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EIGENVALUES FOR STOCHASTIC MATRICES WITH A PRESCRIBED STATIONARY

DISTRIBUTION∗

STEVE KIRKLAND†

Abstract. Given a vector 0 < w ∈ Rn whose entries sum to 1, the region σS(w) in the complex plane consisting of all

eigenvalues of all stochastic matrices having w> as a left Perron vector is considered. Some general observations about this

region are made, it is proven that
⋂

w∈Rn,w>0,w>1=1 σS(w) = [0, 1], and a characterization is given of the vectors w such that

σS(w) contains an element λ 6= 1 with |λ| = 1. The corresponding problem for reversible stochastic matrices with given left

Perron vector is also considered, as is the corresponding region σR(w), which is a subset of [−1, 1]. Under a mild hypothesis on

w, it is proven that the smallest element of σR(w) corresponds to a reversible stochastic matrix whose graph is a tree with a

loop at one vertex. A general lower bound on the eigenvalues of reversible stochastic matrices with given left Perron vector is

also given, as is a complete description of σR(w) when w has two or three entries.
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1. Introduction and preliminaries. An n × n matrix T is stochastic if it is entrywise nonnegative

(denoted T ≥ 0), and each of its rows sums to 1. Stochastic matrices have received enormous attention

over the last century. This is due in no small part to the fact that they are central to the study of discrete

time, finite state, time-homogeneous Markov chains; Markov chains are, in turn, widely applied throughout

science and engineering.

It is well known that for an irreducible stochastic matrix T, there is a corresponding left Perron vector

w> with all positive entries (denoted w > 0) such that w>T = w> and w>1 = 1, where 1 denotes the

all-ones vector of the appropriate order. This vector w> is known as the stationary distribution, and in the

case that T is primitive (i.e. some power of T has all positive entries), the sequence T k, k = 1, 2, . . . converges

to 1w> as k → ∞. In this case, the entries of the stationary distribution reflect the long-term behavior of

the corresponding Markov chain. Further, the nature of convergence of the sequence T k is dictated by the

eigenvalues of T .

In view of the foregoing, it is no surprise that the eigenvalues of stochastic matrices are the subject of

intense study, as they carry critical information regarding the convergence properties of Markov chains. A

classic result of Karpelevič [4] describes for each n ∈ N with n ≥ 2, the region in the complex plane consisting

of all eigenvalues of all stochastic matrices of order n. A sharpening of that description can be found in

[7]. In a related direction, Perfect and Mirsky [10] consider the corresponding region for doubly stochastic

matrices (i.e. those stochastic matrices for which all rows and columns sum to 1) and formulate a conjecture

on the structure of that region. Developments on the Perfect–Mirsky conjecture can be found in [9] and [8].
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How does the stationary distribution of an irreducible stochastic matrix constrain the corresponding

eigenvalues? We explore that question in this paper. At first glance, it may not be obvious that any

constraints on the eigenvalues are imposed by the stationary distribution. However, the following example

illustrates how such constraints arise.

Example 1.1. Suppose we have w ∈ R3 with 0 < w1 ≤ w2 ≤ w3. A typical stochastic matrix T having

w> as a left fixed-vector has the form

T =

 a b 1− a− b
c d 1− c− d

(1−a)w1−cw2

w3

(1−d)w2−bw1

w3

w3+(a+b−1)w1+(c+d−1)w2

w3

 ,
where necessarily all entries are nonnegative. Observe that for such a T we have trace(T ) = a + d +
w3+(a+b−1)w1+(c+d−1)w2

w3
≥ w3−w1−w2

w3
= 2w3−1

w3
. It now follows that if λ is a non-real eigenvalue of T then

Re(λ) ≥ w3−1
2w3

. For example, if w3 >
1
2 , then any non-real eigenvalue of any stochastic matrix with w> as a

left Perron vector necessarily has real part strictly greater than − 1
2 .

The following result from [6] further illustrates how the stationary distribution imposes a constraint on

eigenvalues.

Theorem 1.2. Let T be an irreducible stochastic matrix of order n with eigenvalues 1, λ2, . . . , λn, and

stationary distribution w>, where without loss of generality we assume that w1 ≤ w2 ≤ . . . ≤ wn. Then

n∑
k=2

1

1− λk
≥

n∑
j=1

(j − 1)wj .

Observe that Perfect and Mirsky’s conjecture can be viewed in terms of the relationship between the

stationary distribution and the eigenvalues of a stochastic matrix. An irreducible n × n stochastic matrix

is doubly stochastic precisely in the case that 1
n1
> is the stationary vector; hence, the Perfect–Mirsky

conjecture can be thought of as an effort to describe eigenvalues of stochastic matrices having 1
n1
> as a left

Perron vector.

Our goal in this paper is to deepen the understanding of how the eigenvalues of an irreducible stochastic

matrix are influenced by the structure of its stationary distribution. In order to do so, we introduce a slight

relaxation of the problem by considering the family of stochastic matrices having w> as a left fixed-vector

(i.e. w>T = w>). Evidently, the irreducible stochastic matrices having w> as the stationary distribution

are a dense subset of that family.

Among the time-homogeneous discrete-time Markov chains, the so-called time-reversible Markov chains

constitute an important subfamily. Suppose that T is an n × n stochastic matrix with positive left Perron

vector w>. The following are equivalent conditions for the corresponding Markov chain to be time-reversible

(see [5]):

(i) witi,j = wjtj,i, i, j = 1, . . . , n;

(ii) W
1
2TW−

1
2 is symmetric, where W = diag(w);

(iii) T = W−1A, where A is a symmetric matrix such that A1 = w. If one of those conditions holds, then we

say that T is a reversible stochastic matrix. Evidently, any reversible stochastic matrix has all eigenvalues

real, as it is (diagonally) similar to a symmetric matrix.
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Suppose that w ∈ Rn with w > 0 and w>1 = 1. In this paper, we consider the following sets of stochastic

matrices:

S(w) = {T ∈Mn(R)|T ≥ 0, T1 = 1, w>T = w>};
R(w) = {T ∈Mn(R)|T ≥ 0, T1 = 1, w>T = w>, wjtj,i = witi,j , i, j = 1, . . . , n}.

Evidently, S(w) consists of the stochastic matrices having w> as a left Perron vector, while R(w) is the

subset of S(w) for which the transition matrices are reversible. Note that both S(w) and R(w) are convex

polytopes of matrices. We further define

σS(w) = {λ|λ is an eigenvalue of T for some T ∈ S(w)}, and

σR(w) = {λ|λ is an eigenvalue of T for some T ∈ R(w)},

which are the collections of eigenvalues of matrices in S(w) and R(w), respectively. We also let λ(w) =

min{λ|λ ∈ σR(w)}, and note in passing that the minimum is well-defined since R(w) is a compact set.

The broad goals of the paper are: i) to pose the challenge of developing a better understanding of S(w)

and ii) to present some results on this topic in the hopes of generating further interest in it. In section 2, we

prove some results on the structure of S(w), in particular we characterize the complex numbers that reside

in S(w) for any positive stationary vector w>. Section 3 analyzes σR(w), describes the structure of matrices

that yield λ(w), and provides a lower bound on λ(w) in terms of w. In section 4, we provide formulas for

λ(w) for w ∈ R2 and w ∈ R3.

Throughout the paper, we rely on basic results in nonnegative matrix theory. For background on that

topic and its connection with Markov chains, we refer the interested reader to [11]. We also rely on notions

from combinatorial matrix theory; [3] provides an overview of and introduction to that rich subject.

2. The general case. We begin by recording a few preliminary facts.

Observation 2.1. Suppose that w ∈ Rn, w > 0, w>1 = 1. We have the following simple observations.

(i) σS(w) is symmetric with respect to the real axis.

(ii) σS(w) is star-shaped with respect to 1 – i.e., if λ ∈ σS(w), then tλ+ 1− t ∈ σS(w) for all t ∈ [0, 1]. This

is because if T is stochastic with left Perron vector w>, then so is (1− t)I + tT for each t ∈ [0, 1].

(iii) σS(w) is star-shaped with respect to the origin – i.e., if λ ∈ σS(w), then tλ ∈ σS(w) for all t ∈ [0, 1].

This is because if T is stochastic with left Perron vector w>, then so is (1− t)1w> + tT for each t ∈ [0, 1].

In particular, if λ 6= 1 is an eigenvalue of T , then tλ is an eigenvalue of (1− t)1w> + tT (this is essentially a

result of Brauer [1]).

(iv) Suppose that w1 = min{wj |j = 1, . . . , n}. If λ ∈ σS(w), then so is − w1λ∑n
j=2 wj

. This is because if T is

stochastic with left Perron vector w>, then so is 1
1−w1

(1w> − w1T ). Again referring to Brauer’s result, if

λ 6= 1 is an eigenvalue of T , then − w1λ
1−w1

is an eigenvalue of 1
1−w1

(1w>−w1T ). To cover the case that λ = 1,

we note that 1
1−w1

(1w> − w1I) has − w1

1−w1
as an eigenvalue.

(v) If ŵ is a subvector of w, then σS( 1
1>ŵ

ŵ) ⊆ σS(w). This is because if T̂ ∈ S( 1
1>ŵ

ŵ) has eigenvalue λ, then

for the matrix T formed from T̂ by taking its direct sum with a suitable identity matrix, we have T ∈ S(w),

and λ as an eigenvalue of T .

Our first result identifies the numbers that are common to S(w) for any admissible w.

Theorem 2.1. Suppose that n ≥ 2. Then
⋂
w∈Rn,w>0,w>1=1 σS(w) = [0, 1].
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Proof. We proceed by induction on n. First suppose that n = 2, and that we are given w ∈ R2 with

w > 0 and w>1 = 1, and without loss of generality we may assume that w1 ≤ w2. Then for any T ∈ S(w),

we may write T as

T =

[
s 1− s

(1−s)w1

w2
1− (1−s)w1

w2

]
,

for some s ∈ [0, 1]. The eigenvalues of T are 1 and s−w1

w2
. Hence, if λ ∈ σS(w), then necessarily λ ≥ −w1

w2
.

Suppose now that λ ∈
⋂
w∈R2,w>0,w>1=1 σS(w). Then necessarily λ ≥ −w1

w2
for any w ∈ R2 with w > 0

and w>1 = 1, and it follows readily that λ ≥ 0, and certainly λ ≤ 1. Hence,
⋂
w∈R2,w>0,w>1=1 σS(w) ⊆

[0, 1]. Next, consider a ∈ [0, 1] and suppose that we are given w ∈ R2 with w > 0 and w>1 = 1. Then

aI + (1− a)1w> ∈ σS(w) and has a as an eigenvalue, so that [0, 1] ⊆
⋂
w∈R2,w>0,w>1=1 σS(w).

Assume now that the statement holds for some n ≥ 2, and suppose that λ ∈
⋂
w∈Rn+1,w>0,w>1=1 σS(w).

Consider any ε ∈ (0, 1) and any v ∈ Rn with v > 0 and v>1 = 1, and let w(ε)> be given by
[
ε (1− ε)v>

]
.

Then there is a substochastic matrix T (ε) of order n, a nonnegative vector y(ε) ∈ Rn with y(ε)>1 ≤ 1 and

a vector u(ε) ∈ Cn with ||u(ε)||2 = 1 such that for the matrix

(2.1) S(ε) =

[
1− y(ε)>1 y(ε)>

1− T (ε)1 T (ε)

]
,

we have w(ε)>S(ε) = w(ε)>, and S(ε)u(ε) = λu(ε). Since w(ε)>S(ε) = w(ε)>, we find from (2.1) that

εy(ε)> + (1− ε)v>T (ε) = (1− ε)v>,
−εy(ε)>1 + (1− ε)− (1− ε)v>T (ε)1 = 0.(2.2)

Next we let ε → 0+. Appealing to compactness, we find that there is a nonnegative vector y(0) with

y(0)>1 ≤ 1, a substochastic matrix T (0) of order n, and a vector u(0) ∈ Cn+1 of norm 1 such that[
1− y(0)>1 y(0)>

1− T (0)1 T (0)

]
u(0) = λu(0).

Referring to (2.2), we find that necessarily v>T (0) = v> and v>T (0)1 = 1. As T (0) is substochastic and v

is a positive vector whose entries sum to 1, we deduce that in fact T (0) is stochastic. It now follows that λ

is an eigenvalue of the stochastic matrix [
1− y(0)>1 y(0)>

0 T (0)

]
.

Hence, either λ = 1 − y(0)>1 or λ is an eigenvalue of T (0). In the former case, we have λ ∈ [0, 1], as

desired. Suppose now that λ is an eigenvalue of T (0). Hence, λ ∈ σS(v), but since v was arbitrary (subject

to the constraint on positivity and sum of entries) we deduce that in fact λ ∈
⋂
v∈Rn,v>0,v>1=1 σS(v). Hence,

λ ∈ [0, 1] by the induction hypothesis, as desired. So
⋂
w∈Rn+1,w>0,w>1=1 σS(w) ⊆ [0, 1], and to conclude

the reverse containment, we appeal to the facts that for any admissible w, 1 ∈ σS(w), and that σS(w) is

star-shaped with respect to 0 by Observation 2.1 (iii).

We have the following parallel result for eigenvalues of reversible stochastic matrices.

Corollary 2.2.
⋂
w∈Rn,w>0,w>1=1 σR(w) = [0, 1].
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Proof. Since σR(w) ⊆ σS(w) for any admissible w, we find from Theorem 2.1 that⋂
w∈Rn,w>0,w>1=1

σR(w) ⊆ [0, 1].

Further, for any admissible w and any a ∈ [0, 1] observe that aI + (1 − a)1w> ∈ R(w) and has a as an

eigenvalue.

The next result characterizes the structure of the vector w when S(w) contains a root of unity distinct

from 1.

Theorem 2.3. Suppose that n ≥ 2, that 2 ≤ k ≤ n, and that w ∈ Rn with w > 0, w>1 = 1. We have

e
2πij
k ∈ σS(w) for some j = 1, . . . , k − 1 that is relatively prime to k, if and only if there is a collection of

non-empty disjoint subsets S1, . . . , Sk ⊆ {1, . . . , n} such that the values
∑
l∈Si wl, i = 1, . . . , k, are all equal.

Further, −1 ∈ σR(w) if and only if there is a pair of non-empty disjoint subsets S1, S2 of {1, . . . , n} such

that
∑
l∈S1

wl =
∑
l∈S2

wl.

Proof. First suppose that e
2πj
k ∈ σS(w) for some j = 1, . . . , k − 1. Then there is a stochastic matrix

T such that w>T = w> and having e
2πj
k as an eigenvalue. It follows now that by performing a suitable

simultaneous permutation of the rows and columns of T , we may write T as

T =

[
T1 0

X T2

]
,

where T1 is irreducible, stochastic, and has period k. (We take T1 = T in the case that T itself is irreducible.)

Permute and partition w conformally, so that w> =
[
w>1 w>2

]
. Observe that w>1 T1 + w>2 X = w>1 , from

which we find that w>2 X1 = w>1 1− w>1 T11 = 0. Hence X = 0.

So, w>1 = w>1 T1. Since T1 is irreducible and periodic with period k, we may, after a suitable permutation

similarity of T1 (and corresponding reordering of the entries in w1), rewrite the eigenequation as[
w1(1)T w1(2)T . . . w1(k)T

]

=
[
w1(1)> w1(2)> . . . w1(k)>

]


0 T1(2) 0 . . . 0

0 0 T1(3) . . . 0
...

. . .
. . .

...

0 0 . . . 0 T1(k)

T1(1) 0 0 . . . 0

 .

Hence, we have w>1 (1) = w1(k)TT1(1), and w>1 (j) = w1(j − 1)TT1(j), j = 2, . . . , k. But each T1(j) has row

sums equal to 1, and it follows readily that w>1 (1)1 = w1(k)T1, and w>1 (j)1 = w1(j−1)T1, j = 2, . . . , k. The

desired conclusion now follows. Conversely, if there are subsets S1, . . . , Sk satisfying the stated condition,

we may write w (after suitable reordering) as w> =
[
w>1 w>2 . . . w>k w>

]
, where w corresponds to

the indices falling outside of ∪kj=1Sj . Observe then that the matrix
0 1w>2 0 . . . 0

0 0 1w>3 . . . 0
...

. . .
...

0 0 . . . 0 1w>k
1w>1 0 0 . . . 0

⊕ I,

has w as a fixed vector and the k-th roots of unity as eigenvalues.
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The statements regarding −1 being in σR(w) are specializations of the arguments above, along with the

observation that for the converse, the matrix we produce corresponds to a reversible Markov chain.

We have the following immediate consequence.

Corollary 2.4. Consider a vector w ∈ Rn with w > 0, w>1 = 1. Suppose that for any pair of non-

empty disjoint subsets S1, S2 ⊂ {1, . . . , n},
∑
j∈S1

wj 6=
∑
k∈S2

wk. Then for any stochastic matrix T such

that w>T = w>, the only eigenvalue of T of unit modulus is 1. In particular, if such a T is irreducible, it

is necessary primitive.

3. The reversible case. Suppose that w ∈ Rn with w > 0, w>1 = 1. From Theorem 2.3, we find

that λ(w) > −1 if and only if for each pair of non-empty disjoint subsets S1, S2 of {1, . . . , n}, we have∑
l∈S1

wl 6=
∑
l∈S2

wl. In order to ease the exposition going forward, henceforth we assume that our vector

w satisfies the following properties, to which we collectively refer as Assumption A:

Assumption A:

(i) w ∈ Rn;

(ii) w > 0;

(iii) w>1 = 1;

(iv) for each pair of non-empty disjoint subsets S1, S2 of {1, . . . , n}, we have
∑
l∈S1

wl 6=
∑
l∈S2

wl.

Theorem 3.1. Suppose that n ≥ 2, and that w ∈ Rn with w > 0, w>1 = 1. There is an extreme point T

of R(w) such that λ(w) is an eigenvalue of T .

Proof. Suppose that T1, T2 ∈ R(w), and that t ∈ [0, 1]. Set W = diag(w) and note that both W
1
2T1W

−1
2

and W
1
2T2W

−1
2 are symmetric matrices. Observe that

λmin(tT1 + (1− t)T2)

= λmin(tW
1
2T1W

−1
2 + (1− t)W 1

2T2W
−1
2 )

≥ λmin(tW
1
2T1W

−1
2 ) + λmin((1− t)W 1

2T2W
−1
2 )

= tλmin(T1) + (1− t)λmin(T2).

Hence, we find that λmin(•) is a concave function on the convex polytope R(w). The conclusion follows

readily.

Suppose that w > 0, w>1 = 1. Observe that any matrix in R(w) can be constructed as follows: start

with a symmetric nonnegative matrix A such that A1 = w, then produce the stochastic matrix diag(w)−1A.

Consequently, the matrices in R(w) are in one-to-one correspondence with the matrices in the polytope

P = {A|A = A>, A ≥ 0, A1 = w}. Recall that for a combinatorially symmetric n × n matrix A the

graph associated with A, which we denote by G(A), has an edge between vertices j and k if and only if

ajk 6= 0, j, k = 1, . . . , n. Brualdi [2] has characterized the extreme points of P as those A ∈ P such that each

connected component of G(A) is either a tree or a unicyclic graph containing an odd cycle. (We recall that

a graph is unicyclic if it is connected and contains just one cycle.) That characterization immediately yields

the following.

Theorem 3.2. Suppose that w ∈ Rn, w > 0, w>1 = 1. A matrix T ∈ R(w) is an extreme point of R(w)

if and only if each connected component of G(T ) is either a tree or a unicyclic graph whose unique cycle has

odd length (possibly a loop).
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The following technical result will be useful in the sequel.

Lemma 3.3. Suppose that x ∈ R2k+1, and for each j = 0, 1, . . . , 2k, let yj = (xj+1 − xj+2k)(xj+2k−1 −
xj+2k+1), where the subscripts are considered modulo 2k + 1. Then Π2k

j=0yj ≤ 0. In particular, for some

j0 ∈ {0, 1, . . . , 2k}, yj0 ≤ 0.

Proof. Observe that for each j = 0, 1, . . . , 2k − 1, the left factor of yj is (xj+1 − xj+2k), while the right

factor of yj+1 is −(xj+1 − xj+2k). Similarly, the left factor of y2k is (x2k+1 − x2k−1) while the right factor

of y0 is −(x2k+1 − x2k−1). Consequently, Π2k
j=0yj = (−1)2k+1Π(xj+1 − xj+2k)2.

Theorem 3.4. Suppose that w ∈ Rn satisfies Assumption A. Suppose further that T ∈ R(w) and that

G(T ) is unicyclic, with cycle length 2k + 1 for some k ∈ N. Then there is a matrix T̂ ∈ R(w) such that

λmin(T̂ ) ≤ λmin(T ), and the graph of T̂ is a tree with a loop at one vertex.

Proof. Set W = diag(w), and note that A ≡ W
1
2TW−

1
2 is symmetric, similar to T , and has the same

graph as T . Without loss of generality, we assume that the cycle of length 2k + 1 in the graph of A is

1 ∼ 2 ∼ . . . ∼ 2k + 1 ∼ 1. Let u be an eigenvector of A corresponding to λmin(A), and set x = W−
1
2u.

From Lemma 3.3, there is a j0 ∈ {0, 1, . . . , 2k} such that (xj0+1 − xj0+2k)(xj0+2k−1 − xj0+2k+1) ≤ 0, where

the subscripts are considered modulo 2k + 1. We note that the cycle of length 2k + 1 contains the subpath

j0 + 2k − 1 ∼ j0 + 2k ∼ j0 + 2k + 1 ∼ j0 + 1.

Suppose first that k ≥ 2. Let E be the matrix whose principal submatrix on lines j0 +1, 2k+ j0−1, 2k+

j0, 2k + j0 + 1 is 
0 1

wj0+1
0 − 1

wj0+1

1
w2k+j0−1

0 − 1
w2k+j0−1

0

0 − 1
w2k+j0

0 1
w2k+j0

− 1
w2k+j0+1

0 1
w2k+j0+1

0

 ,
and whose remaining entries are zero. Observe that T + cE ∈ R(w) for all

0 ≤ c ≤ min{wj0+1tj0+1,2k+j0+1, w2k+j0−1t2k+j0−1,2k+j0} ≡ c0.

Let T̃ = T+c0E, Ã = W
1
2 T̃W−

1
2 , and note that u>Ãu = u>Au+2c0(xj0+1−xj0+2k)(xj0+2k−1−xj0+2k+1) ≤

λmin(A)u>u. Hence, λmin(T̃ ) ≤ λmin(T ). Note that G(T̃ ) is formed from G(T ) by either deleting the edge

j0 ∼ j0 + 2k + 1 and adding the edge j0 + 1 ∼ j0 + 2k − 1 (thus creating a unicyclic graph with a cycle

of length 2k − 1), or deleting the edge j0 + 2k − 1 ∼ j0 + 2k and adding the edge j0 + 1 ∼ j0 + 2k − 1

(again creating a unicyclic graph with a cycle of length 2k − 1); note that it cannot be the case that both

j0 ∼ j0 + 2k + 1 and j0 + 2k − 1 ∼ j0 + 2k are deleted from G(T ), otherwise T̃ would be disconnected,

and the connected component containing vertices j0 + 2k and j0 + 2k + 1 would bipartite, contrary to our

hypothesis that w satisfies Assumption A. Hence, G(T̃ ) is unicyclic with a cycle of length 2k − 1.

For the case that k = 1, we consider the matrix E whose principal submatrix on lines j0 +1, j0 +2, j0 +3

is 
2

wj0+1
− 1
wj0+1

− 1
wj0+1

− 1
wj0+2

0 1
wj0+2

− 1
wj0+3

1
wj0+3

0

 ,
and whose remaining entries are zero. Arguing as above, we find that there is a matrix T̃ ∈ R(w) whose

graph is unicyclic with a cycle of length 2k − 1(= 1), and such that λmin(T̃ ) ≤ λmin(T ).

The conclusion now follows by a straightforward argument by induction on k.
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Lemma 3.5. Suppose that w ∈ Rn satisfies Assumption A and that T ∈ R(w). Suppose further that

G(T ) is a tree with a loop, and that x is a right eigenvector of T corresponding to the eigenvalue λ. If x has

a zero entry, then λ > λ(w).

Proof. Since x has a zero entry, there are indices j, k, ` such that xj = 0, xk < 0, x` > 0 and G(T )

contains the edges j ∼ k, j ∼ `. Without loss of generality, we assume that j = 1, k = 2, ` = 3. Let E be the

matrix whose leading 3× 3 principal submatrix is 2
w1

− 1
w1

− 1
w1

− 1
w2

0 1
w2

− 1
w3

1
w3

0

 ,
and whose remaining entries are zero. Observe that for all sufficiently small ε > 0, T + εE ∈ R(w). Set

W = diag(w), let Aε ≡ W
1
2 (T + εE)W−

1
2 , and let u = W

1
2x. Note that u>Aεu = x>WTx + εx>WEx =

λx>Wx+ εx>W ( 2x1−x2−x3

w1
e1 + x3−x1

w2
e2 + x2−x1

w3
e3) = λu>u+2εx2x3 < λu>u. The conclusion now follows.

The following result identifies a family of extreme points that includes a matrix realizing λ(w) as an

eigenvalue.

Theorem 3.6. Suppose that w ∈ Rn satisfies Assumption A. There is a T ∈ R(w) such that i) λmin(T ) =

λ(w) and ii) G(T ) is a tree with a loop.

Proof. From Theorems 3.2 and 3.4, it follows that there is a T ∈ R(w) such that λmin(T ) = λ(w) and

each connected component of G(T ) is either a tree or a tree with a loop. If some connected component of

G(T ) were a tree, then part (iv) of Assumption A would be violated, and so we conclude that each connected

component of G(T ) is a tree with a loop. If G(T ) is connected, we are done.

Suppose now that G(T ) is not connected, say with connected components C1, . . . , Cm for some m ≥ 2.

For each ` = 1, . . . ,m, let i` denote the vertex in C` at which there is a loop. Without loss of generality,

assume that the principal submatrix of T corresponding to C1 has λ(w) as an eigenvalue, with corresponding

eigenvector x. By Lemma 3.5, x has no zero entries.

For all sufficiently small ε > 0, note that T − ε(ei1 −
wi1
wi2

ei2)(ei1 − ei2)> ∈ R(w). Let y denote the

vector formed from x by appending zeros in the positions corresponding to vertices in C2, . . . , Cm. Let

W = diag(w), u = W
1
2 y and Aε ≡W

1
2 (T −ε(ei1−

wi1
wi2

ei2)(ei1−ei2)>)W−
1
2 . Then u>Aεu = λmin(T )y>Wy−

εy>W (ei1 −
wi1
wi2

ei2)(ei1 − ei2)>y = λmin(T )u>u − εwi1x2i1 < λmin(T )u>u. This last is a contradiction, and

we conclude that G(T ) must be connected.

The following result shows how the graphs arising in Theorem 3.6 generate the corresponding matrices

in R(w) (see also [2]).

Theorem 3.7. Suppose that w ∈ Rn satisfies Assumption A. Let H be a tree on vertices labeled 1, . . . , n,

with a loop at vertex j. For each ` = 1, . . . , n, ` 6= j, let H̃` denote the subtree formed by deleting the branch

at ` that contains j. Define S0
` to be the set of vertices in H̃` that are at even distance from `, and S1

` to be

the set of vertices in H̃` that are at odd distance from `. Finally, let S0
j (respectively S1

j ) be the set of vertices

in H that are at even (respectively odd) distance from j. There is a T ∈ R(w) such that G(T ) = H if and

only if for each ` = 1, . . . , n,
∑
p∈S0

`
wp−

∑
q∈S1

`
wq > 0. When that condition holds, for each edge k ∼ ` of H

that is not a loop, and where ` is farther from j than k is, we have tk,` = 1
wk

(
∑
p∈S0

`
wp −

∑
q∈S1

`
wq), t`,k =

1
w`

(
∑
p∈S0

`
wp −

∑
q∈S1

`
wq). Finally, tj,j = 1

wj
(
∑
p∈S0

j
wp −

∑
q∈S1

j
wq).
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Proof. Suppose that there is an T ∈ R(w) such that G(T ) = H. Using the fact that wktk,` = w`t`,k for

k, ` = 1, . . . , n, we deduce from the equation w>T = w> that the following linear system (in unknowns that

are indexed according to the edges of H) has a positive solution:

(3.3)
∑

`∼k,`≥k

wkxk,` +
∑

`∼k,`<k

w`x`,k = wk, k = 1, . . . , n.

Indeed, letting B denote the vertex-edge incidence matrix of H, the coefficient matrix of the linear system

(3.3) can be written as B diag(u), where u is the vector with entries indexed by the edges of H such that

for each edge k ∼ `, the corresponding entry of u is given by wmin{k,`}.

Since H is a tree with a loop, there is an ordering of the rows and columns of B diag(u) such that it

is square and lower triangular with all diagonal entries positive. Hence, (3.3) has a unique solution, and it

is straightforward to check that the stated values of the nonzero entries in T are a solution (and hence the

unique solution) to (3.3). The conclusion follows readily.

u u u
u

u 2 4 5

1

3

A
A
A

�
�
�

j

Figure 1. The graph H0 for Example 3.8.

Example 3.8. In this example, we briefly illustrate the technique used in the proof of Theorem 3.7.

Consider the graph H0 that is depicted in Fig. 1. We have the following unknowns corresponding to the

edges: x1,2, x2,3, x2,4, x4,4, x4,5. For the present example, the linear system (3.3) is

w1x1,2 = w1;

w2x2,3 + w2x2,4 + w1x1,2 = w2;

w2x2,3 = w3;

w4x4,4 + w4x4,5 + w2x2,4 = w4;

w4x4,5 = w5.(3.4)

This system can be conveniently re-written as
w1 0 0 0 0

0 w2 0 0 0

0 0 w4 0 0

w1 w2 0 w2 0

0 0 w4 w2 w4




x1,2
x2,3
x4,5
x2,4
x4,4

 =


w1

w3

w5

w2

w4

 .

According to the conclusion of Theorem 3.7, we have

t1,2 =
w1

w1
, t2,3 =

w3

w2
, t4,5 =

w5

w4
, t2,4 =

w2 − w1 − w3

w2
, t4,4 =

w1 + w3 + w4 − w2 − w5

w4
.
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Computing the matrix-vector product with those values now yields
w1 0 0 0 0

0 w2 0 0 0

0 0 w4 0 0

w1 w2 0 w2 0

0 0 w4 w2 w4




(w1

w1
)

(w3

w2
)

(w5

w4
)

(w2−w1−w3

w2
)

(w1+w3+w4−w2−w5

w4
)

 =


w1

w3

w5

w2

w4

 ,

thus verifying that those values yield the unique solution to (3.4).

Assuming that w is a positive vector with w2 > w1 + w3 and w1 + w3 + w4 > w2 + w5, our solution to

(3.4) is positive. In that case, we assemble the above information to produce the stochastic matrix

T =


0 1 0 0 0
w1

w2
0 w3

w2

w2−w1−w3

w2
0

0 1 0 0 0

0 w2−w1−w3

w4
0 w1+w3+w4−w2−w5

w4

w5

w4

0 0 0 1 0

 ,
which is in R(w) with G(T ) = H0.

Lemma 3.9. Suppose that w ∈ Rn satisfies Assumption A, and that wn >
1
2 . If T ∈ R(w) and G(T ) is

a tree with a loop, then necessarily the loop is at vertex n.

Proof. Suppose that in G(T ), the loop is at vertex j. By Theorem 3.7, the weight of the loop is given

by

1

wj

∑
p∈S0

j

wp −
∑
p∈S1

j

wp

 =
1

wj

1− 2
∑
p∈S1

j

wp

 .

If n ∈ S1
j , then the weight of the loop would be negative, so we conclude that n ∈ S0

j .

Suppose that j 6= n. Then there is a vertex k adjacent to j such that n ∈ G̃(T )k, and necessarily n ∈ S1
k

since k is adjacent to j and the distance between j and n is even. But then we have
∑
`∈S0

k
w`−

∑
`∈S1

k
w` ≤

1− wj − 2
∑
`∈S1

k
w` ≤ 1− wj − 2wn < 0, a contradiction. We deduce that j = n, as desired.

Next we present an asymptotic result.

Theorem 3.10. Suppose that w̃ ∈ Rn−1 satisfies Assumption A. For all 0 < ε < 1
2 , let w(ε)> =[

( 1
2 − ε)w̃

> 1
2 + ε

]
. For all sufficiently small ε > 0, λ(w(ε)) = −

(
1
2−ε
1
2+ε

)
.

Proof. Suppose that 0 < ε < 1
2 . Observe that the matrix

T =

[
0 1(

1
2−ε
1
2+ε

)
w̃> 2ε

1
2+ε

]
,

is in R(w(ε)); it is straightforward to determine that λmin(T ) = −
(

1
2−ε
1
2+ε

)
. Evidently, G(T ) is a star with a

loop at vertex n.

Suppose that T (ε) ∈ R(w(ε)), and that G(T (ε)) is a tree with a loop. From Lemma 3.9, necessarily that

loop is at vertex n. Suppose further that G(T (ε)) is not a star with a loop at vertex n. Then S0
n contains

at least two vertices. Observe that the weight of the loop at vertex n is given by
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2
∑
j∈S0

n
w(ε)j − 1

1
2 + ε

=
4ε+ 4

∑
j∈S0

n,j 6=n
w(ε)j

1 + 2ε
=

4ε+ (2− 4ε)
∑
j∈S0

n,j 6=n
w̃j

1 + 2ε
,

which is bounded away from 0 as ε→ 0+. Similarly, if k ∼ n in G(T (ε)), then the (n, k) entry in T (ε) is given

by
(

1
2−ε
1
2+ε

)
(
∑
p∈S0(k) w̃p −

∑
p∈S1(k) w̃p), which is bounded away from 0 as ε→ 0+. Finally, we note that for

any j ≤ n − 1 and any k ≤ n, the (j, k) entry of T (ε) is independent of ε. It now follows that as ε → 0+,

T (ε) converges to a primitive stochastic matrix, and hence that as ε → 0+, the eigenvalues of T (ε) are all

bounded away from −1. Since −
(

1
2−ε
1
2+ε

)
→ −1 as ε → 0+, we find that for all sufficiently small positive

values of ε, λmin(T (ε)) > −
(

1
2−ε
1
2+ε

)
. As there is a finite number of trees on n vertices, the conclusion follows.

Using the results above, we can bound the elements of σR(w) away from −1, as the following theorem

establishes.

Theorem 3.11. Suppose that w ∈ Rn satisfies Assumption A. Set

γ =
1

wn
min

∑
p∈S1

wp −
∑
q∈S2

wq|S1, S2 ∈ {1, . . . , n}, S1 ∩ S2 = ∅,
∑
p∈S1

wp >
∑
q∈S2

wq

 .

Then λ(w) ≥ −(1− γn−1)
1

n−1 .

Proof. From a result of Brauer [1], it follows that if a stochastic matrix T has a column with all entries

bounded below by c > 0, then for any eigenvalue λ 6= 1 of T , we have |λ| ≤ 1− c.

Now consider T ∈ R(w) having λ(w) as an eigenvalue. (Note that λ(w) necessarily has absolute value

less than 1.) Without loss of generality, we may assume that G(T ) is a tree with a loop, say at vertex j.

From Theorem 3.7, it follows that every positive entry in T is bounded below by γ. The diameter of G(T )

is at most n− 1, and hence for every vertex k in G(T ) there is a path from k to j of length at most n− 1.

Further, since there is a loop at vertex j, we find that every vertex k in G(T ) there is a path from k to j of

length exactly n− 1. Hence, the j-th column of Tn−1 has all positive entries, and indeed Tn−1ej ≥ γn−11.

Since λ(w) is an eigenvalue of T, λ(w)n−1 is an eigenvalue of Tn−1. Consequently, |λ(w)n−1| ≤ 1 − γn−1,
from which the desired inequality follows.

4. Reversible low order cases. In this section, we explicitly describe σR(w) for w ∈ R2 and w ∈ R3.

As in section 3, the interesting case is that w satisfies Assumption A.

4.1. σR(w) for n = 2.

Theorem 4.1. Suppose that w ∈ R2 with w > 0, w>1 = 1, and w1 < w2. Then λ(w) = −w1

w2
.

Proof. From Theorem 3.6, the only extreme point to consider is

[
0 1
w1

w2

w2−w1

w2

]
, which has eigenvalues

1 and −w1

w2
. The conclusion follows immediately.

We note in passing that any irreducible stochastic matrix of order 2 is reversible. Hence, Theorem 4.1

yields the fact that when n = 2 and w1 ≤ w2, σS(w) =
[
−w1

w2
, 1
]
.
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4.2. σR(w) for n = 3, w3 >
1
2 .

Theorem 4.2. Suppose that w ∈ R3 satisfies Assumption A, and that w3 >
1
2 . Then

λ(w) =


w3−1
w3

if w1 + 3w2 ≥ 1,

−1
2

(
w2−w1

w3
+
√

(w2−w1)2

w2
3

+ 4w1(1−2w2)
w2w3

)
if w1 + 3w2 < 1.

Proof. Suppose that T ∈ R(w) and has λ(w) as an eigenvalue. From Theorem 3.6, we may assume that

G(T ) is a tree with a loop at one vertex, and from Lemma 3.9, the loop is at vertex 3. It follows that there

are two candidate matrices to consider:

T1 =

 0 0 1

0 0 1
w1

w3

w2

w3

2w3−1
w3

 and T2 =

 0 1 0
w1

w2
0 w2−w1

w2

0 w2−w1

w3

w1+w3−w2

w3

 .
The smallest eigenvalue of T1 is w3−1

w3
and the smallest eigenvalue of T2 is

−1

2

(
w2 − w1

w3
+

√
(w2 − w1)2

w2
3

+
4w1(1− 2w2)

w2w3

)
.

It remains only to determine the circumstances under which one of these two values is smaller than the

other.

In order to make that determination, we consider

T2 −
w3 − 1

w3
I =


1−w3

w3
1 0

w1

w2

1−w3

w3

w2−w1

w2

0 w2−w1

w3

1+w1−w2

w3

 ,
and recall that it is diagonally similar to a symmetric matrix. We find that T2 − w3−1

w3
I has at least two

positive eigenvalues, since the submatrix formed by deleting the second row and columns does (this follows

from interlacing on the diagonally similar symmetric matrix). Hence, the two largest eigenvalues of T2 exceed
w3−1
w3

; we deduce that λmin(T2) is less than, larger than, or equal to w3−1
w3

according as det(T2 − w3−1
w3

I) is

negative, positive, or zero. An uninteresting computation reveals that det(T2− w3−1
w3

I) = w1(w1+3w2−1)
w2w2

3
. The

conclusion follows.

4.3. σR(w) for n = 3, w3 <
1
2 .

Theorem 4.3. Suppose that w ∈ R3 satisfies Assumption A, and that w3 <
1
2 . Let

x−1 =
−1

2

(
w2 − w1

w3
+

√
(w2 − w1)2

w2
3

+
4w1(1− 2w2)

w2w3

)
,

x−2 =
−1

2

(
w3 − w2

w1
+

√
(w3 − w2)2

w2
1

+
4w2(1− 2w3)

w1w3

)
.

Then λ(w) = min{x−1 , x
−
2 }. More specifically, for each w2 ∈ ( 1

4 ,
1
2 ) with w2 6= 1

3 , there is a unique w∗1 ∈
( 1
2 − w2, w2) such that

(1− 2w2)w∗1
4 + (8w2

2 − w2 − 1)w∗1
3 + (24w2

2 − 27w2 + 7)w2w
∗
1
2

+w2(2w2 − 1)(13w2
2 − 15w2 + 4)w∗1 + w2(1− 2w2)4 = 0.
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We then have

λ(w) =


x−2 , if w2 ∈ ( 1

4 ,
1
3 ), w1 ∈ ( 1

2 − w2, w
∗
1)

x−1 if w2 ∈ ( 1
4 ,

1
3 ), w1 ∈ [w∗1 , w2)

x−2 if w2 ∈ [ 13 ,
1
2 ), w1 ∈ ( 1

2 − w2, 1− 2w2).

Proof. There are three matrices in R(w) having a graph that is a tree with a loop. They are

T1 =

 0 1 0
w1

w2
0 w2−w1

w2

0 w2−w1

w3

w1+w3−w2

w3

 , T2 =

w1+w2−w3

w1
0 w3−w2

w1

0 0 1
w3−w2

w3

w2

w3
0

 , and

T3 =

 0 0 1

0 w1+w2−w3

w2

w3−w1

w2
w1

w3

w3−w1

w3
0

 .
We have the following characteristic polynomials for these three matrices:

det(xI − T1) = (x− 1)

(
x2 +

w2 − w1

w3
x− w1(1− 2w2)

w2w3

)
≡ (x− 1)p1(x),

det(xI − T2) = (x− 1)

(
x2 +

w3 − w2

w1
x− w2(1− 2w3)

w1w3

)
≡ (x− 1)p2(x),

det(xI − T3) = (x− 1)

(
x2 +

w3 − w1

w2
x− w1(1− 2w3)

w2w3

)
≡ (x− 1)p3(x).

Observe that p3(x) − p2(x) = (w2−w1)(1−2w3)
w1w2w3

(w3x + w1 + w2). Hence, for any x > −1, p3(x) − p2(x) >
(w2−w1)(1−2w3)

w1w2w3
(−w3 + w1 + w2) = (w2−w1)(1−2w3)

2

w1w2w3
> 0. We deduce that the negative root of p2 is smaller

than the negative root of p3. Hence, we find that λ(w) is the minimum of the negative root of p1 and the

negative root of p2.

The remainder of the proof is dedicated to determining the circumstances under which one of those

negative roots is smaller than the other. First we claim that p1 and p2 cannot have two roots in common.

To see the claim, suppose to the contrary that p1 and p3 have the same roots. Then necessarily a) w3−w2

w1
=

w2−w1

w3
and b) w2(1−2w3)

w1w3
= w1(1−2w2)

w2w3
. Substituting w3 = 1 − w1 − w2 and simplifying, we find that a) is

equivalent to 2w2
1 + 2w2

2 = 2w1(1−w2) + 3w2− 1. Similarly, substituting w3 = 1−w1−w2 and simplifying,

we find that b) is equivalent to w2
1 + w2

2 =
2w1w

2
2

1−2w2
. Hence, if both a) and b) hold, it must be the case that

2w1w
2
2

1−2w2
= w1(1−w2) + 3w2−1

2 , i.e. w1(3w2−1)
1−2w2

= 3w2−1
2 . If w2 6= 1

3 , then we would have w1 +w2 = 1
2 , contrary

to our hypothesis. Hence, w2 = 1
3 but substituting that value into the equation w2

1 +w2
2 =

2w1w
2
2

1−2w2
now yields

w1 = 1
3 , again contrary to our hypothesis. We conclude that p1 and p2 can share at most one common root.

Next, we establish some constraints on w1, w2, w3. Since 1
2 > w3 = 1− w1 − w2, we have w1 >

1
2 − w2.

Also, 1 = w1+w2+w3 > w1+2w2, so that w1 < 1−2w2. We have w2 < w3 <
1
2 , and since 2w2 > w1+w2 >

1
2 ,

we see that w2 >
1
4 . Summarizing, we find that

1

2
− w2 < w1 < w2 if

1

4
< w2 ≤

1

3
, and

1

2
− w2 < w1 < 1− 2w2 if

1

3
≤ w2 <

1

2
.
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Note that p1 has a positive root and a negative root, and we denote these by x+1 , x
−
1 , respectively.

Similarly x+2 and x−2 denote the positive and negative roots of p2, respectively. For a fixed w2 ∈ ( 1
4 ,

1
3 ], we

can think of x+1 , x
−
1 , x

+
2 , x

−
2 as continuous functions of w1 on the interval [ 12 − w2, w2]; similarly for fixed

w2 ∈ [ 13 ,
1
2 ), x+1 , x

−
1 , x

+
2 , x

−
2 are continuous functions of w1 on the interval [12 − w2, 1− 2w2].

Suppose that w1 = 1
2 −w2. It then follows that p1(x) = x2 + (4w2 − 1)x− (1−2w2)

2

w2
and p2(x) = x2 + x.

For this value of w1, we then have x−2 = −1 < x−1 , x
+
2 = 0 < x+1 . If w2 < 1

3 and w1 = w2, we have

p1(x) = x2− 1, p2(x) = x2 + 1−3w2

w2
x− 4w2−1

1−2w2
, so that x−1 = −1 < x+2 . From the intermediate value theorem,

we deduce that for each w2 ∈ ( 1
4 ,

1
3 ] there is a w1 ∈ ( 1

2 −w2, w2) such that x−1 = x−2 . Similarly, if w2 >
1
3 and

w1 = 1−2w2, then p1(x) = x2+ 3w2−1
w2

x− (1−2w2)
2

w2
2

, p(x) = x2−1. For this value of w1, we have x+2 = 1 > x+1 .

Hence, for each w2 ∈ [ 13 ,
1
2 ) there is a w1 ∈ ( 1

2 − w2, 1− 2w2) such that x+1 = x+2 .

The condition for p1 and p2 to have precisely one common root is(
w2(1− 2w3)

w1w3
− w1(1− 2w2)

w2w3

)2

=

(
w3 − w2

w1

w1(1− 2w2)

w2w3
− w2 − w1

w3

w2(1− 2w3)

w1w3

)(
w3 − w2

w1
− w2 − w1

w3

)
.(4.5)

Substituting w3 = 1− w1 − w2 and simplifying, we find that (4.5) is equivalent to the following:

g(w1) ≡
(1− 2w2)w4

1 + (8w2
2 − w2 − 1)w3

1 + (24w2
2 − 27w2 + 7)w2w

2
1

+w2(2w2 − 1)(13w2
2 − 15w2 + 4)w1 + w2(1− 2w2)4 = 0.(4.6)

Our next goal is to understand, for fixed w2 ∈ ( 1
4 ,

1
2 ), the number and nature of the roots w1 of (4.6). We

begin by considering the special case that w2 = 1
3 . For this value of w2, we have g(w1) = 1

3 (w1 − 1
3 )4, so

that the only root of (4.6) is w1 = 1
3 , of multiplicity 4. Henceforth, we will assume that w2 6= 1

3 .

We continue with the following general observation. Suppose that w2 ∈ ( 1
4 ,

1
2 ), w2 6= 1

3 . We have

g( 1
2−w2) = (1−2w2)4(4w2−1)/16 > 0, g(w2) = 8w2(3w2−1)2(w2− 1

2 )(w2− 1
4 ) < 0, g(1−2w2) = −w2(6(w2−

1
3 )(w2− 1

2 ))2 < 0. It now follows that for w2 ∈ ( 1
4 ,

1
2 ), w2 6= 1

3 , g(w1) has a root in ( 1
2 −w2,min{w2, 1−2w2}),

and a root greater than min{w2, 1− 2w2}.

Next we consider two cases.

Case 1: 1
2 > w2 ≥ 27−

√
57

48 ≈ 0.4052.

We begin by noting that in (4.6), the coefficient of w2
1 changes sign at w2 = 27−

√
57

48 , the coefficient of w1

changes sign at w2 = 15−
√
17

26 ≈ 0.4138, and the coefficient of w3
1 changes sign at w2 = 1+

√
33

16 ≈ 0.4215. It

now follows that for 1
2 > w2 ≥ 27−

√
57

48 , the coefficients of g have one of the following sign patterns:

+ − 0 − + ;

+ − − − + ;

+ − − 0 + ;

+ − − + + ;

+ 0 − + + ;

+ + − + + .
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Thus, g has two changes of signs in the coefficients, and hence it follows from Descartes’ rule of signs, at

most two positive roots. We deduce that in this case, g has precisely two positive roots.

Case 2: 1
4 < w2 <

27−
√
57

48 , w2 6= 1
3 .

Then, g′(w1) = 4(1−2w2)w3
1 +3(8w2

2−w2−1)w2
1 +2(24w2

2−27w2 +7)w2w1 +w2(2w2−1)(13w2
2−15w2 +4).

This cubic has discriminant equal to

−w2(3w2 − 1)4

32(2w2 − 1)4
(3168w5

2 − 4416w4
2 + 1312w3

2 + 565w2
2 − 369w2 + 54)

≡ −w2(3w2 − 1)4

32(2w2 − 1)4
h(w2).

We find that h(−1) = −7908, h(0) = 54, h( 41
100 ) = 121

4247 , h( 42
100 ) = − 337

2807 , h( 7
10 ) = − 332

63 , h( 8
10 ) = 9391

438 .

Hence, h has roots in the intervals (−1, 0), (0.41, 0.42), (0.7, 0.8). Further, the roots of h′ are approximately

−0.2624, 0.6459, 0.3659± 0.0598i so h has no critical points in the interval [0, 12 ]. We deduce that h has just

one root in [0, 12 ], which is necessarily in (0.41, 0.42). We thus conclude that h(w2) > 0 for 1
4 < w2 <

27−
√
57

48 .

Hence, when 1
4 < w2 <

27−
√
57

48 , and w2 6= 1
3 , g

′ has one real root and one complex conjugate pair of

roots. Consequently, for these values of w2, g itself has exactly two positive real roots.

From cases 1 and 2, we find that for each w2 ∈ ( 1
4 ,

1
3 ) ∪ ( 1

3 ,
1
2 ), there is a unique value w∗1 ∈ ( 1

2 −
w2,min{w2, 1− 2w2}) such that p1 and p2 have a common root. For w2 ∈ ( 1

4 ,
1
3 ), w∗1 yields x−1 = x−2 , while

for w2 ∈ ( 1
3 ,

1
2 ), w∗1 yields x+1 = x+2 .

It now follows that if w2 ∈ ( 1
4 ,

1
3 ) and 1

2 − w2 < w1 < w∗1 , we have x−2 < x−1 , and if w∗1 < w1 < w2, we

have x−1 < x−2 . If w2 ∈ ( 1
3 ,

1
2 ) and 1

2 − w2 < w1 < 1− 2w2, we have x−2 < x−1 . In the case that w2 = 1
3 , then

for w1 ∈ ( 1
2 − w2, w2) = (1

6 ,
1
3 ), g(w1) > 0 and hence for all such w1, p1 and p2 do not have a common root.

It follows then that x−2 < x−1 when w2 = 1
3 and w1 ∈ ( 1

2 − w2, w2).

Figure 2 depicts λ(w) for w> =
[
w1

7
24 w3

]
, where w1 ∈ [ 12 − w2, w2], w3 = 17

24 − w1. Here, the

value of w∗1 is approximately 0.2409. We note that, despite the appearance of this figure to the naked eye,

λ(w) is not a linear function of w1 for w1 ∈ [w∗1 , w2].

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
-1

-0.99

-0.98

-0.97

-0.96

-0.95

-0.94

-0.93

-0.92

-0.91

Figure 2. Plot of λ(w) for w2 = 7
24
, w1 ∈ [ 1

2
− w2, w2].
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Figure 3 compares w∗1 to 1
2 − w2 and w2 as w2 ranges over the interval ( 1

4 ,
1
3 ).

0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Figure 3. Plots of w∗1 (black), 1
2
− w2 (red), w2 (blue) for w2 ∈ ( 1

4
, 1
3

).
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