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THE NONNEGATIVE INVERSE EIGENVALUE PROBLEM WITH PRESCRIBED ZERO

PATTERNS IN DIMENSION THREE∗
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Abstract. The nonnegative inverse eigenvalue problem is considered in this paper with the additional restriction of fixed

zero patterns in the matrix. A full analysis of the 3 × 3 case is given. Some remarks on the four-dimensional case are made.
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1. Introduction. The nonnegative inverse eigenvalue problem is a difficult problem that has not been

solved in any great generality. In its greatest generality, the problem can be phrased as follows: give necessary

and sufficient conditions on a list of n complex numbers to be the eigenvalues of an n×n nonnegative matrix.

There are some obvious necessary conditions resulting from the fact that the matrix must be nonnegative:

the list of complex numbers must be symmetric with respect to the real line, and the conditions resulting

from the Perron–Frobenius theorem must be satisfied. However, there are many more necessary conditions.

For one thing, all of the numbers must satisfy the conditions coming from the single inverse eigenvalue

problem. This is the following question: give necessary and sufficient conditions on a single complex number

to be the eigenvalue of an n× n nonnegative matrix. The latter problem has been solved by Karpelevič, for

a row-stochastic matrix the conditions are given by the fact that the complex number must be in a region

in the unit disc bounded by a number of arcs which can be explicitly described. A nice description of this

region is given in [6]. We shall call this region the Karpelevič region, even though it is a different region for

each dimension.

The three-dimensional case of the nonnegative inverse eigenvalue problem was solved by Loewy and

London [8] and independently by Oliveira [10]. For that case the following was shown: there is a nonnegative

3×3 matrix with Perron eigenvalue 1 and two (possibly other) eigenvalues λ2 and λ3 if and only if 1+λ2+λ3 ≥
0 and λ2, λ3 ∈ [−1, 1] are real or λ2 and λ3 = λ2 are in the triangle P in the complex plane with vertices

at 1 and − 1
2 ±

1
2

√
3i. Under these conditions, in [8], there is an explicit construction of a matrix with these

eigenvalues. When the eigenvalues λ2 and λ3 are non-real, the construction involves a circulant matrix.

The four-dimensional case of the nonnegative inverse eigenvalue problem was solved by Meehan [9] and

Torre-Mayo et al. [13]. The case n ≥ 5 remains unsolved in general. The case where the trace is known to be

zero (i.e., the case where the diagonal entries are zero) has been solved by Reams [12] for the four-dimensional

situation and by Laffey and Meehan [7] for the five-dimensional situation.
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A recent survey of many results on the nonnegative inverse eigenvalue problem and its variants is given

in [3].

Not surprisingly, when examples are constructed of nonnegative matrices that have or do not have certain

properties, in many cases these examples are chosen to have a certain structure, in particular with respect

to a given zero pattern. Cases in point are [1] and [13].

In this paper, we will investigate what happens if we restrict the class of nonnegative matrices by insisting

on a given zero pattern in the matrix. The focus will be on the three by three case. It will be shown in this

paper that the question is an interesting one, and for all zero patterns in the 3× 3 case a complete solution

will be given. Notice that we focus on the matrices with up to six zero entries, as reducible cases are fairly

easy and a 3 × 3 matrix with more than six zeros necessarily has a whole column or row equal to zero. In

addition, some examples in the 4× 4 case will be discussed in part.

The paper has something in common with [13]. That paper focuses on the characteristic polynomial

of a nonnegative matrix instead of on the spectrum. It is shown there, among many other things, that if

a polynomial of degree 3 or 4 is realizable as the characteristic polynomial of a nonnegative matrix, then

it is realizable as the characteristic polynomial of a matrix with a certain zero structure, arising from the

underlying graph structure. In this way, a full solution of the four-dimensional nonnegative inverse eigenvalue

problem is provided in [13].

We start with some observation for general n × n nonnegative matrices. A first reduction is that by

scaling, we may assume that the spectral radius of the matrix is 1 or 0. Indeed, if A is a nonnegative matrix,

then any positive multiple of it is also nonnegative. This does not change the eigenvectors and merely scales

the eigenvalues. So, by dividing A by its spectral radius ρ(A), we may assume without loss of generality that

if ρ(A) is positive, then ρ(A) = 1. Recall that if a power of a matrix is positive, then the matrix is primitive.

Then we can apply the Perron–Frobenius theorem (see, e.g., [2], Chapter 8) to see that ρ(A) is positive. The

Perron–Frobenius theorem tells us also that ρ(A) is an eigenvalue and there is a corresponding eigenvector

which is nonnegative. In case the matrix is primitive, the eigenvector is actually positive. In case the matrix

is reducible, one sees immediately from the zero pattern whether or not the spectral radius is positive.

Second, let us assume that ρ(A) = 1. In the case the matrix is irreducible, the corresponding eigenvector

does not have a zero coordinate. Let x =
[
x1 · · · xn

]T
be a positive eigenvector corresponding to

the eigenvalue 1. Then let D be the diagonal matrix with the coordinates xi on the diagonal, so D =

diag (x1, . . . , xn), and consider A1 = D−1AD. Then A1 has the same eigenvalues as A, and (hence) the same

characteristic polynomial, as well as the same zero pattern. Moreover, denoting by e the all-ones vector, we

have

A1e = D−1ADe = D−1Ax = D−1x = e.

Thus, e is an eigenvector of A1 corresponding to the eigenvalue 1. In other words, A1 is row-stochastic, or,

equivalently, the row sums are all one. This will be a standing assumption throughout the paper for the

cases where ρ(A) 6= 0.

The following proposition will be useful in several cases.

Proposition 1. Let A be an n×n row-stochastic matrix with a fixed zero pattern, such that no zero in

the pattern is on the diagonal. Suppose the spectrum of A is {1, λ2, . . . , λn}. Then for any 0 < s < 1, the

list {1, sλ2 + (1− s), sλ3 + (1− s), . . . , sλn + (1− s)} is also the spectrum of an n× n row-stochastic matrix

with the same zero pattern.
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Proof. Consider for t > 0 the matrix A(t) = (A+ tI)/(1 + t). The matrix A(t) is row-stochastic and since

there is no zero in the pattern that is on the diagonal, A(t) has the same zero pattern as A. Further, if λ is an

eigenvalue of A with corresponding eigenvector x, so Ax = λx, then A(t)x = ( λ
1+t + t

1+t )x = (sλ+ (1− s))x
when we take s = 1

1+t . �

Next, we discuss the region in the complex plane containing the eigenvalues. The following result is one

of the so-called Johnson–Loewy–London inequalities (see, e.g., [3]).

Proposition 2. Let A be an n× n matrix with nonnegative entries. Then

(trace (A))2 ≤ n · trace (A2).

For a 3× 3 matrix A with spectrum σ(A) = {1, λ2, λ3}, we have

trace (A) = 1 + λ2 + λ3, det(A) = λ2λ3,

and the sum of the principal two-by-two subdeterminants is equal to λ2 +λ3 +λ2λ3, while the characteristic

polynomial of a matrix A is given by:

det(A− λI3) = −λ3 + p2λ
2 + p1λ+ p0,

where

p0 = det(A),

p1 = minus the sum of the principal two by two subdeterminants,

p2 = trace (A).

As the trace of a nonnegative matrix is nonnegative, it follows that the pair (λ2, λ3) always satisfies 1 +

λ2 + λ3 ≥ 0. This is particularly interesting when λ2 and λ3 are non-real, say λ2,3 = a± ib, as in that case

it implies that a ≥ − 1
2 . The following proposition describes the location of the spectrum of a nonnegative

row-stochastic 3 × 3 matrix. As the result is well known, a proof will be omitted (see [11] for details if

necessary).

Proposition 3. Let A be a nonnegative row-stochastic 3×3 matrix A, and let σ(A) = {1, λ2, λ3}. Then

the following hold:

i. If λ2,3 = a± ib with b 6= 0, then a ≥ − 1
2 and |b| ≤

√
3

3 |1− a|.
ii. If λ3 ≤ λ2 are real, then −1 ≤ λ2 + λ3 ≤ 2, and the point (λ2, λ3) lies in the closed region in the

plane bounded by the lines λ2 = λ3, λ2 = 1, λ3 = −1 and λ2 + λ3 = −1.

Conversely, when the pair (λ2, λ3) satisfies these conditions, then there is a nonnegative row-stochastic 3× 3

matrix A with σ(A) = {1, λ2, λ3}.

The region for the complex eigenvalues, see Figure 1, is precisely the region bounded by the so-called

Karpelevič arcs in the three-dimensional case (see, e.g., [4, 6]).

2. Zeros on the diagonal and corresponding restrictions on the eigenvalue location. It turns

out that the presence of zeros on the diagonal further restricts the region in the complex plane in which there

can be eigenvalues. That is not a big surprise: the trace is the sum of the eigenvalues, so limiting the trace

gives conditions on the sum of the eigenvalues. However, the situation is more intricate than just this. First
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Figure 1. Left: The Karpelevič region for 3 × 3 matrices. Right: The possible region for the real eigenvalues λ2 ≥ λ3.
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Figure 2. Restrictions on the spectrum when there is one zero on the diagonal.

note that if A is a 3 × 3 matrix with one zero on the diagonal, similarity with an appropriate permutation

matrix will put that zero in the (1, 1) position. Likewise, when there are two zeros on the diagonal, we may

assume that the zeros are in the (1, 1) and (2, 2) positions.

Lemma 4. Let A =

0 α 1− α
β γ 1− β − γ
δ φ 1− δ − φ

 be a nonnegative primitive row-stochastic matrix, with γ > 0

and δ + φ < 1. Let the spectrum of A be {1, λ2, λ3}. Then the following hold

i. If λ2,3 = a± ib with b 6= 0, then a+ b2 < 1
4 .

ii. If λ3 ≤ λ2 are real, then −1 < λ2 + λ3 < 1, and the point (λ2, λ3) lies in the region in the

real plane bounded by the lines λ2 = λ3, λ2 + λ3 = −1, λ3 = −1, λ2 = 1 and the parabola

1− 2λ2 − 2λ3 − 2λ2λ3 + λ2
2 + λ2

3 = 0.

Figure 2 gives the position of possible complex eigenvalues in the complex plane when there is one zero

on the diagonal as dictated by part (i) in the above lemma on the left and the position of the possible pairs

(λ2, λ3) in the real plane as dictated by part (ii) on the right.

Proof. The proof is based on the fact that the sum of the two-by-two principal subdeterminants is equal

to λ2 + λ3 + λ2λ3, combined with the fact that the trace is equal to 1 + λ2 + λ3. For the matrix A, the sum
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of the two-by-two principal subdeterminants becomes∣∣∣∣0 α

β γ

∣∣∣∣+

∣∣∣∣0 1− α
δ 1− δ − φ

∣∣∣∣+

∣∣∣∣γ 1− β − γ
φ 1− δ − φ

∣∣∣∣
=− αβ − δ(1− α) + γ(1− δ − φ)− φ(1− β − γ)

=λ2 + λ3 + λ2λ3.

Take γ(1− δ − φ) to the other side of the equation, then it follows that

λ2 + λ3 + λ2λ3 − γ(1− δ − φ) < 0.

Now use that

1 + λ2 + λ3 = γ + (1− δ − φ).

It follows that

λ2 + λ3 + λ2λ3 − γ(1− δ − φ)

=λ2 + λ3 + λ2λ3 − γ(1 + λ2 + λ3 − γ)

=γ2 − γ(1 + λ2 + λ3) + (λ2 + λ3 + λ2λ3).

View this as a quadratic expression in γ. As this must be negative, the discriminant must be positive. Hence,

(1) (1 + λ2 + λ3)2 − 4(λ2 + λ3 + λ2λ3) > 0.

If A has three real eigenvalues, we number them so that −1 < λ3 ≤ λ2 < 1 = λ1. From the fact that

0 < trace (A) = γ + (1− δ − φ) < 2, we have that −1 < λ2 + λ3 < 1. The condition (1), after working out

the square and grouping terms becomes

1− 2λ2 − 2λ3 − 2λ2λ3 + λ2
2 + λ2

3 > 0.

The points where 1 − 2λ2 − 2λ3 − 2λ2λ3 + λ2
2 + λ2

3 = 0 lie on a parabola in the plane with central axis

λ2 = λ3, vertex at ( 1
4 ,

1
4 ) and going through the points (1, 0) and (0, 1). This proves part (ii).

If A has two non-real eigenvalues λ2,3 = a± ib, then λ2 + λ3 = 2a and λ2λ3 = a2 + b2. So (1) becomes

(1 + 2a)2 − 4(2a+ a2 + b2) > 0,

which, after working out the square, becomes 1− 4a− 4b2 > 0. This proves part (i). �

The next lemma describes the situation where there are two zeros on the diagonal.

Lemma 5. Let A =

0 α 1− α
β 0 1− β
γ δ 1− γ − δ

 be a nonnegative primitive matrix with 1 − δ − γ > 0. Let the

spectrum of A be {1, λ2, λ3}. Then the following hold

i. If λ2,3 = a± ib with b 6= 0, then (a+ 1)2 + b2 < 1.

ii. If λ3 ≤ λ2 are real, then −1 < λ2 + λ3 < 0.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 40, pp. 506-537, July 2024.

511 The nonnegative inverse eigenvalue problem with prescribed zero patterns in dimension three

Proof. Part (ii) is fairly immediate: the trace of A is less than 1, so 0 < 1 + λ2 + λ3 < 1, which means

−1 < λ2 + λ3 < 0.

Part (i) again follows by considering the sum of the two-by-two principal subdeterminants, which in this

case is equal to

∣∣∣∣0 α

β 0

∣∣∣∣+

∣∣∣∣0 1− α
γ 1− δ − γ

∣∣∣∣+

∣∣∣∣0 1− β
δ 1− δ − γ

∣∣∣∣
=− αβ − γ(1− α)− δ(1− β) = λ2 + λ3 + λ2λ3.

It follows that λ2 +λ3 +λ2λ3 < 0. Since λ2,3 = a± ib in this case, we have 2a+ a2 + b2 < 0, in other words,

(a+ 1)2 + b2 < 1. �

Note that in this case when the eigenvalues are real, the condition λ2 +λ3 +λ2λ3 < 0 holds automatically

for all pairs (λ2, λ3) in the real plane which satisfy −1 < λ2 + λ3 < 0 as the hyperbola λ2 + λ3 + λ2λ3 = 0

lies outside that region.

Figure 3 gives the position of possible complex eigenvalues when there are two zeros on the diagonal as

dictated by part (i) in the above lemma.
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Figure 3. Restrictions imposed on the location of complex eigenvalues when there are two zeros on the diagonal.

Next, we discuss the trace zero case.

Proposition 6. Let A be a 3 × 3 row-stochastic matrix with zeros only on the diagonal. Then the

possible spectra are of the form σ(A) = {1,− 1
2 ± a} with 0 ≤ a < 1

2 or of the form σ(A) = {1,− 1
2 ± ib} with

0 < b < 1
2

√
3, and all such sets can be achieved by a row-stochastic matrix with zeros on the diagonal (and

only there).

Proof. Necessity. Suppose the trace of the matrix is zero. Note that A2 is a positive matrix, by the

assumption that A has zeros only on the diagonal. Hence, A is primitive. Obviously, if Λ = {1, λ2, λ3} is the

spectrum of a nonnegative row-stochastic matrix with trace zero, then λ2 + λ3 = −1. If the eigenvalues λ2

and λ3 are non-real, they must therefore be of the form λ2,3 = − 1
2 + bi with 0 < b < 1

2

√
3 (because 1 is the

spectral radius and A is primitive). If λ2 and λ3 are real and λ2 ≥ λ3, then −1 < λ3 ≤ − 1
2 and − 1

2 ≤ λ2 < 0

(again, because 1 is the spectral radius and A is primitive).
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Sufficiency. Conversely, consider two cases separately: the case where λ2,3 = − 1
2±bi with 0 < b < 1

2

√
3

and the case where λ2 and λ3 are real. In the first case, consider

A =

0 ε 1− ε
c 0 1− c
ε 1− ε 0

 .
One checks that the eigenvalues of A are 1 and the two roots of

0 = λ2 + λ+ (c(1− 2ε) + ε2) = (λ+
1

2
)2 + (c(1− 2ε) + ε2 − 1

4
).

So the eigenvalues are 1 and

λ2,3 = −1

2
± i
√
−1

4
+ c(1− 2ε) + ε2,

when 1
4 − c(1 − 2ε) − ε2 < 0. Take 1

2 < ε < 1 so that 1
4 + b2 < ε2 − 2ε + 1 = (1 − ε)2, which is possible as

0 < b < 1
2

√
3, and take

c =
1
4 + b2 − ε2

1− 2ε
.

Then 0 < c < 1 and λ2,3 = − 1
2 ± bi as desired.

In case λ2,3 are real, they are of the form:

λ2 = −1

2
+ a, λ3 = −1

2
− a, 0 < a <

1

2
.

In this case, take ε > 1
2 so that 1

4 − a
2 > (1− ε)2 and take

c =
ε2 + a2 − 1

4

2ε− 1
.

Then 0 < c < 1 and λ2,3 = − 1
2 ± a as desired.

Finally, the remaining case is where λ2,3 = − 1
2 . Then take

A =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

 ,
which has eigenvalues 1 and 1

2 , the latter with multiplicity 2. �

Note that this also means that if a 3× 3 row-stochastic matrix has eigenvalues 1 and two eigenvalues on

the line segment between − 1
2 +

√
3

2 i and − 1
2 −

√
3

2 i, then (since the trace is zero) it must have zeroes on the

diagonal.

In general, a lot is known about matrices realizing eigenvalues on the boundary of the Karpelevič region

(see e.g., [4]). For our purpose, we cite Theorem 4.1 in [5] which shows the following when applied to the

three-dimensional case. We provide a proof for completeness.

Proposition 7. Suppose A is a row-stochastic matrix with eigenvalues 1 and λ1,2 = a ± ib with b =√
3

3 (1−a) (so on the line segments connecting 1 and − 1
2 ±

√
3

2 i). Then there is a permutation matrix P such

that

A = P

 t 0 1− t
1− t t 0

0 1− t t

P−1.
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Proof. Consider Λ = {1, a± bi} where b =
√

3
3 (1− a). From Proposition 2 , and the discussion following it

for the particular case n = 3, we see that Λ can only be the spectrum of a 3× 3 nonnegative matrix A when

(trace (A))2 = 3trace (A2). Writing the traces in terms of the entries of A, it follows that this means that if

Λ is the spectrum of a nonnegative A, then

(a11 + a22 + a33)2 = 3(a2
11 + a2

22 + a2
33) + 6(a12a21 + a13a31 + a23a32).

Working out the square and collecting terms together, it may be seen that this is equivalent to

(a11 − a22)2 + (a11 − a33)2 + (a22 − a33)2 + 6(a12a21 + a13a31 + a23a32) = 0.

In turn, that is equivalent to a11 = a22 = a33 and a12a21 = 0, a13a31 = 0, a23a32 = 0. If A has Λ as its

spectrum, then A cannot be reducible (a reducible 3× 3 nonnegative matrix has real eigenvalues). One then

checks that up to permutation or transpose, if Λ is equal to the spectrum of a nonnegative row-stochastic

matrix A, then

A =

 t 1− t 0

0 t 1− t
1− t 0 t

 .
So A must then have three zeros in a circulant pattern. �

Together the two propositions shows that eigenvalue locations can force interesting zero patterns on the

matrix. Our goal in this paper is to consider the converse: what do zero patterns tell us about eigenvalue

locations.

3. Zero patterns with one zero. In case A has one zero entry, there are two subcases: the zero is on

the diagonal, or it is not. In the former case, Lemma 4 gives a necessary condition that should be satisfied

for the spectrum. We shall prove that the necessary condition is also sufficient, that is, for any list of three

points satisfying the conditions of Lemma 4, there is a nonnegative matrix with precisely one zero, which is

on the diagonal, and with spectrum equal to the given list of points (repetitions included).

In the case there is one zero, but it is not on the diagonal, we shall show that the spectrum can be any

list {1, λ2, λ3} that is feasible subject to the conditions that the matrix is nonnegative, as long as λ2 and

λ3 are not on the boundary of the triangle, and in case they are real, the smallest one is not equal to minus

one, the largest one is not equal to one, and their sum is not equal to minus one.

For the case where there is one zero on the diagonal, we show that the conditions given in 4 is also

sufficient.

Proposition 8. Let Λ = {1, λ2, λ3} be a list of complex numbers for which the conditions i and ii of

Lemma 4 are satisfied. Then there is a nonnegative matrix A of the form given in Lemma 4 for which

σ(A) = Λ.

Proof. Let Λ = {1, λ2, λ3} be a list (possibly with repetitions) where λ2 and λ3 satisfy the conditions of

Lemma 4. We have to show that there is a matrix A as in Lemma 4, depending on α, β, γ, δ and φ, such that

Λ is the spectrum of A. The strategy for the proof is as follows: Λ = σ(A) if and only if the characteristic

polynomial of A equals (λ−1)(λ2−λ(λ2 +λ3)+λ2λ3), or, equivalently, if and only if trace (A) = 1+λ2 +λ3

and det(A) = λ2λ3. These equations we shall view as two equations in the variables α, β, γ, δ, and φ. In fact,

if we introduce Φ(α, β, γ, δ, φ) = (trace (A),det(A)), then Φ, viewed as a map from R5 → R2 is a polynomial
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expression in five variables, so certainly a C1 map. For given λ2 and λ3, we consider the solutions of the

set of two equations Φ(α, β, γ, δ, φ) = (trace (A),det(A)). If we can find a nonnegative solution, that is, one

where we allow one or more of the variables to be zero, then we can apply the implicit function theorem to

show that there is a positive solution in a neighborhood.

Indeed, since

det(A) = −αβ + αδ + βφ− δγ,(2)

trace (A) = 1 + γ − δ − φ(3)

we have that

Φ′(α, β, γ, δ, φ) =

[
0 0 1 −1 −1

δ − β φ− α −δ α− γ β

]
.

It is easy to see that this has rank 2 unless β = δ, α = φ, and γ = φ − β. Hence in a neighborhood of any

point where this is not the case, we may apply the implicit function theorem.

Case 1: det(A) < 0. First, we consider the case where det(A) < 0, then 0 < λ2 < 1 and −1 < λ3 < 0.

We make a specific choice: take α = 0, β = 0, φ = 0, and take γ = λ2, δ = −λ3. So, we consider

A =

 0 0 1

0 λ2 1− λ2

−λ3 0 1 + λ3

 .
One sees that A has Λ as its spectrum. We now show that γ and δ can be solved from the equations (2) and

(3) as C1 functions of α, β, and φ in a neighborhood of (α, β, φ) = (0, 1, 0). Indeed, that is a consequence

of the implicit function theorem if we show that the matrix formed by the third and fourth columns of Φ′

(the columns corresponding to γ and δ) is an invertible matrix for the particular choice we made. This

submatrix of Φ′ is

[
1 −1

−δ α− γ

]
=

[
1 −1

λ3 −λ2

]
, which has determinant −λ2 +λ3. If this would be zero, then

λ2 = λ3, which contradicts the assumption that det(A) < 0. Applying the implicit function theorem gives

us a positive solution for some point with 0 < α < 1, 0 < β < 1 − γ, 0 < φ < 1 − δ and δ > 0, γ > 0. So

then we have a matrix A which has positive entries except for the (1, 1) entry with the desired eigenvalues

{1, λ2, λ3}.

Case 2: det(A) > 0. In this case, we shall construct in Subsection 4.2 a nonnegative matrix of the

form A =

0 1 0

0 γ 1− γ
δ φ 1− δ − φ

 for which σ(A) = Λ, both in case the two eigenvalues are real and in case the

two eigenvalues are non-real. We can then apply a similar reasoning as above, using the implicit function

theorem to show that there is also a nonnegative matrix of the form A =

0 α 1− α
β γ 1− β − γ
δ φ 1− δ − φ

 with only a

zero in the (1, 1)-entry that has spectrum equal to Λ. �

Next, we consider the case where A has one zero, which is not on the diagonal. By using a permutation

matrix as similarity if necessary, and taking into consideration the fact that the spectra of A and AT coincide,

we may assume that A has a zero in the (2, 1) entry.

Proposition 9. Let Λ = {1, λ2, λ3} be a list which satisfies the conditions of Proposition 3. Then Λ is
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the spectrum of a nonnegative row-stochastic matrix of the form A =

α β 1− α− β
0 γ 1− γ
δ φ 1− δ − φ

 with α, β, γ, δ, φ,

α+ β, δ + φ ∈ (0, 1) if and only if the following conditions are satisfied.

i. If λ2,3 = a± bi are non-real, then − 1
2 < a < 1 and |b| <

√
3

3 (1− a).

ii. If λ3 ≤ λ2 are real, then −1 < λ3, λ2 < 1 and λ2 + λ3 > −1.

Proof. Part i: non-real eigenvalues. Consider B =

0 α 1− α
0 0 1

δ 1− δ 0

. Note that B has trace zero and

positive determinant equal to αδ, and it follows that the eigenvalues of B are 1, and λ2,3 = − 1
2 ± bi with

αδ = b2 + 1
4 . For given b with 0 < b < 1

2

√
3, we can find α and δ such that λ2,3 = − 1

2 ± bi.

Let 0 < t < 1 and take A(t) = tI+(1− t)B. If Bx = λx, then A(t)x = (t+(1− t)λ)x. So the eigenvalues

of A(t), if we let t vary, trace out the line segment between 1 and λ. Note that A(t) has only one zero entry,

namely in the (2, 1) position.

It follows that for any list Λ = {1, λ2, λ3} with λ2,3 = a± bi, where − 1
2 < a < 1 and 0 < b <

√
3

3 (1− a),

there is a nonnegative matrix A with one zero entry in the (2, 1) position such that σ(A) = Λ.

From results in Propositions 6 and 7, we have that the eigenvalues cannot be on the boundary of the

Karpelevič region.

Part ii: real eigenvalues. Let A have one zero only, not on the diagonal, and assume that Λ = {1, λ2, λ3}
is a list of three real numbers with −1 ≤ λ3 ≤ λ2 ≤ 1. We investigate what the conditions on Λ will be in

order to have Λ = σ(A). First note that trace (A) > 0, so λ2 + λ3 > −1. Also note that A is a primitive

matrix (A2 is obviously positive). Hence, λ3 > −1 and λ2 < 1.

Now for A =

α β 1− α− β
0 γ 1− γ
δ φ 1− δ − φ

 consider Ψ(α, β, γ, δ, φ) = (trace (A),det(A)), so

Ψ(α, β, γ, δ, φ) = (α+ γ + 1− δ − φ, αγ − αφ+ δβ − δγ).

Recalling that trace (A) = 1 + λ2 + λ3 and det(A) = λ2λ3, we see that given the list Λ we are looking for a

solution of the set of equations:

Ψ(α, β, γ, δ, φ) = (1 + λ2 + λ3, λ2λ3),

with positive α, β, γ, δ, and φ. Now, if we can find a solution with nonnegative α, β, γ, δ, and φ, we may

apply the implicit function theorem to show that there is also a solution with positive α, β, γ, δ, and φ.

Consider first the case where λ2 and λ3 are both nonnegative, with λ2 6= λ3, then we can take A =λ2 0 1− λ2

0 λ3 1− λ3

0 0 1

, which has the desired spectrum. By the argument of the previous paragraph, there is then

also a nonnegative row-stochastic matrix with only one zero in the (2,1) entry which has these eigenvalues.

Here, we have to consider α and γ as functions of (β, δ, φ) in a neighborhood of (0, 0, 0). If λ2 6= λ3, then

the implicit function theorem is applicable to this situation, and so for (β, δ, φ) in a neighborhood of (0, 0, 0)
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there is a solution depending continuously differentiable on these parameters. Hence, we can choose positive

values for β, δ, and φ such that the corresponding α and γ are positive as well and such that also 1− α− β
and 1− γ are positive.

Now consider the case where λ2 ≥ 0 and λ3 ≤ 0. Take α = β = 0, γ = λ2, δ = −λ3, and φ = 0,

so A =

 0 0 1

0 λ2 1− λ2

−λ3 0 1 + λ3

. Then A has the desired spectrum, however, again with four zero entries.

Considering now γ and δ as functions of (α, β, φ) in a neighborhood of the origin, we apply again the implicit

function theorem. Once again, this can be done provided λ2 6= λ3.

Next, consider the case where λ2 ≤ 0 and λ3 < 0 with λ2 6= λ3. Take α = 0, β = −λ3, γ = 0,

δ = −λ2, and φ = −λ3. So A =

 0 −λ3 1 + λ3

0 0 1

−λ2 0 1 + λ2 + λ3

. Now we consider β and δ as functions of

(α, γ, φ) in a neighborhood of (0, 0,−λ3). The implicit function theorem can be applied provided λ2 6= 0.

That leaves the case λ2 = 0, in which case, we can take γ = β = φ and α and δ such that λ3 = α− δ. Then,

A =

α β 1− α− β
0 β 1− β
δ β 1− δ − β

 will have eigenvalues {1, 0, λ3}.

Finally, we have to consider the cases where λ2 = λ3. Notice that in that case − 1
2 < λ2 < 1 since A is

primitive and has nonzero trace. Consider the matrix B =

0 1
2

1
2

0 0 1
1
2

1
2 0

. This matrix has − 1
2 as a double

eigenvalue and 1 as the third eigenvalue. Then A(t) = tI + (1− t)B has eigenvalues t− 1
2 (1− t) as a double

eigenvalue and 1 as the third eigenvalue. �

4. Zero patterns with three zeros. We now turn our attention to zero patterns with three zeros

in the 3 × 3 matrix case. Observe that in principle, there are

(
9

3

)
= 84 different zero patterns with three

zeros in a 3× 3 matrix. However, similarity with a permutation matrix keeps the number of zeros equal to

three and does not change the eigenvalues. In addition, also taking the transpose keeps the number of zeros

equal to 3 and does not change the eigenvalues. These observations reduce the possible number of cases

considerably. This leads to a reduction to 12 essentially different cases, listed in the table below

Cases 1 to 6

0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 ∗ ∗ ∗0 ∗ ∗
0 0 ∗

 0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

 ∗ 0 ∗
0 ∗ ∗
0 ∗ ∗

 ∗ 0 ∗
∗ ∗ 0

0 ∗ ∗

 0 ∗ 0

0 ∗ ∗
∗ ∗ ∗



Cases 7 to 12

0 0 ∗
0 ∗ ∗
∗ ∗ ∗

 0 ∗ ∗
∗ 0 ∗
0 ∗ ∗

 ∗ ∗ 0

∗ 0 ∗
0 ∗ ∗

 ∗ ∗ ∗0 0 ∗
0 ∗ ∗

 ∗ ∗ 0

0 0 ∗
∗ ∗ ∗

 0 ∗ ∗
0 0 ∗
∗ ∗ ∗


Observe that case 3 has already been dealt with: it is the trace zero case. Notice also that there are four

reducible cases: the cases 1, 2, 4, and 10. Apart from these four reducible cases, the matrices of the form

in the table above are all primitive (either their square or their third power is apositive matrix). Hence, by
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the Perron–Frobenius theorem, for all but the reducible cases, the eigenvalue 1 is the only eigenvalue on the

unit circle. We will not discuss the reducible cases, as these are trivial.

4.1. The circulant pattern. In case 5, the pattern of zeros is that of a circulant matrix. Consider

the row-stochastic matrix

(4) A =

 α 0 1− α
1− β β 0

0 1− γ γ

 ,
with α, β, and γ in (0, 1). Observe that the determinant det(A) = αβγ + (1− α)(1− β)(1− γ) is positive,

so zero cannot be an eigenvalue.

Proposition 10. If σ(A) = {1, λ2, λ3} for a matrix of the type (4), then

i. if λ2 ≥ λ3 are real, then λ3 is positive,

ii. if λ2,3 = a± bi are non-real, then we have (a+ 1)2 + b2 > 1 and |b| ≤
√

3
3 (1− a) (see Figure 4).

Conversely, given a pair of real numbers 0 < λ3 ≤ λ2 < 1, or a pair of non-real numbers λ2,3 = a ± bi
such that (a+1)2 +b2 > 1 and |b| ≤

√
3

3 (1−a), there is a matrix of the type (4) such that σ(A) = {1, λ2, λ3}.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4. The possible eigenvalue locations for the case of circulant zero pattern.

Proof. Part 1. Necessity. That the conditions (i) and (ii) of the proposition are necessary can be shown

easily. If {1, λ2, λ3} is the list of eigenvalues of A, then λ2 + λ3 + λ2λ3 = αβ + αγ + βγ > 0. Moreover,

det(A) > 0. Hence, if λ2 and λ3 are real, then they are either both positive or both negative, and the latter

situation is excluded by the fact that λ2 + λ3 + λ2λ3 > 0. Hence, if λ2 and λ3 are real, then they are both

positive. If λ2 and λ3 are non-real eigenvalues, say λ2,3 = a±bi, then λ2 +λ3 +λ2λ3 = 2a+a2 +b2 > 0, that

is (a+ 1)2 + b2 > 1. The condition that |b| ≤
√

3
3 (1− a) holds for any nonnegative three-by-three matrix.

Part 2. Sufficiency. For the converse, we claim that for suitable choices of α, β, and γ in (0, 1),

the non-real eigenvalues of matrices of the type (4) cover the set inside the unit circle bounded by the lines

|y| ≤
√

3
3 (1−x) and outside the circle (x+1)2+y2 = 1, and that any pair of positive numbers 0 < λ3 ≤ λ2 < 1

occurs as eigenvalues of a matrix of the type (4).
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Real eigenvalues. First consider the case of real eigenvalues. Let 0 < λ3 ≤ λ2 < 1 be a pair of real

numbers. Consider the row-stochastic matrix

A =

 α 0 1− α
1− β β 0

0 1− γ γ

 .
Observe that the determinant det(A) = αβγ + (1 − α)(1 − β)(1 − γ) is positive, so zero cannot be an

eigenvalue. Then necessary and sufficient conditions for σ(A) = {1, λ2, λ3} are

1 + λ2 + λ3 = α+ β + γ, λ2 + λ3 + λ2λ3 = αβ + αγ + βγ.

One can check that the condition det(A) = λ2λ3 = αβγ+(1−α)(1−β)(1−γ) follows from the two conditions

above.

Now we are viewing the two conditions as equations to be solved for (α, β, γ) with all three in the

interval (0, 1). Note that there is an obvious solution: taking α = 1, β = λ2, and γ = λ3 does solve the

system of equations, but unfortunately, this solution violates the zero pattern, as 1−α = 0. However, using

the implicit function theorem, it is easy to see that there must be a solution such that α < 1, at least as

long as 0 < λ3 < λ2. Indeed, let Φ : R3 → R2 be given by:

Φ(α, β, γ) =

(
α+ β + γ − (1 + λ2 + λ3)

αβ + αγ + βγ − (λ2 + λ3 + λ2λ3)

)
.

Then Φ(1, λ2, λ3) =

(
0

0

)
and

Φ′(1, λ2, λ3) =

(
1 1 1

λ2 + λ3 1 + λ3 1 + λ2

)
.

The last two columns of Φ′ form an invertible matrix when λ2 6= λ3, and hence we can apply the implicit

function theorem in that case to see that there is an open interval U containing 1 and a C1-function

g : U → R2 such that Φ(α, g(α)) =

(
0

0

)
for all α ∈ U and g(1) = (λ2, λ3). So in particular, taking 0 < α < 1

in U and (β, γ) = g(α), we obtain a matrix A such that σ(A) = {1, λ2, λ3}. Note that by the continuity of

the map g, it is possible to get (α, β, γ) so that they are all bounded away from zero, for instance, we may

assume that all of them are bigger than 1
2λ3.

It remains to consider the case λ2 = λ3. Take 0 < ε < 1
2λ2 and let λ3 = λ2 − ε. Then find α(ε), β(ε),

and γ(ε) in (0, 1) such that with these values the spectrum of the matrix A(ε) is {1, λ2, λ2 − ε}. Now let

ε → 0. As the eigenvalues are continuous functions of ε, we have that the matrix A = limε→0A(ε) has

eigenvalues 1 and λ2, the latter with multiplicity 2. The only thing that remains to check is that A has the

desired zero pattern and no extra zeroes. This can be seen by the fact that we can bound α(ε), β(ε), and

γ(ε) from below, for instance by 1
2λ2, as observed in the previous paragraph.

Non-real eigenvalues. We will make use of Proposition 1. First, let − 1
2 ≤ a ≤ 0 be given, and let b

be such that a2 + b2 = −2a. Consider the matrix

A(a) =

1 + 2a 0 −2a

1 0 0

0 1 0

 .
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Since 0 ≤ 1+2a ≤ 1 and −2a ≥ 0, A(a) is a nonnegative row-stochastic matrix. It can easily be checked that

the eigenvalues of A(a) are λ2,3 = a± ib. Note that for 0 < t < 1, the matrix A(t, a) = (A(a) + tI)/(1 + t)

is nonnegative, row-stochastic and has the circulant zero pattern. By Proposition 1 for any pair of complex

numbers λ2,3 = a± bi satisfying (a+ 1)2 + b2 > 1 and |b| ≤
√

3
3 (1− a), there is a matrix of the form A(t, a)

with spectrum {1, λ2, λ3}. �

4.2. Case 6. In this case, we consider matrices of the form:

(5) A =

0 1 0

0 α 1− α
β γ 1− β − γ

 ,
with 0 < α < 1 and β > 0, γ > 0 such that β + γ < 1. Note that det(A) = β(1− α) > 0. Further, the sum

of the principal two times two submatrices is α(1− β − γ)− γ(1− α) = α− γ − αβ. Finally, the trace of A

is 1 + α− β − γ. Hence, the eigenvalues λ2 and λ3 satisfy

α− γ − αβ = λ2 + λ3 + λ2λ3, α− β − γ = λ2 + λ3, β(1− α) = λ2λ3 > 0.

Note that A is always invertible, so 0 cannot be an eigenvalue.

Proposition 11. Let A be of the form (5), and let σ(A) = {1, λ2, λ3}. Then the following hold

i. if −1 < λ3 ≤ λ2 < 1, then either λ2 < 0 and λ2 + λ3 > −1, or λ3 > 0 and λ3 < 1 + λ2 − 2
√
λ2,

ii. if λ2,3 = a± bi, then a > − 1
2 and b2 < 1

4 − a.

See Figure 5.

Conversely, if a pair (λ2, λ3) satisfies the conditions above, then there is a matrix of the form (5) with

spectrum {1, λ2, λ3}.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3

Figure 5. The possible eigenvalue locations in case 6. Left side: The possibilities for a pair of complex conjugate

eigenvalues. Right side: The possibilities for a pair of real eigenvalues with λ2 ≥ λ3.

Proof. Necessity. We recall an argument from the proof of Lemma 4. As a first step notice that

−γ(1 − α) < 0. On the other hand, we can express this in terms of the sum of the two-by-two principal

minors and the eigenvalues:

−γ(1− α) = λ2 + λ3 + λ2λ3 − α(1− β − γ).
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Using the expression of the trace, this can be expressed in terms of α and the eigenvalues as follows:

−γ(1− α) = λ2 + λ3 + λ2λ3 − α(1 + λ2 + λ3 − α).

So the right-hand side must be negative for some α between 0 and 1. Rewriting this: there is a 0 < α < 1

such that

h(α) := α2 − α(1 + λ2 + λ3) + (λ2 + λ3 + λ2λ3) < 0.

Consider h(α) as a quadratic expression in α, and note that h(1) = λ2λ3 = det(A) > 0. The fact that

h(α) < 0 for some value of α in (0, 1), then implies that h(α) must have at least one real simple zero in

(0, 1). For that to happen, the discriminant must be positive:

(6) (1 + λ2 + λ3)2 − 4(λ2 + λ3 + λ2λ3) > 0.

Now we distinguish between the case of complex conjugate eigenvalues and the case of real distinct

eigenvalues. If λ2 and λ3 are real, then because of the fact that det(A) > 0 either both are positive or both

are negative. Moreover, in case they are negative, then the trace of A is 1 + λ2 + λ3 > 0, so the condition

for negative eigenvalues is necessary. In case λ2 and λ3 are positive, then (6) can be rewritten as:

(λ3 − (1 + λ2))2 − 4λ2 > 0.

Since λ3 < 1 + λ2, this can be rewritten as λ3 < 1 + λ2 − 2
√
λ2.

If λ2,3 = a± bi, then rewrting (6) in terms of a and b gives

0 < (1 + 2a)2 − 4(2a+ a2 + b2) = 1− 4a− 4b2,

which is equivalent to one of the conditions in the proposition. The condition that a ≥ − 1
2 holds for any

nonnegative 3×3 matrix, as was already observed before. However, in this case the trace is strictly positive,

and hence 1 + λ2 + λ3 = 1 + 2a > 0, so that a > − 1
2 .

Sufficiency. First consider the case of complex eigenvalues λ2,3 = a± bi. In that case take

A =

0 1 0

0 1
2 + a 1

2 − a
β γ 1

2 + a

 ,
with

β =
a2 + b2

1
2 − a

, γ =
1

2
− a− a2 + b2

1
2 − a

=
1
4 − a− b

2

1
2 − a

.

As − 1
2 < a < 1

4 and 1
4 −a− b

2 > 0, the matrix A is row-stochastic and has the right zero pattern. Moreover,

one easily checks that this matrix has the right characteristic polynomial, and hence the right eigenvalues.

Next, consider the case of real eigenvalues λ2 and λ3. First assume that λ2 and λ3 are both positive

and that the conditions in the proposition are met. Then (6) holds, and therefore there is an α ∈ (0, 1) such

that the quadratic expression h(α) is negative. In (5), take

β =
λ2λ3

1− α
,

γ =
−(1− α)(λ2 + λ3) + α− α2 − λ2λ3

1− α
=
−h(α)

1− α
.
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Then β > 0 and γ > 0. First, we check that 1− β − γ > 0:

1− β − γ = 1− λ2λ3

1− α
+

h(α)

1− α

=
1− α− λ2λ3 + h(α)

1− α
,

which, after some computation, becomes 1 − β − γ = 1 − α + λ2 + λ3, which is positive. Hence, A is row-

stochastic with the desired zero pattern, and as the determinant is equal to β(1− α) = λ2λ3 and the trace

is 1 + α− β − γ = 1 + λ2 + λ3, the spectrum of A is {1, λ2, λ3} as desired.

Note that we can give an explicit choice for α such that h(α) < 0, namely α = 1
2 (1 + λ2 + λ3), because

the minimum value of h(α) is attained for this value of α.

Now consider the case where λ2 and λ3 are both negative and λ2 + λ3 + 1 > 0. In (5), we take

α = 1
2 (1 + λ2 + λ3) so that also 1 − β − γ = 1

2 (1 + λ2 + λ3). Then 1 − α = 1
2 (1 − λ2 − λ3) which is also

positive. Take β = λ2λ3
1
2 (1−λ2−λ3)

and finally, γ = 1
1
2 (1−λ2−λ3)

(
1
4 ((1 + λ2 + λ3)2 − 4(λ2 + λ3 + λ2λ3)

)
. Note

that λ2 +λ3 +λ2λ3 is negative, so γ is positive. Then A is nonnegative, row-stochastic, has the desired zero

pattern, and has spectrum {1, λ2, λ3} since the trace, determinant, and the sum of the principal two-by-two

minors are all as dictated by the spectrum. �

4.3. The lower anti-triangular pattern. In this section, we consider case 7, where A is lower anti-

triangular:

(7) A =

0 0 1

0 α 1− α
β γ 1− β − γ

 ,
with α, β, γ, and β + γ in (0, 1).

Proposition 12. Let A be a row-stochastic matrix of the form (7). Then the spectrum of A is of the

form {1, λ2, λ3} with −1 < λ3 < 0 < λ2 < 1. Conversely, for any such pair (λ2, λ3), there is a row-stochastic

matrix of the form (7) with spectrum {1, λ2, λ3}.

Proof. Necessity: Note that the determinant is always negative in this case: det(A) = −βα. Hence, A

cannot have a pair of non-real eigenvalues, and if we order (λ2, λ3) as usual λ3 ≤ λ2, then we must have

−1 < λ3 < 0 < λ2 < 1.

Sufficiency: Now take a list Λ = {1, λ2, λ3} such that −1 < λ3 < 0 < λ2 < 1. Then for 0 < α < 1,

consider the matrix

A(α) =

 0 0 1

0 α 1− α
λ2λ3

−α α+ λ2λ3

α − (λ2 + λ3) 1 + λ2 + λ3 − α

 .
Note that 1 is an eigenvalue of A(α) as the row sums are all 1, that the trace of A(α) is equal to 1 +λ2 +λ3

and that the determinant of A(α) is equal to λ2λ3. Hence, A(α) has spectrum Λ.

It remains to show that A(α) is nonnegative and has the right zero pattern for some choice of α ∈ (0, 1).

For this, we need to choose α so that the (3, 2) and (3, 3) entries are positive. One easily checks that the

(3, 2) entry is positive for α > λ2. So taking λ2 < α < min(1, 1 + λ2 + λ3) will have the desired result. Note

that this is possible as 1 + λ3 > 0. �
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4.4. Case 8. Now we deal with case 8, where A has the following pattern:

(8) A =

0 α 1− α
β 0 1− β
0 γ 1− γ

 .
where 0 < α, β, γ < 1. Observe that traceA = 1 − γ, and that detA = −β(α − γ). Moreover, the sum of

the principal 2× 2 submatrices is

(9) λ2 + λ3 + λ2λ3 = −αβ − γ(1− β) < 0.

Proposition 13. Let A be a row-stochastic matrix of the form (8). Then the spectrum of A is of the

form {1, λ2, λ3} with

i. If λ2,3 = a± bi with b 6= 0, then a ∈ (− 1
2 , 0) and (a+ 1)2 + b2 < 1;

ii. If λ2 ≥ λ3 are real, then 0 > λ2 + λ3 > −1.

Conversely, for a pair (λ2, λ3) satisfying the conditions above, there is a row-stochastic matrix of the form

(8) with spectrum {1, λ2, λ3}.

Proof. Necessity. The conditions of the eigenvalues follow from the necessity part of Lemma 5.

Sufficiency. First, suppose λ2,3 = a± bi. Then we can construct the following matrix with the desired

zero pattern that has 1 and a± bi as its eigenvalues:

A1 =

 0 α 1− α
−a

2+b2

α+2a 0 1 + a2+b2

α+2a

0 −2a 1 + 2a

 ,
where α ∈ (0, −(a2 + 2a+ b2)).

Notice that a2 + b2 + 2a = λ2λ3 + λ2 + λ3 < 0 based on equation (9); hence, −(a2 + 2a + b2) > 0. It

is also true that −(a2 + 2a + b2) < 1; otherwise, we would get (a + 1)2 + b2 < 0 which is a contradiction.

So, 0 < α < 1 is surely satisfied, and we can apply the characteristic polynomial to verify that A1 has

eigenvalues {1, λ2, λ3}. Since − 1
2 < a < 0, it is quite obvious that γ = −2a ∈ (0, 1). In addition, since

α + 2a < −a2 − b2, we have that β > 0. To check whether β is smaller than 1 or not, assume that β ≥ 1.

We then obtain that a2 + b2 ≥ −(α+ 2a), or equivalently, α ≥ −(a2 + b2 + 2a), which is impossible.

Next, suppose λ2 and λ3 are both real such that λ2 ≥ λ3 and λ2 + λ3 ∈ (−1, 0). In this case, a

nonnegative row-stochastic matrix with eigenvalues {1, λ2, λ3} can be constructed as follows:

A2 =

 0 −λ3 1 + λ3

−λ3 0 1 + λ3

0 −(λ2 + λ3) 1 + λ2 + λ3

 .
Here, we must have λ3 < 0, since λ3 ≤ λ2 and λ2+λ3 < 0. Further, A2 is clearly a nonnegative row-stochastic

matrix. Also, one can verify that A2 has {1, λ2, λ3} as its spectrum using the characteristic equation. �
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4.5. The anti-diagonal pattern. In this section, we deal with nonnegative matrices with the anti-

diagonal zero pattern, which is case 9. So, let

(10) A =

α 1− α 0

β 0 1− β
0 γ 1− γ

 ,
with α, β, and γ in (0, 1).

Proposition 14. Let A be a row-stochastic matrix of the form (10). Then the spectrum of A is of

the form {1, λ2, λ3} with −1 < λ3 < 0 < λ2 < 1. On the other hand, for a pair (λ2, λ3) such that

1 > λ2 > 0 > λ3 > −1, there is a row-stochastic matrix of the form (10) with spectrum {1, λ2, λ3}.

Proof. Necessity: Observe that the determinant here equals det(A) = λ2λ3 = −αγ(1−β)−β(1−α)(1−γ).

Since the entries satisfy that 0 < α, β, γ < 1, it is always true that det(A) < 0. Thus, A can only have real

eigenvalues. Additionally, if we set as usual λ3 ≤ λ2 , then we obtain −1 < λ3 < 0 < λ2 < 1.

Sufficiency: Suppose that there is a list Λ = {1, λ2, λ3} such that −1 < λ3 < 0 < λ2 < 1. Then for

α ∈ (max{0, λ2 + λ3}, min{λ2, 1 + λ3}), consider the matrix

A =

 α 1− α 0
(α−λ2)(α−λ3)
2α−(1+λ2+λ3) 0 −α2+(2+λ2+λ3)α−(λ2+1)(λ3+1)

2α−(1+λ2+λ3)

0 α− (λ2 + λ3) 1 + λ2 + λ3 − α

 .
We can see that A indeed has the right zero pattern and it is row-stochastic. Besides, we can again use

the characteristic polynomial to check that the spectrum of A is Λ as expected.

It remains to show that the entries which are not on the anti-diagonal are positive. Note that the

condition α ∈ (max{0, λ2 + λ3}, min{λ2, 1 + λ3}) indicates that λ2 + λ3 < α < 1 + λ2 + λ3, that is,

0 < α− (λ2 + λ3) < 1. Thus, in terms of (10), we obtain that γ = α− (λ2 + λ3) ∈ (0, 1).

Meanwhile, we get that α − λ2 < 0 and hence (α − λ2)(α − λ3) < 0. To prove β = (α−λ2)(α−λ3)
2α−(1+λ2+λ3) > 0,

we need to make sure 2α − (1 + λ2 + λ3) < 0. Note that 1+λ2+λ3

2 is the average value of λ2 and 1 + λ3,

so we indeed have α < 1+λ2+λ3

2 , that is, 2α < 1 + λ2 + λ3. Therefore, β > 0 is satisfied. In addition,

assume that β ≥ 1, which implies that (α − λ2)(α − λ3) ≤ 2α − (1 + λ2 + λ3), which is equivalent to

α2 − α(2 + λ2 + λ3) + (1 + λ2)(1 + λ3) ≤ 0.

This produces that

(11)
2 + λ2 + λ3 −

√
∆

2
≤ α ≤ 2 + λ2 + λ3 +

√
∆

2
,

where ∆ = (2 + λ2 + λ3)2 − 4(1 + λ2)(1 + λ3) = (λ2 − λ3)2. Simplifying the expression, we get that

α ∈ (1 + λ3, 1 + λ2), which is impossible. Hence, we know that β < 1. �

4.6. Case 11. In this case, we consider the following type of nonnegative matrices:

(12) A =

α 1− α 0

0 0 1

β γ 1− β − γ

 ,
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in which 0 < α < 1 and β, γ > 0 with β + γ < 1. Observe that the trace of A equals 1 + α − (β + γ), and

that det(A) = −α(β + γ) + β. Moreover, the sum of the principal two times two submatrices produces

(13) − γ + α(1− β − γ) = λ2 + λ3 + λ2λ3.

Proposition 15. The spectrum of a row-stochastic matrix A of the form (12) is of the form {1, λ2, λ3}
with

i. If λ2,3 = a± bi with b 6= 0, then and a+ b2 < 1
4 ;

ii. If λ3 ≤ λ2 are real, then −1 < λ2 + λ3, and the point (λ2, λ3) lies in the region in the real plane

bounded by the lines λ2 = λ3, λ2 + λ3 = −1, λ3 = −1, λ2 = 1 and the parabola 1 − 2λ2 − 2λ3 −
2λ2λ3 + λ2

2 + λ2
3 = 0.

See Figure 6.

On the other hand, for a pair (λ2, λ3) satisfying the conditions above, there is a row-stochastic matrix

of the form (12) with spectrum {1, λ2, λ3}.
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Figure 6. The possible eigenvalues in case 11, left: Complex eigenvalues, right: Real eigenvalues.

Proof. Necessity: The necessity in this case follows from Lemma 4. Observe that the parabola given in

item ii here is the same as the parabola given in item ii of Lemma 4.

Sufficiency: First consider the case λ2,3 = a± bi. To construct a desired matrix that has 1 and a± bi
as eigenvalues, we take

A1 =

 1
2 + a 1

2 − a 0

0 0 1
1
4 + b2 1

4 − a− b
2 1

2 + a

 .
Since we have the conditions that − 1

2 < a < 1
4 and a+ b2 < 1

4 , A1 is row-stochastic with the right required

zero pattern. Besides, we can apply the characteristic polynomial to make sure that A has the right spectrum.

Next consider the real case with λ2 + λ3 > −1 and (λ2, λ3) lies in the region indicated in item ii. Note

that the condition λ2 + λ3 < 1 is also satisfied. Then consider the following matrix:

A2 =

 α 1− α 0

0 0 1

(α− λ2)(α− λ3) −h(α) 1 + λ2 + λ3 − α

 ,
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where

h(α) = α2 − (1 + λ2 + λ3)α+ (λ2 + λ3 + λ2λ3),

and where

α ∈


( 1+λ2+λ3−

√
∆

2 , 1+λ2+λ3

2 ) λ2, λ3 > 0

(λ2,
1+λ2+λ3

2 ) λ2 > 0 > λ3

(0, 1 + λ2 + λ3) λ2, λ3 < 0

.

Let ∆ = 1−2(λ2 +λ3)+(λ2−λ3)2 be the discriminant of h(α). Note that ∆ = 1−2λ2−2λ3−2λ2λ3 +λ2
2 +

λ2
3 > 0 as the point (λ2, λ3) is in the region indicated in item ii. Observe that 1+λ2+λ3−

√
∆

2 > λ2 +λ3 when

λ2, λ3 > 0. Indeed, otherwise 1
2 (1 + λ2 + λ3 −

√
∆) ≤ λ2 + λ3, which is equivalent to 1− (λ2 + λ3) ≤

√
∆,

which in turn is equivalent to (λ2 +λ3)2 ≤ (λ2−λ3)2, which is impossible when λ3 > 0. So according to the

restrictions on α, we immediately have that λ2 +λ3 < α < 1 +λ2 +λ3, that is, 0 < α− (λ2 +λ3) < 1. Thus

together with the expression for the trace of A2, we get that β + γ = α − (λ2 + λ3) ∈ (0, 1). Furthermore,

it also implies that β = (α− λ2)(α− λ3) ∈ (0, 1).

Now we check that 0 < γ < 1. First, observe that γ = α − (λ2 + λ3) − β < 1. Next, note that γ is a

quadratic polynomial in α, which we denote as −h(α). Assume that γ ≤ 0. Then h(α) ≥ 0, which gives that

α ≥ 1+λ2+λ3+
√

∆
2 or α ≤ 1+λ2+λ3−

√
∆

2 . The former is impossible as 1+λ2+λ3+
√

∆
2 ≥ 1+λ2+λ3

2 when λ2 or λ3

is positive, while 1+λ2+λ3+
√

∆
2 ≥ 1 + λ2 + λ3 when both λ2 and λ3 are both negative.

To show that the latter is not possible, we show that 1+λ2+λ3−
√

∆
2 ≤ λ2 if λ2 > 0 > λ3 and 1+λ2+λ3−

√
∆

2 ≤
0 if λ2, λ3 < 0. Indeed, if λ3 < 0 < λ2 we have ∆ = 1 − 2λ2 − 2λ3 − 2λ2λ3 + λ2

2 + λ2
3 > 1 − 2λ2 + λ2

2 =

(1 − λ2)2. So,
√

∆ > 1 − λ2, and hence 1+λ2+λ3−
√

∆
2 < 2λ2+λ3

2 < λ2. In case λ2, λ3 ≤ 0, we have

∆1− 2λ2 − 2λ3 + (λ2 − λ3)2 > 1 and so 1+λ2+λ3−
√

∆
2 < 1+λ2+λ3−1

2 = λ2+λ3

2 < 0.

Therefore, we obtain that γ ∈ (0, 1).

It is additionally quite clear that the matrix A2 has eigenvalues {1, λ2, λ3}, while it is row-stochastic

with the right zero pattern. �

4.7. Case 12. Now we are left with the type of nonnegative matrices below:

(14) A =

0 α 1− α
0 0 1

β γ 1− β − γ

 ,
where 0 < α < 1 and β, γ > 0 with β + γ < 1. Note that here we have that traceA = 1− (β + γ), and that

detA = αβ which is always positive. Moreover, the sum of the principal two times two submatrices gives

(15) λ2 + λ3 + λ2λ3 = −γ + β(α− 1) < 0.

Also, zero cannot be an eigenvalue as A is invertible.

Proposition 16. Given a row-stochastic matrix A of the form (14), the spectrum of A is of the form

{1, λ2, λ3} with

i. If λ2,3 = a± bi with b 6= 0, then (a+ 1)2 + b2 < 1;

ii. If λ2 ≥ λ3 are real, then 0 > λ2 ≥ λ3 > −1 and λ2 + λ3 > −1.

See Figure 7.
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On the other hand, for a pair (λ2, λ3) satisfying the conditions above, there is a row-stochastic matrix

of the form (14) with spectrum {1, λ2, λ3}.
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Figure 7. The eigenvalue locations in case 12. Left: Complex eigenvalues, right: Real conjugate eigenvalues.

Proof. Necessity: First consider the case when A has complex eigenvalues λ2,3 = a± ib. The necessity of

the condition then follows from Lemma 5.

Next we check the case when A has only real eigenvalues. From the trace, we have λ2 + λ3 = −(β + γ),

and −1 < λ2 + λ3 < 0 because of the condition β + γ < 1. Meanwhile, observe that detA = λ2λ3 is always

positive. This indicates that λ2 and λ3 must be both negative. Hence, we obtain that 0 > λ2, λ3 > −1.

Sufficiency: Suppose λ2,3 = a± bi. Then for γ ∈ (0, −(a2 + 2a+ b2)), the matrix

A1 =

 0 −a
2+b2

2a+γ 1 + a2+b2

2a+γ

0 0 1

−(2a+ γ) γ 1 + 2a

 ,
has the desired zero pattern and has 1 and a± bi as its eigenvalues.

Notice that a2 + 2a + b2 < 0 based on equation (15); hence, −(a2 + 2a + b2) > 0. It is also true that

−(a2 + 2a+ b2) < 1; otherwise, we would get (a+ 1)2 + b2 < 0 which is impossible. So γ is between 0 and

1, and we can use the characteristic polynomial to verify that it indeed has {1, λ2, λ3} as its spectrum.

It remains to check that A1 is nonnegative. It is easy to see that β + γ = −2a ∈ (0, 1). Additionally,

we obtain β = −2a− γ > 0, for γ < −(a2 + b2)− 2a < −2a. To make sure β is smaller than 1, assume that

β ≥ 1. It then follows that −2a− γ ≥ 1, equivalently, γ ≤ −(1 + 2a) < 0, which is a contradiction. Further,

it is clear that α = a2+b2

−(2a+γ) = a2+b2

β > 0. Since γ < −(a2 + b2) − 2a, we can rewrite the expression to get

that −(2a+ γ) > a2 + b2, implying that a2+b2

−(2a+γ) < 1, that is, α < 1 is satisfied.

Next, suppose λ2 and λ3 are both real such that −1 < λ2, λ3 < 0 and λ2 + λ3 > −1. In this case, a

row-stochastic matrix that has eigenvalues {1, λ2, λ3} can be constructed as follows:

A2 =

 0 −λ3 1 + λ3

0 0 1

−λ2 −λ3 1 + λ2 + λ3

 .
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Obviously, A2 is indeed a nonnegative row-stochastic matrix, and one can check that A2 has {1, λ2, λ3} as

its spectrum using the characteristic polynomial. �

This completes the discussion of all possible zero patterns with three zeros.

5. Zero patterns with two zeros. There are

(
9

2

)
= 36 possible ways to distribute two zeros over

nine entries; however, using similarity by permutations and the fact that the transpose pattern yields the

same eigenvalues, this is reduced to a much smaller number of cases, namely the following six:0 ∗ ∗
∗ 0 ∗
∗ ∗ ∗

 ,
∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

 ,
∗ 0 ∗

0 ∗ ∗
∗ ∗ ∗

 ,
∗ 0 ∗
∗ ∗ 0

∗ ∗ ∗

 ,
0 ∗ ∗
∗ ∗ 0

∗ ∗ ∗

 ,
0 0 ∗
∗ ∗ ∗
∗ ∗ ∗

 .
We will refer to these cases as cases 1 to 6 in this order.

In case 1, Lemma 5 gives a necessary condition. This can be shown to be sufficient as well. Indeed, from

Proposition 13, there is a matrix with two zeros on the diagonal and an extra zero in the left lower entry

which has the desired spectrum. Then we can use the implicit function theorem in a similar way as in the

proof of Proposition 10 to show the desired sufficiency.

Case 2 is a reducible case, we shall omit further discussion of that case. In cases 5 and 6, Lemma 4

can be applied to give a necessary condition, which can be shown to be sufficient as well; see [11]. We shall

discuss the cases 3 and 4 in the following two subsections.

5.1. Case 3.

Proposition 17. Let A =

α 0 1− α
0 β 1− β
γ δ 1− δ − γ

 be a nonnegative primitive matrix, and let {1, λ2, λ3} be

the spectrum. Then λ2 and λ3 are both real and nonzero, λ3 < λ2 and λ2 > 0.

Conversely, for any pair of real numbers λ2 > λ3 both non-zero and with λ2 > 0, there is a nonnegative

matrix A of this form with spectrum {1, λ2, λ3}.

Proof. Necessity. The characteristic polynomial of A is of the form:

pA(λ) = det(λI3 −A) = (λ− 1)(λ2 − (traceA− 1)λ+ detA) = (λ− 1)(λ− λ2)(λ− λ3).

So the eigenvalues will be real and different when (traceA− 1)2 − 4 detA = (λ2 − λ3)2 > 0.

Computing detA gives detA = αβ − αδ − γβ. Also, traceA− 1 = α+ β − δ − γ. Hence,

(traceA− 1)2 − 4 detA = (α+ β − δ − γ)2 − 4(αβ − αδ − γβ)

=α2 + β2 + δ2 + γ2 + 2(αβ − αγ − αδ − βγ − βδ + γδ)

− 4αβ + 4αδ + 4βγ

=α2 + β2 + δ2 + γ2 − 2αβ + 2αδ − 2αγ + 2βγ − 2βδ + 2γδ

=(α− β + δ − γ)2 + 4γδ > 0.

So both λ2 and λ3 are real and λ2 > λ3.
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It remains to show that λ2 is positive. First observe that the columns of A are clearly independent, so

detA 6= 0. Further, if the determinant of A is negative, then λ2λ3 < 0, and so, since λ3 ≤ λ2 it then follows

that λ2 > 0. So we may assume that detA > 0.

Now we claim that if traceA−1 < 0, then detA < 0. To see this introduce some notation first. Introduce

f(α, β, γ, δ) = detA = αβ − αδ − γβ,
g(α, β, γ, δ) = traceA− 1 = α+ β − γ − δ,

and finally, let S be the set in R4 given by traceA− 1 ≤ 0 and all conditions on α, β, γ, and δ which make

A a nonnegative row-stochastic matrix:

S = {(α, β, γ, δ) | 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ, 0 ≤ δ, γ + δ ≤ 1, α+ β − γ − δ ≤ 0} .

Observe that S is a compact set, so f has a maximum on S, either in the interior or on the boundary of

the set. We shall show that the maximum of f on S is 0, and it is attained in the origin α = β = δ = γ = 0.

First we show that f has no extremal value in the interior of S. For this compute f ′(α, β, γ, δ) = (β− δ, α−
γ,−β,−α), which is zero only in the origin. So we consider the boundary, piece by piece. If either α = 0 or

β = 0, then the values of f are less than or equal to 0, and 0 only in boundary points. Likewise when β = 1

and γ + δ = 1. If α = 1, then, because on S we have α+ β ≤ γ + δ ≤ 1, it follows that β = 0. So again, in

that case f has values less than or equal to 0. If γ = 0, then f(α, β, 0, δ) = α(β − δ). Since on S we have

α + β ≤ γ + δ = δ, it follows that β ≤ δ, and hence in these points f has values less than or equal to 0.

Likewise when δ = 0. So it remains to consider the part of the boundary of S where α+ β − γ − δ = 0. We

use Euler–Lagrange on that set. Put H = f − µg, where µ is the Lagrange parameter. Then

H ′(α, β, γ, δ, µ) = ((β − δ)− µ, (α− γ)− µ,−β + µ,−α+ µ,−g(α, β, γ, δ)).

This has to be zero. It follows that µ = β − δ = α− γ = β = α. It is straightforward to check that together

with g(α, β, γ, δ) = 0 this implies that α = β = γ = δ = 0. So the maximum of f on S is zero.

Hence, if detA ≥ 0 also traceA− 1 ≥ 0. Now

λ2 =
1

2
(traceA− 1) +

1

2

√
(traceA− 1)2 − 4 detA,

and we know that this is real by what we showed earlier. Then it follows that if detA ≥ 0 then λ2 ≥ 0,

while if detA < 0 the fact that λ2 > 0 is automatic.

Finally, we show that λ2 > 0. Indeed, suppose that λ2 = 0, then detA = 0, and so αβ = αδ + γβ, so

dividing by αβ, we obtain δ
β + γ

α = 1. Since α, β, γ, and δ are all positive, this implies that γ < α and

δ < β. So traceA − 1 = α + β − γ − δ > 0. Now if λ2 = 0, then λ3 ≤ 0 and so traceA − 1 = λ2 + λ3 ≤ 0.

Hence, we must have that detA = 0 can only occur when λ3 = 0.

This completes the proof of the necessity part.

Sufficiency. Let 0 < λ2 < 1 and −1 < λ3 < λ2 be given. Consider the following matrix with three

zeros:

A0 =

λ2 0 1− λ2

0 β 1− β
0 β − λ3 1− β + λ3

 ,
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with the conditions that max(0, λ3) < β < min(1, 1 + λ3). Then A0 is nonnegative and has the desired

eigenvalues as one easily sees (eigenvalues 1 and λ2 are obvious and from the trace one obtains the third

eigenvalue equal to λ3). For A =

α 0 1− α
0 β 1− β
γ δ 1− δ − γ

 define

Φ(α, β, γ, δ) =

[
f(α, β, γ, δ)

g(α, β, γ, δ)

]
=

[
detA

traceA− 1

]
=

[
αβ − αδ − γβ
α+ β − γ − δ

]
.

Take a fixed β0 ∈ (max(0, λ3),min(1, 1 + λ3)). Then

Φ(λ2, β0, 0, β0 − λ3) =

[
λ2λ3

λ2 + λ3

]
.

View (α, β) as functions of (γ, δ) determined by the equation Φ(α, β, γ, δ) =

[
λ2λ3

λ2 + λ3

]
in a neighborhood of

the point (λ2, β0, 0, β0−λ3). From the implicit function theorem, this is possible when the matrix

[
∂f
∂α

∂f
∂β

∂g
∂α

∂g
∂β

]
is invertible in the point (λ2, β0, 0, β0 − λ3). We have in this point[

∂f
∂α

∂f
∂β

∂g
∂α

∂g
∂β

]
=

[
β − δ α− γ

1 1

]
|(α,β,γ,δ)=(λ2,β0,0,β0−λ3) =

[
λ3 λ2

1 1

]
.

Since λ2 6= λ3, this matrix is indeed invertible. Hence, by the implicit function theorem, for small positive

values of γ and for δ in a (positive) neighborhood of β0 − λ3, there are solutions α and β, close to α = λ2

and β = β0. Hence, there is a nonnegative matrix A with the desired zero pattern and spectrum {1, λ2, λ3}.
This finishes the proof. �

5.2. Case 4. In this case, we have

(16) A =

 α 0 1− α
1− β β 0

δ 1− γ − δ γ

 ,
where α, β, γ, δ ∈ (0, 1) and 0 < δ + γ < 1. Notice that we have traceA = α + β + γ, and detA =

(1− α)(1− β − γ − δ) + βγ. Furthermore, the sum of the principal two times two submatrices produces

αβ + αγ + βγ − δ(1− α) = λ2 + λ3 + λ2λ3.

Proposition 18. Let A be a row-stochastic matrix of the form (16). Then the spectrum of A is of the

form {1, λ2, λ3} with

i. If λ2,3 = a± bi with b 6= 0, then a > − 1
2 and |b| <

√
3

3 (1− a);

ii. If λ2, λ3 are real, then −1 < λ3 ≤ λ2 < 1 and λ2 + λ3 > −1.

Conversely, for any such pair (λ2, λ3), there is a row-stochastic matrix of the form (16) with spectrum

{1, λ2, λ3}.
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Note that this means that the only restriction is that the eigenvalues cannot be on the boundary of the

Karpelevich region. This case is, up to scaling and permutational similarity, the same type as the matrix

occuring in Theorem 6 in [13].

Proof. Necessity. Note that the boundary points of the Karpelevič region cannot be eigenvalues of a

matrix of the form (16) by Propositions 6 and 7.

Sufficiency. Now we prove the converse, so we show that for each pair of complex conjugates λ2 and

λ3 inside the triangle bounded by x > − 1
2 and |y| <

√
3

3 (1− x) or for any pair of real numbers λ2,3 ∈ (0, 1)

such that λ2 + λ3 > −1, there is a nonnegative matrix of form (16) with σ(A) = {1, λ2, λ3}.
Notice that the necessary and sufficient conditions for σ(A) = {1, λ2, λ3}, with A in the form of (16), are

(17) 1 + λ2 + λ3 = α+ β + γ, λ2 + λ3 + λ2λ3 = αβ + αγ + βγ − δ(1− α).

Based on the above two equations, we need to find solutions of (α, β, γ, δ) such that α, β, γ, δ ∈ (0, 1) and

0 < δ + γ < 1.

Real eigenvalues. In the real eigenvalue case, first let both λ2 ≥ λ3 be positive. If we take β = α, then a

possible solution is (α, β, γ, δ) = ( 1+λ2

2 , 1+λ2

2 , λ3,
1−λ2

2 ), and we can easily verify that γ + δ = 1−λ2+2λ3

2 < 1.

Then we are left with the case when both λ2 and λ3 are negative, or when λ2 ≥ 0 ≥ λ3 and λ2 +λ3 > −1.

Recall that from Case 11 of the three-zero pattern, for any such pair of λ2 and λ3 we can construct a

nonnegative matrix B =

α̂ 1− α̂ 0

0 0 1

δ̂ γ̂ 1− γ̂ − δ̂

 that has eigenvalues {1, λ2, λ3}. As one can see, performing

a similarity with P =

0 1 0

1 0 0

0 0 1

 on B results in the matrix A with α0 = 0, β0 = α̂, δ0 = γ̂, and γ0 = 1−γ̂−δ̂

in this case. Hence, we can find a matrix A(α = 0) such that σ(A(α = 0)) = {1, λ2, λ3} for each pair of

(λ2, λ3). Thus, using the implicit function theorem, we obtain an open interval U of (α, δ) containing (0, δ0)

and a continuous function g : U −→ R2 such that f(α, g(α, δ), δ) =

(
0

0

)
. Thereby, we can indeed find a pair

of entries (α, δ) ∈ U with (β, γ) = g(α, δ) to construct the matrix A of the form (16) which has spectrum

{1, λ2, λ3}.

Now consider a specific solution (α, 1, γ, δ) to equation (17). Let f : R4 −→ R2 be defined as:

f(α, β, γ, δ) =

(
α+ β + γ − (1 + λ2 + λ3)

αβ + αγ + βγ − δ(1− α)− (λ2 + λ3 + λ2λ3)

)
.

We get that

f ′(α, β, γ, δ) =

(
1 1 1 0

β + γ + δ α+ γ α+ β α− 1

)
.

The columns 2 and 3 clearly form an invertible matrix when α = 0 and β 6= γ, and so in that case we can

apply the implicit function theorem to show that there is a solution such that α > 0 and small. Notice that

the freedom we have in the construction in Case 11 of the three-zero pattern allows to make a choice such

that β 6= γ.
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Complex eigenvalues. Next if λ2,3 = a± bi (b 6= 0) by the proof given for Case 5 (the circulant pattern)

of the three-zero pattern, we can find a nonnegative matrix as in the following form:

Ã2 =

 α 0 1− α
1− β β 0

0 1− β β

 ,

such that a± bi are eigenvalues of Ã2. .

However, compared with A in (16), Ã2 is obtained by taking γ = β and δ = 0. Consider f : R4 −→ R2

that is given by:

f(α, β, γ, δ) =

(
α+ β + γ − (1 + 2a)

αβ + αγ + βγ − δ(1− α)− (2a+ a2 + b2)

)
,

where we view (α, γ) as a function of (β, δ). For a specific solution (α, β, γ, δ) = (α̂, β̂, β̂, 0), we have that

f(α̂, β̂, β̂, 0) =

(
0

0

)
and that

f ′(α̂, β̂, β̂, 0) =

(
1 1 0 1

2β̂ α̂+ β̂ α̂+ β̂ α̂− 1

)
.

Obviously, the matrix formed by the first and third columns of Ã2 is invertible. Thus, we can apply the

implicit function theorem to conclude that there must be a solution with δ > 0. �

6. Zero patterns with four zeros. Next, we consider 3×3 matrices with four zero entries. Note that

we only are interested in the irreducible cases. Performing a similarity permutation or taking a transpose

keeps the number of zeros equal to 4 and does not change the eigenvalues. This results in a reduction to 6

essentially different cases which are listed in the table below, together with the conditions on the spectrum

Λ = {1, λ2, λ3} for each of the cases. The proofs use the same techniques as before and may be found

in [11]. In each case, for any pair λ2,3 satisfying the given conditions, there is a nonnegative, irreducible,

row-stochastic matrix with the given zero pattern and the list Λ as its spectrum.0 0 ∗
0 0 ∗
∗ ∗ ∗

 λ2 = 0,−1 < λ3 < 0.

0 ∗ ∗
0 0 ∗
∗ 0 ∗

 either λ2,3 = a± bi with b 6= 0 and − 1
2 < a < 0, (a+ 1)2 + b2 < 1,

or λ2,3 < 0 and −1 < λ2 + λ3 < 0.0 0 ∗
0 ∗ ∗
∗ ∗ 0

 −1 < λ3 < 0 < λ2 < 1 and −1 < λ2 + λ3 < 0.
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0 ∗ ∗
0 ∗ ∗
∗ 0 0

 λ2,3 = a± bi with b 6= 0 and − 1
2 < a < 0, (a+ 1)2 + b2 < 1,

or λ2,3 < 0 and −1 < λ2 + λ3 < 0.0 ∗ ∗
0 0 ∗
∗ ∗ 0

 λ2,3 = − 1
2 ± ib with 0 < b <

√
3

2 or λ2,3 = − 1
2 ± 1 with 0 ≤ a < 1

2 .

0 ∗ 0

0 ∗ ∗
∗ 0 ∗

 either λ2,3 = a± bi with b 6= 0 and (a+ 1)2 + b2 > 1 and a+ b2 < 1
4

or 0 < λ3 ≤ λ2 and 1 + λ2
2 + λ2

3 − 2(λ2 + λ3 + λ2λ3) > 0. See Figure 8.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 8. Possible eigenvalue locations for the final case.

7. Five zero patterns. When there are five zero entries in a 3 × 3 matrix, there are at least two

columns with two zeroes in it. That results in a small number of irreducible forms. By permutation, we may

assume that there are two zeroes in columns 1 and 2. If the two zeroes in the first column are in positions 2

and 3, then the matrix is reducible. Likewise, if the two zeroes in the second column are in positions 1 and

3, then the matrix is reducible.

So there remain the following three cases.

Case 1. Consider the following nonnegative matrix A =

0 0 1

0 0 1

α 1− α 0

 . The characteristic polynomial

of A is given by λ(λ2 − 1) independently of α, so the spectrum is {1, 0,−1}.

Case 2. A =

0 α 1− α
0 0 1

1 0 0

 . Observe that trace (A) = 1 + λ2 + λ3 = 0 and that det(A) = α > 0. The

spectrum of A is of the form {1, λ2, λ3} such that either λ2,3 = − 1
2 ± bi with b ∈ (0,

√
3

2 ), or λ2,3 = − 1
2 ± a

with a ∈ [0, 1
2 ). Conversely, for any such pair (λ2, λ3), there is a row-stochastic matrix of this form with

spectrum {1, λ2, λ3}.
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Case 3. Next suppose we have a nonnegative matrix with the following pattern: A =

 0 1 0

0 0 1

1− α 0 α

 .
In this case ,traceA = 1 + λ2 + λ3 = α ∈ (0, 1) and detA = 1 − α > 0. Besides, the sum of the two times

two subdeterminants is λ2 + λ3 + λ2λ3 = 0. The spectrum of A is of the form {1, λ2, λ3} with λ2,3 = a± bi
such that b 6= 0 and (a+ 1)2 + b2 = 1. Conversely, for any such pair (λ2, λ3), there is a row-stochastic matrix

of this form with spectrum {1, λ2, λ3}.

8. Six zero patterns. Now we take a further step to analyze the matrices with six zero entries. There

is little choice since we are only interested in the irreducible cases, that is, those without a whole column

or row of zeros. Up to permutation and transpose, this leaves the case A =

0 1 0

0 0 1

1 0 0

 . Obviously, the

spectrum is now {1,− 1
2 ± i

√
3

2 }.

9. Some remarks concerning dimension four. Next we consider the 4× 4 case, with three zeroes

on the diagonal. Let A be a row-stochastic irreducible matrix with zeroes on the (1, 1), (2, 2), and (3, 3)

entries, and let σ(A) = {1, λ2, λ3, λ4}. So A has the form:

A =


0 ∗ ∗ ∗
∗ 0 ∗ ∗
∗ ∗ 0 ∗
∗ ∗ ∗ ∗

 .
Note that the trace of A is less than 1, and that all principal 2× 2 submatrices are negative.

Proposition 19. Let A be a row-stochastic matrix with three zeros on the diagonal, and let σ(A) =

{1, λ2, λ3, λ4}. Then the following hold

i. if σ(A) consists of four real numbers, then λ2, λ3, and λ4 satisfy the following two conditions:

− 1 < λ2 + λ3 + λ4 < 0,(18)

λ2 + λ3 + λ4 + λ2λ3 + λ2λ4 + λ3λ4 < 0,(19)

ii. if σ(A) contains a pair of non-real eigenvalues, which we denote by λ3,4 = a± bi, then λ2 and a± bi
satisfy the following two conditions besides the condition that a± bi are contained in the Karpelevič

region:

− 1 < λ2 + 2a < 0,(20)

(a+ λ2 + 1)2 + b2 < (λ2 + 1
2 )2 + 3

4 .(21)

Proof. Conditions (18) and (20) are consequences of the fact that 0 < trace (A) < 1 so that 0 < 1 + λ2 +

λ3 + λ4 < 1.

The fact that the two-by-two principal minors are all negative means that the coefficient of λ2 in the

characteristic polynomial of det (λI−A) is negative, so the sum over all products of two different eigenvalues

is negative. In other words,

λ2 + λ3 + λ4 + λ2λ3 + λ2λ4 + λ3λ4 < 0,
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as is stated by condition (19). For the case where there is a pair of non-real eigenvalues, insert λ3,4 = a± bi,
then condition (21) is a straightforward rewriting of (19). �

Using the formula for the coefficients of the characteristic polynomial in terms of traces of powers of A,

the conditions can be rewritten as:

0 < trace (A) < 1, (trace (A))2 < trace (A2).

Note that the conditions do indeed exclude possibilities. Some obvious conclusions can be drawn from them:

for instance, if A is of the form as stated in the proposition and has a pair of non-real eigevalues a± bi, then

a < 1
2 as follows from (20) taking into account that −λ2 < 1. Also, if A has all eigenvalues real, and we

order them as λ4 ≤ λ3 ≤ λ2, then from (18) we see that λ4 < 0 and λ2 > − 1
3 .

Let us analyze a bit more the location of possible non-real eigenvalues. Denote the region bordered by

the Karpelevič curves, that is, the possible locations of the eigenvalues, by K. For a fixed value of λ2, the

region described by condition (21) is a disc, and combined with − 1+λ2

2 < a < −λ2

2 , which follows from (20)

the two conditions describe a portion of a disc between the two vertical lines through− 1+λ2

2 and −λ2

2 . The

disc is bounded by a circumference, and all these circumferences pass through the points − 1
2 ±

√
3

2 i. So for

a fixed λ2, the possible location of non-real eigenvalues is in the region:

Vλ2 = {a+ bi ∈ K | (a, b) satisfies (20) and (21)}.

One checks that the union of all these regions is the set of all elements of K with real part less than 1
2 . For

λ2 = 1, 1/2, 0,−1/2,−1, the regions Vλ2
are depicted in Figure 9.

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

Figure 9. The regions Vλ2
with (left to right) λ2 = 1, 1/2, 0,−1/2,−1. The regions between the two vertical lines, inside

the light colored circumference and inside the Karpelevič region.

Let us also consider another pattern that has interesting behavior, namely

(22) A =


α 1− α 0 0

0 β 1− β 0

0 0 γ 1− γ
1− δ 0 0 δ

 ,

with α, β, γ, and δ in (0, 1). Note that for P =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

, we have that PAP−1 is a matrix of the same

pattern as A, with α replaced by β, β replaced by γ, γ replaced by δ, and finally, δ replaced by α. So under

this permutation of the parameters, the eigenvalues remain the same. Introduce the region

R = {z = a+ bi | z ∈ K, a > 0, (b2 + a2 + a)2 + 2a2 − b2 > 0}.

We conjecture the following.
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Conjecture 20. For any irreducible nonnegative matrix A of the form (22), the non-real eigenvalues

of A are in the region R.

We have substantial evidence for this conjecture. In Figure 10, the eigenvalues of 104 matrices of this

type are plotted in red. In addition, we consider the matrices:

(23) A(α) =


α 1− α 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 .
The eigenvalues of A(α) are the roots of the polynomial:

pA(α)(λ) = λ4 − αλ3 − 1 + α = (λ4 − 1)− α(λ3 − 1)

= (λ− 1)
(
(λ3 + λ2 + λ+ 1)− α(λ2 + λ+ 1)

)
= (λ− 1)(λ3 + (1− α)(λ2 + λ+ 1)).

We consider the curve which is implicitly given in the complex plane by λ3 + (1− α)(λ2 + λ+ 1) = 0. Note

that besides 1 the matrix A(α) must have at least one other real eigenvalue, and it is easy to see that for

λ > 0 and 0 < α < 1 we have λ3 + (1−α)(λ2 +λ+ 1) > 0, so any real eigenvalue besides 1 must be negative.

Suppose λ = a+ bi is a non-real eigenvalue of A(α). Splitting the equation λ3 + (1−α)(λ2 +λ+ 1) = 0 into

real and imaginary parts, we find

a3 − 3ab2 + (1− α)(a2 − b2 + a+ 1) = 0, 3a2b− b3 + (1− α)(2a+ 1)b = 0.

Since we are interested in non-real eigenvalues, we have b 6= 0. The two equations above give two expressions

for 1− α, and equating those we arrive after some computation at

(b2 − 3a2)(a2 − b2 + a+ 1) = (2a+ 1)(3ab2 − a3).

Working out both sides, and taking terms together, this is equivalent to

b4 + a4 + 2a2b2 + 2ab2 + 2a3 + 3a2 − b2 = 0,

which can be rewritten as:

(b2 + a2 + a)2 + 2a2 − b2 = 0.

This curve in the plane is the magenta curve in Figure 10 together with the dark blue curves that are not

on the negative real axis. Non-real eigenvalues of matrices of type A(α) for 0 ≤ α ≤ 1 are on the curve,

they are shown in dark blue. By continuity of the eigenvalues, it is easy to see that this part of the curve is

exactly traced out by the non-real eigenvalues of A(α) for 0 ≤ α ≤ 1. Note that this part of the curve is on

the boundary of the region R, the remaining part of the boundary of R is on the boundary of K.

Now we use Proposition 1. For 0 < t < 1 let

A(t) = tA(α) + (1− t)I =


tα+ (1− t) t(1− α) 0 0

0 1− t t 0

0 0 1− t t

t 0 0 1− t

 .
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Note that if we set α̂ = tα + 1 − t, then 1 − α̂ = t(1 − α). So A(t) is of the form (22). Redefining α = α̂

and β = 1− t, we have from Proposition 1 that for any matrix of the form (22) with γ = δ = β the non-real

eigenvalues are in the region R. Because of the permutation invariance of the list of eigenvalues with respect

to the permutation induced by P , we have that the same holds whenever three of the four parameters are

equal.

As another example, consider the matrix

B(α) =


α 1− α 0 0

0 0 1 0

0 0 0 1

1− α 0 0 α

 ,
with 0 < α < 1. The eigenvalues are the roots of

pB(α)(λ) = (α− λ)2λ2 − (1− α)2

(λ− 1)(λ− (α− 1))(λ2 − αλ− α+ 1).

So the eigenvalues are 1, α−1 and the two roots of λ2−αλ−α+1. The latter are non-real for 0 < α < 2
√

2−2.

Denoting them by λ = a± bi, we get two equations expressing a and b in terms of α:

a2 − b2 − αa− α+ 1 = 0

2ab− αb = 0.

Since we are interested in non-real eigenvalues, we assume b 6= 0, then α = 2a. Inserting that in the first of

the two equations, we obtain that (a, b) must satisfy a2 + b2 + 2a− 1 = 0, that is, (a+ 1)2 + b2 = 2. So the

eigenvalues are on a part of the circumference centered at (−1, 0) and radius
√

2 that is in K. Note that

this part of the circumference certainly lies in R.

Again we use Proposition 1 and consider A = tB(α) + (1 − t)I, which is a matrix of the form (22).

Replacing again tα+ 1− t by α and t by β, we see from Proposition 1, using also the permutation invariance

under P , that any matrix of the form (22) which has two of α, β, γ, δ equal and the other two also equal

must have its non-real eigenvalues (when it has non-real eigenvalues) inside R.

All this does not prove the conjecture, but it is a strong supporter.

Figure 10. The regions R together with the eigenvalues of 104 matrices of the form (22). The blue lines trace the

eigenvalues of the matrices (23).
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As a third pattern in the four-dimensional case, consider a nonnegative row-stochastic irreducible matrix

of the form:

A =


α 1− α 0 0

β γ 1− β − γ 0

0 δ φ 1− δ − φ
0 0 1− κ κ

 .
Matrices of this form always have four real eigenvalues, as it is well known that a tri-diagonal matrix is always

similar to a symmetric tri-diagonal matrix, and the similarity can be taken to be diagonal. We conjecture

that the second eigenvalue is always positive.

Acknowledgments. The authors thank the referee for a very thorough reading of the manuscript and for

suggesting many improvements to the text.

The work of A.C.M. Ran is based on research supported in part by the National Research Foundation

of South Africa (Grant Number 145688).

REFERENCES

[1] A.G. Cronin and T.J. Laffey. An inequality for the spectra of nonnegative matrices. Linear Algebra Appl., 436: 3223–3238,

2012.

[2] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.

[3] C.R. Johnson, C. Marijuán, P. Paparella, and M. Pisonero. The NIEP. Oper. Theor. Adv. Appl., 267:199–220, 2018.

[4] C.R. Johnson and P. Paparella. A matricial view of the Karpelevič theorem. Linear Algebra Appl., 520:1–15, 2017.
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[13] J. Torre-Mayo, M.R. Abril-Raymundo, E. Alarcia-Estévez, C. Marijuán, and M. Psionero. The nonnegative inverse eigen-

value problem from the coefficients of the characteristic polynomial. EBL digraphs. Linear Algebra Appl., 426:729–773,

2007.


	Introduction
	Zeros on the diagonal and corresponding restrictions on the eigenvalue location
	Zero patterns with one zero
	Zero patterns with three zeros
	The circulant pattern
	Case 6
	The lower anti-triangular pattern
	Case 8
	The anti-diagonal pattern
	Case 11
	Case 12

	Zero patterns with two zeros
	Case 3
	Case 4

	Zero patterns with four zeros
	Five zero patterns
	Six zero patterns
	Some remarks concerning dimension four
	References

