−3d

4 if G is a multigraph and t = 1,

1− 3dt
2 if G is a multigraph and t ≥ 2,

2−3d
2(d+1) if G is a simple graph and t = 1,

2−3dt
2(d+2−t) if G is a simple graph and t ≥ 2,

where 1 ≤ t ≤ d− 1, then κ(G) ≥ t+ 1.

We improve Theorem 1.12 for the case when G is a multigraph and t = 1 into Theorem 1.13.

Theorem 1.13. Let G be a connected d-regular multigraph with order n ≥ 5 and d ≥ 3. If λ3(G) <

− dn
9n−25 , then κ(G) ≥ 2.

The rest of this paper is organized as follows. In Section 2, we introduce some known lemmas and results

which will be used in the rest of the statement. In Section 3, we investigate the relationships between the

vertex connectivity and the third largest eigenvalue of a connected d-regular (multi-)graph.

2. Preliminaries. We will present some important results in this section that will be used in our

subsequent arguments.

Theorem 2.1. ([12]) If A is a real symmetric n×n matrix and B is a principal submatrix of A of order

m×m with m < n, then for 1 ≤ i ≤ m, λi(A) ≥ λi(B) ≥ λn−m+i(A), that is, the eigenvalues of B interlace

the eigenvalues of A.

Let M be the following n× n matrix

M =


M1,1 M1,2 · · · M1,m

M2,1 M2,2 · · · M2,m

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,m

 ,

whose rows and columns are partitioned into subsets X1, X2, . . . , Xm of {1, 2, . . . , n}. The quotient matrix

R(M) of the matrix M (with respect to the given partition) is the m × m matrix whose entries are the

average row sums of the blocks Mi,j of M . The above partition is called equitable if each block Mi,j of M

has constant row (and column) sum.

Lemma 2.2. ([12]) The eigenvalues of any quotient matrix R(M) interlace the eigenvalues of G.
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3. Proofs of Theorems 1.12 and 1.13.

3.1. Proof of Theorem 1.12. For a connected d-regular (multi-)graph G with a vertex cut C, we

partition the vertex set V (G) into three parts {A,B,C} with a := |A|, b := |B|, and c := |C|, respectively.

Then the connected d-regular (multi-)graph G of order n is shown in Fig. 1. Suppose that 1 ≤ κ(G) ≤ t,

CA B
p q

Figure 1. The d-regular (multi-)graph G with vertex partition V (G) = {A,B,C}.

then there exists a vertex cut C of G with 1 ≤ c ≤ t. Let p := [A,C], q := [B,C], and without loss of

generality, we assume that p ≥ q (the roles of p and q can be reversed). Then

(3.1) 1 ≤ q = [B,C] ≤ dc

2
≤ dt

2
,

and

(3.2) p+ q ≤ dc ≤ dt.

For the numbers of edges between A and B, we have

2[A,A] = ad− p, 2[B,B] = bd− q.

According to the vertex partition V (G) = {A,B,C}, we can get that the quotient matrix Q for the connected

d-regular (multi-)graph G as follows:

Q =

 d− p
a

p
a 0

p
c d− p+q

c
q
c

0 q
b d− q

b

 .

Furthermore, by direct calculation using Mathematica, we obtain the eigenvalues of Q: λ1(Q) = d,

λ2(Q) = d− p

2a
− q

2b
− p+ q

2c
+

1

2

√
p2

a2
+

2p2

ac
+
q2

a2
+

2q2

bc
+
p2

c2
+
q2

b2
+

2pq

c2
− 2pq

ab
− 2pq

bc
− 2pq

ac
,

and

λ3(Q) = d− p

2a
− q

2b
− p+ q

2c
− 1

2

√
p2

a2
+

2p2

ac
+
q2

a2
+

2q2

bc
+
p2

c2
+
q2

b2
+

2pq

c2
− 2pq

ab
− 2pq

bc
− 2pq

ac
.

When n ≥ 2a+ c, that is b ≥ a, we have

2q2

bc
2pq
ac

=
aq

bp
=

aq

p(n− a− c)
=
q

p
· a

n− a− c
.
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Combining with p ≥ q, we can get
2q2

bc
2pq
ac

≤ 1, and hence, − 2q2

bc ≥ −
2pq
ac . Then by Lemma 2.2, we have

λ3(G) ≥ d− p

2a
− q

2b
− p+ q

2c
− 1

2

√
p2

a2
+

2p2

ac
+
q2

a2
+

2q2

bc
+
p2

c2
+
q2

b2
+

2pq

c2
− 2pq

ab
− 2pq

bc
− 2pq

ac

≥ d− p

2a
− q

2b
− p+ q

2c
− 1

2

√
p2

a2
+

2p2

ac
+
q2

c2
+

2pq

ac
+
p2

c2
+
q2

b2
+

2pq

c2
− 2pq

ab
− 2pq

bc
− 2q2

bc

= d− p

2a
− q

2b
− p+ q

2c
− 1

2

√(p
a

+
q

c
+
p

c
− q

b

)2

≥ −p
a
.

Now, we consider the following two cases based on whether G is a connected d-regular simple graph or

multigraph with order n ≥ 2a+ c.

Case 1: When G is a simple graph, we discuss the following two subcases.

Subcase 1.1. t = 1.

Note that 1 ≤ c ≤ t, which implies that c = 1. Since the degree of each vertex in A is d, we have a ≥ d.

If a = d, then G[A∪C] is a complete subgraph of G, while the vertex in C has degree greater than d because

q ≥ 1, which contradicts with dG(v) = d for the vertex v ∈ C. Thus, a ≥ d+ 1. Combining 1 ≤ q ≤ d
2 with

p+ q = d, we have d
2 ≤ p ≤ d− 1. Then

λ3(G) ≥ −p
a
≥ 1− d

1 + d
.

Subcase 1.2. t ≥ 2.

Since the degree of each vertex in A is d, we have a ≥ d + 1 − c. If a = d + 1 − c, then G[A ∪ C] is a

complete subgraph of G, while each vertex in C has degree greater than d because q ≥ 1, which contradicts

with dG(v) = d for any vertex v ∈ C. Thus, a ≥ d + 2− c ≥ d + 2− t (1 ≤ c ≤ t). Combining Inequalities

(3.1) with (3.2), we have p ≤ dc− 1 ≤ dt− 1. Then

λ3(G) ≥ −p
a
≥ 1− dt

2 + d− t
.

Case 2: When G is a multigraph, we discuss the following two subcases.

Subcase 2.1. t = 1.

In this subcase, we have c = 1 and a ≥ 2. Combining 1 ≤ q ≤ d
2 with p+q = d, we obtain d

2 ≤ p ≤ d−1.

Then

λ3(G) ≥ −p
a
≥ 1− d

2
.

Subcase 2.2. t ≥ 2.

In this subcase, we have a ≥ 1. Combining Inequalities (3.1) with (3.2), we obtain p ≤ dt− 1. Then

λ3(G) ≥ −p
a
≥ 1− dt.
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Next, we consider the case 2b+ c < n < 2a+ c, that is b < a. We have

λ3(G) ≥ d− p

2a
− q

2b
− p+ q

2c
− 1

2

√
p2

a2
+

2p2

ac
+
q2

c2
+

2q2

bc
+
p2

c2
+
q2

b2
+

2pq

c2
− 2pq

ab
− 2pq

bc
− 2pq

ac

> d− p

2a
− q

2b
− p+ q

2c
− 1

2

√
p2

a2
+

2p2

ac
+
q2

c2
+

2q2

bc
+
p2

c2
+
q2

b2
+

2pq

c2
+

2pq

ab
+

2pq

bc
+

2pq

ac

= d− p

2a
− q

2b
− p+ q

2c
− 1

2

√(p
a

+
q

c
+
p

c
+
q

b

)2

= d− p

a
− q

b
− p+ q

c
(p+ q ≤ dc)

≥ −p
a
− q

b
.

We also divide the rest of the proof into two cases based on whether G is a simple graph or multigraph.

Case 3: When G is a simple graph, we discuss the following two subcases.

Subcase 3.1. t = 1.

Note that 1 ≤ c ≤ t, which implies that c = 1. Since the degree of each vertex in B is d, we have b ≥ d.

If b = d, then G[B∪C] is a complete subgraph of G, while the vertex in C has degree greater than d because

p ≥ 1, which contradicts with dG(v) = d for the vertex v ∈ C. Thus, a > b ≥ d+ 1, and thus, n > b+ d+ 2.

Combining 1 ≤ q ≤ d
2 with p+ q = d, we have d

2 ≤ p ≤ d− 1. Then

λ3(G) ≥ −p
a
− q

b
= − p

n− b− 1
− q

b
>

2− 3d

2(d+ 1)
.

Subcase 3.2. t ≥ 2.

Since the degree of each vertex in B is d, we have b ≥ d + 1 − c. If b = d + 1 − c, then G[B ∪ C] is a

complete subgraph of G, while each vertex in C has degree greater than d because p ≥ 1, which contradicts

with dG(v) = d for any vertex v ∈ C. Thus, a > b ≥ d+2− c ≥ d+2− t (1 ≤ c ≤ t), and thus, n > b+d+2.

Combining Inequalities (3.1) with (3.2), we have p ≤ dc− 1 ≤ dt− 1. Then

λ3(G) ≥ −p
a
− q

b
= − p

n− b− c
− q

b
>

2− 3dt

2(d+ 2− t)
.

Case 4: When G is a multigraph, we discuss the following two subcases.

Subcase 4.1. t = 1.

In this subcase, we have c = 1 and a > b ≥ 2. Thus, n > b + 3. Combining 1 ≤ q ≤ d
2 with p + q = d,

we have d
2 ≤ p ≤ d− 1. Then

λ3(G) ≥ −p
a
− q

b
= − p

n− b− 1
− q

b
>

2− 3d

4
.

Subcase 4.2. t ≥ 2.

In this subcase, we have a > b ≥ 1 and n > b+ 1 + c. Combining Inequalities (3.1) with (3.2), we have

p ≤ dt− 1. Then

λ3(G) ≥ −p
a
− q

b
= − p

n− b− c
− q

b
>

2− 3dt

2
.

By the above arguments, we have the results as desired.
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3.2. Proof of Theorem 1.13. For a connected d-regular multigraph G with a cut vertex v, we suppose

that κ(G) = 1 and consider the vertex partition V (G) = {A, {v}, B}. Let a := |A| and b := |B| be two

partitions of G− v, respectively. Here, the multigraph G is shown in Fig. 2.

A B

p q
v

Figure 2. The d-regular multigraph G with vertex partition V (G) = {A, {v}, B}.

Let p := [A, v], q := [B, v], and without loss of generality, we assume that p ≥ q (the roles of p and q can be

reversed). Then, 1 ≤ q ≤ d
2 and p+ q = d. Notice that d ≥ 3, we have 2 ≤ a ≤ n− 3. Let

Q
′

=

 d− p
a

p
a 0

p 0 q

0 q
b d− q

b


be the quotient matrix of the vertex partition V (G) = {A, {v}, B}. Then, its characteristic polynomial with

respect to λ of the above matrix is

(λ− d)

[
λ2 −

(
d− p

a
− q

b

)
λ− p2

a
− q2

b
+
pq

ab

]
.

Then by Lemma 2.2, we have

(3.3) λ3(G) ≥ λ3(Q
′
) =

1

2

[
d− p

a
− q

b
−
√(

d− p

a
− q

b

)2

+ 4
(p2

a
+
q2

b
− pq

ab

)]
.

We get the derivative of the above Equation (3.3) with respect to q

dλ3(Q
′
)

dq
=

1

2

−1

b
−

− 2(d− p
a−

q
b )

b + 4
(
− p
ab + 2q

b

)√(
d− p

a −
q
b

)2

+ 4
(
p2

a + q2

b −
pq
ab

)
 .

In the following, we substitute d− q for p. Let θ(q) = dλ3(Q
′
)

dq . The roots of θ(q) = 0 are

q1 = 0

and

q2 =
(1 + 2a)bd

a+ b+ 4ab
.

Substituting n− a− 1 for b and q2 for q into Equation (3.3), and simplifying, we obtain

λ3(G) ≥ dn

1 + 4a(1 + a− n)− n
.

Finally, the result of (3.3) has a minimum value − dn
9n−25 for n ≥ 5, d ≥ 3, and 2 ≤ a ≤ n− 3.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 322-332, February 2024.

T. Ma, L. Wang and Y. Hu 330

In order to illustrate that the upper bound of the third largest eigenvalue λ3(G) in Theorem 1.13 is

tight, we give the following example.

Example 3.1. Let G be the d-regular multigraph of order 5 with a cut vertex v as shown in Fig. 3. We

have the following adjacency matrix: 
0 3d

4
d
4 0 0

3d
4 0 d

4 0 0
d
4

d
4 0 d

4
d
4

0 0 d
4 0 3d

4

0 0 d
4

3d
4 0

 ,

where d = 4k and k ≥ 1. By directly calculation, we have λ3(G) = −d4 . Moreover, G is a d-regular

multigraph with five vertices, −d4 = − dn
9n−25 , and κ(G) = 1. Thus, the bound of λ3(G) in Theorem 1.13 is

the best possible for this infinite family of multigraphs.

v

3d
4

 

d
4

 
3d
4

 

d
4

 

Figure 3. d-regular multigraph of order 5 with a cut vertex v.

4. Conclusion. We have studied the upper bound for λ3(G) in a d-regular (multi-)graph which assures

that κ(G) ≥ t + 1. However, the relationship between the vertex connectivity and the k-th (k ≥ 4) largest

eigenvalue of a connected (multi-)graph can be a direction for future work.
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Appendix. In the following, we give the Mathematica code which be used to calculate the minimum

of the third largest eigenvalue in the Proof of Theorem 1.13.

First, we calculate the derivative dλ3(Q
′
)

dq with respect to q as follows:

∂q

(
1

2

(
d− p

a
− q

b
−
√(

d− p

a
− q

b

)2
+ 4
(p2

a
+

q2

b
− pq

ab

)))
.

We have

1

2

−1

b
−

− 2(d− p
a−

q
b )

b + 4
(
− p
ab + 2q

b

)√(
d− p

a −
q
b

)2

+ 4
(
p2

a + q2

b −
pq
ab

)
 .

Let

f =
1

2

−1

b
−

−2(d−p
a−

q
b )

b + 4
(
− p

ab + 2q
b

)√(
d− p

a −
q
b

)2
+ 4
(

p2

a + q2

b −
pq
ab

)
 ;

We substitute d− q for p:

p = d− q;

We solve the equation 1
2

− 1
b −

−
2(d− p

a
− q

b )
b +4(− p

ab + 2q
b )√(

d− p
a−

q
b

)2

+4

(
p2

a + q2

b −
pq
ab

)
 about q:
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Solve[f==0, q];

The following results are obtained:

{q → 0}, {q → (1+2a)bd
a+b+4ab}

Next, we substitute n− 1− a for b and (1+2a)bd
a+b+4ab for q:

b=n - 1 - a;

q = (1+2a)bd
a+b+4ab ;

We continue to calculate

1

2

(
d− p

a
− q

b
−
√(

d− p

a
− q

b

)2
+ 4
(p2

a
+

q2

b
− pq

ab

))
;

Then, we get

1

2

(
d− (1 + 2a)d

−1 + n+ 4a(−1− a+ n)
−
d− (1+2a)d(−1−a+n)

−1+n+4a(−1−a+n)

a
−

((
d− (1 + 2a)d

−1 + n+ 4a(−1− a+ n)
−

d− (1+2a)d(−1−a+n)
−1+n+4a(−1−a+n)

a

)2

+ 4

(
(1 + 2a)2d2(−1− a+ n)

(−1 + n+ 4a(−1− a+ n))2
−

(1 + 2a)d
(
d− (1+2a)d(−1−a+n)

−1+n+4a(−1−a+n)

)
a(−1 + n+ 4a(−1− a+ n))

+

(
d− (1+2a)d(−1−a+n)

−1+n+4a(−1−a+n)

)2

a

)) 1
2
)

Under the condition of d ≥ 3, we simplify the above equation:

Fullsimplify[%7 && d ≥ 3];

Hence, we obtain
dn

1+4a(1+a−n)−n && d ≥ 3.

Finally, under the condition of n ≥ 5, d ≥ 3, and 2 ≤ a ≤ n− 3, we calculate the minimum of dn
1+4a(1+a−n)−n

as follows:

Minimize
[
{ dn
1+4a(1+a−n)−n ,n ≥ 5,d ≥ 3,2 ≤ a ≤ n− 3},a

]
;

Hence, we obtain the result:

{
− dn

9n−25 d ≥ 3 && n > 5

∞ True
, a→

 1
2 (−1 + n)− 1

2

√
−

(−25+9n)
(
dn+ dn2

−25+9n−
dn3

−25+9n

)
dn d ≥ 3 && n ≥ 5

Indeterminate True

.
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