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MINIMIZING THE LEAST EIGENVALUE OF UNBALANCED SIGNED UNICYCLIC

GRAPHS WITH GIVEN GIRTH OR PENDANT VERTICES∗

MINGHUI YAN† , DAN LI† , YONGANG WANG‡ , AND JIXIANG MENG†

Abstract. A signed graph Γ = (G, σ) consists of an underlying graph G = (V,E) with a sign function σ : E → {1,−1}.
Let A(Γ) be the adjacency matrix of Γ. Let λ1(A(Γ)) ≥ λ2(A(Γ)) ≥ · · · ≥ λn(A(Γ)) be the spectrum of the signed graph Γ,

where λn(A(Γ)) is the least eigenvalue of Γ. Let U−n,g,k denote the set of all the unbalanced signed unicyclic graphs with order

n, girth g and k pendant vertices, let U−n (k) denote the set of all the unbalanced signed unicyclic graphs with n vertices and k

pendant vertices, and let U−n,g denote the set of all the unbalanced signed unicyclic graphs with order n and girth g. Obviously,

U−n (k) =
n−k⋃
g=3
U−n,g,k and U−n,g =

n−g⋃
k=0

U−n,g,k. In this paper, we determine the signed unicyclic graphs whose least eigenvalues

are minimal among all the graphs in U−n,g,k, U−n (k) and U−n,g , respectively.
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1. Introduction. All the graphs we consider are simple and connected. For a simple graph G with

vertex set {v1, v2, . . . , vn}, the generic entry aij of the adjacency matrix A(G) is aij = 1 if vi ∼ vj and 0

otherwise. Denote by Φ(G,λ) = det(λI − A(G)) the characteristic polynomial of G. The spectrum of G

is the spectrum Spec(A(G)) of A(G). The largest eigenvalue of A(G) is called the spectral radius of G. A

signed graph Γ = (G, σ) consists of an underlying graph G = (V,E) with a sign function σ : E → {1,−1}.
The (unsigned) graph G is often called the underlying graph of Γ, while the function σ is called the signature

of Γ. In terms of signed graphs, the adjacency matrix of Γ is defined as A(Γ) = (aσi,j), where aσi,j = σ(vivj)

if vi ∼ vj and 0 otherwise. The characteristic polynomial Φ(Γ, λ) = det (λI −A(Γ)) of A(Γ) is called the

characteristic polynomial of Γ. As usual, we use λ1(A(Γ)) ≥ λ2(A(Γ)) ≥ · · · ≥ λn(A(Γ)) to denote the

spectrum of A(Γ). The spectrum of A(Γ) is referred to as the spectrum of Γ and denoted by Spec(A(Γ)).

The largest eigenvalue λ1(A(Γ)) is often called the index.

The notion of balance, introduced by Harary [11], plays a central role in matroid theory of signed graphs.

A signed cycle is called negative (resp. positive) if it contains an odd (resp. even) number of negative edges.

A signed graph is balanced if none of its cycles is negative, otherwise it is unbalanced. A unicyclic graph is a

connected graph containing exactly one cycle. Many familiar notions related to unsigned graphs are directly

extended to the signed graphs. For example, the degree of a vertex v in Γ = (G, σ) is its degree in G and it

is denoted by dΓ(v) or d(v) which is the number of edges incident with v. A vertex of degree one is said to

be a pendant vertex, and an edge of a graph is said to be pendant if one of its vertices is a pendant vertex.

The girth of a signed graph Γ, denoted by g, is the length of a smallest cycle in its underlying graph G.
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Let Γ = (G, σ) be a signed graph and v ∈ V (Γ). A switching at vertex v is the changing of the signs of

all edges associated with v, and we call v a switching vertex. A switching of a signed graph Γ is a signed

graph that can be obtained by the finite times of switching operations. We say that two signed graphs Γ1

and Γ2 are switching equivalent, and we write Γ1 ∼ Γ2 if Γ2 is a switching of Γ1. Furthermore, two signed

graphs Γ1 and Γ2 are said to be switching isomorphic if Γ1 is isomorphic to a switching of Γ2. Note that

the adjacency matrices of switching equivalent signed graphs are similar, and hence, they have the same

spectrum. It can be easily seen that the switching does not affect the signs of the cycles. Unsigned graphs

are treated as (balanced) signed graphs where all edges get positive signs, that is, the all-positive signature.

Obviously, a balanced signed graph is switching equivalent to its underlying graph.

In the past few decades, many scholars have paid more attention to the research of index of the signed

graphs. Ghorbani and Majidi [9] characterized the signed graph with the maximum index of signed complete

graphs with n vertices and t ≤ n2

2 negative edges. Let U−n,g,k be the set of all the unbalanced signed unicyclic

graphs with order n, girth g and k pendant vertices. Let U−n,g (resp. Un,g) denote the set of all the unbalanced

(resp. balanced) signed unicyclic graphs with order n and girth g. Denote by U−n (k) (resp. Un(k)) the set

of all the unbalanced (resp. balanced) signed unicyclic graphs with n vertices and k pendant vertices. Up

to switching equivalence, any signed graph in U−n,g,k (resp. U−n,g and U−n (k)) can be obtained from the

signed unicyclic graph containing exactly one negative edge in the unique cycle, and all the other edges

being positively signed. Paths Pl1 , Pl2 , . . . , Plk are said to have almost equal lengths if l1, l2, . . . , lk satisfy

|li − lj | ≤ 1 for 1 ≤ i, j ≤ k. Denote by S−n,g,k (resp. Sn,g,k) the signed graph obtained from the negative

cycle with girth g (resp. Cg) by attaching k paths of almost equal lengths at one vertex. Our motivation is

from Guo [10] who characterized the graph Sn,3,k with the maximal spectral radius among all the graphs in

Un(k). In this paper, we first focus on the signed unicyclic graph whose least eigenvalue is minimal among

all the signed graphs in U−n,g,k. The main result is posed as follows.

Theorem 1.1. Let U− ∈ U−n,g,k be the signed unicyclic graph with minimum least eigenvalue, where

1 ≤ k ≤ n− g. Then, U− is switching isomorphic to S−n,g,k.

Let −Γ be obtained from Γ by changing the sign of each edge. Note that U− is switching isomorphic

to −U− when g is even and U− is switching isomorphic to −U when g is odd, where U− = (U, σ) ∈ U−n,g,k.

Then, the following corollary holds immediately.

Corollary 1.2. Let U− (resp. U) be the signed (resp. unsigned) unicyclic graph with maximal index.

(i) If g is odd, then U is isomorphic to Sn,g,k.

(ii) If g is even, then U− is switching isomorphic to S−n,g,k.

Next, we characterize the signed unicyclic graph with minimum least eigenvalue in U−n (k). Note that

U−n (k) =
n−k⋃
g=3
U−n,g,k. Let U− ∈ U−n (k) be the signed unicyclic graph with minimum least eigenvalue. By Theo-

rem 1.1, we know that U− is switching isomorphic to one of the signed graphs in {S−n,3,k, S−n,4,k, . . . , S−n,n−k,k}.
We can derive the following result.

Theorem 1.3. Let U− = (U, σ) ∈ U−n (k) be the signed unicyclic graph with minimum least eigenvalue,

where 1 ≤ k ≤ n− 3. Then, U− is switching isomorphic to S−n,3,k.

Akbari, Belardo, Heydari, Maghasedi and Souri [1] proved that among all the unbalanced signed unicyclic

graphs with order n, the signed graph achieving the maximal index is the unbalanced triangle with all
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remaining vertices being pendant at the same vertex of the triangle. Belardo, Li Marzi and Simić [3] studied

that among all the graphs in Un,g, the graph achieving the maximal index is the graph Sn,g,n−g. However,

there are few researches on the least eigenvalues of signed graphs. Fan, Wang and Guo [8] determined the

unique graph with minimum least eigenvalue among all the graphs in Un,g. Note that U−n,g =
n−g⋃
k=0

U−n,g,k.

Next we will consider the similar result about the least eigenvalue in U−n,g. Let U− ∈ U−n,g be the signed

unicyclic graph with minimum least eigenvalue, then we can note that U− is switching isomorphic to one of

the signed graphs in {S−n,g,0, S−n,g,1, . . . , S−n,g,n−g} by Theorem 1.1. In subsequent proof of the Theorem 1.4,

we observe that λn(A(S−n,g,1)) > · · · > λn(A(S−n,g,n−g)). Hence, the following result holds.

Theorem 1.4. Let U− = (U, σ) ∈ U−n,g be the signed unicyclic graph with minimum least eigenvalue.

Then U− is switching isomorphic to S−n,g,n−g.

Recall that −Γ is obtained from Γ by reversing the sign of each edge. Then, we can get the maximal index

of U and U− by Theorem 1.4, which has been confirmed by Belardo, Li Marzi, Simić [3] and Souri, Heydari,

Maghasedi [15].

Corollary 1.5. Let U− (resp. U) be the signed (resp. unsigned) unicyclic graph with maximal index.

(i) If g is odd, then U is isomorphic to Sn,g,n−g.

(ii) If g is even, then U− is switching isomorphic to S−n,g,n−g.

2. Proof of Theorem 1.1. Assume that V1 ⊂ V (Γ) and V1 6= ∅. Let Γ[V1] be the signed induced

subgraph of Γ, whose vertex set is V1 and edge set is the set of those edges that have both ends in V1. Note

that sign functions of signed induced subgraphs are the restrictions of the former ones to the corresponding

edge subsets. An important tool works in a similar way for signed graphs, which is a consequence of ([7],

Theorem 1.3.11).

Lemma 2.1. (Interlacing Theorem for signed graphs) Let Γ be a signed graph of order n and the eigen-

values be λ1(A(Γ)) ≥ λ2(A(Γ)) ≥ · · · ≥ λn(A(Γ)), and let Γ′ be an induced subgraph of Γ with m vertices.

If the eigenvalues of Γ′ are µ1 (A (Γ′)) ≥ µ2(A(Γ′)) ≥ · · · ≥ µm(A(Γ′)), then λn−m+i(A(Γ)) ≤ µi(A(Γ′)) ≤
λi(A(Γ)) for i = 1, 2, . . . ,m.

For convenience, the least eigenvalue λn(A(Γ)) is denoted by λ(A(Γ)). Let V (Γ) = {v1, . . . , vn} and

X = (x1, x2, . . . , xn)T ∈ Rn, where xi corresponds to the vertex vi (1 ≤ i ≤ n), and X is a unit vector

corresponding to λ(A(Γ)). Then by the Rayleigh quotient Theorem,

λ(A(Γ)) = min
Y ∈Rn,||Y ||=1

Y TA(Γ)Y = XTA(Γ)X,

and the eigenvalue equation for v is as follows:

λ(A(Γ))xv =
∑
u∼v

σ(uv)xu.

We first give the following results about λ(A(Γ)), which are the most often used tools in the identifications

of graphs with minimum least eigenvalue.

Lemma 2.2. Let r, s and t be distinct vertices of a signed graph Γ and let X = (x1, x2, . . . , xn)T be a

unit eigenvector corresponding to λ(A(Γ)). Let Γ′ be obtained from either by rotating the positive edge rs to
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non-edge position rt or rotating the negative edge rt to the non-edge position rs. If{
xr ≥ 0, xs ≥ xt
xr ≤ 0, xs ≤ xt

,

then λ (A (Γ′)) ≤ λ (A (Γ)). If xr 6= 0 or xs 6= xt, then λ(A(Γ′)) < λ(A(Γ)).

Proof. Note that
λ (A (Γ′))− λ (A (Γ)) ≤ XT (A(Γ′)−A(Γ))X

= 2xr (xt − xs) .

If xr ≥ 0 and xs ≥ xt or xr ≤ 0 and xs ≤ xt, then λ(A(Γ′)) ≤ λ(A(Γ)). Note that X is also an

eigenvector of A(Γ′) corresponding to λ(A(Γ′)) when λ(A(Γ′)) = λ(A(Γ)). If xr 6= 0 (resp. xs 6= xt), then

the eigenvalue equation cannot hold for s (resp. r) in Γ and Γ′, and we are done. The second relocation is

considered in the same way.

Lemma 2.3. [13] Let r, s and t be distinct vertices of a signed graph Γ, let Γ′ be obtained from Γ by

reversing the sign of the positive edge rs and negative edge rt and let X = (x1, x2, . . . , xn)T be a unit

eigenvector corresponding to λ(A(Γ)). If xr(xs − xt) ≥ 0, then λ(A(Γ)) ≥ λ(A(Γ′)). If xr 6= 0 or xs 6= xt,

then λ(A(Γ)) > λ(A(Γ′)).

Lemma 2.4. [14] Let f1(x) = x, fi(x) = x− 1
fi−1(x) , i ≥ 2. For x ≤ −2, we have

(i) fi(x) < −1, i.e., |fi(x)| > 1.

(ii) |fi(x)| > |fi+1(x)|.
Lemma 2.5. [14] Let v0 be a vertex of a connected graph G with at least two vertices. Let Gl(l ≥ 1)

be the graph obtained from G by attaching a new path P = v0v1 · · · vl of length l at v0, where v1, . . . , vl are

distinct new vertices. Let X be a unit eigenvector of λ (A (Gl)). If λ (A (Gl)) ≤ −2, then we have

(i) xvi = fl−i(λ)xvi+1(0 ≤ i ≤ l − 1), where fi(λ) is a function on λ defined in Lemma 2.4 and

λ = λ (A (Gl));

(ii) For any fixed i(i = 0, 1, . . . , l − 1), we have |xvi+1
| ≤ |xvi | and xvixvi+1

≤ 0, with equalities if and

only if xv0 = 0.

The consequences of Lemma 2.5 can be naturally extended to signed graphs.

Corollary 2.6. Let v0 be a vertex of a signed graph Γ with at least two vertices. Let Γl(l ≥ 1) (Fig.

1) be the signed graph obtained from Γ by attaching a new path P = v0v1 · · · vl of length l at v0, where

v1, . . . , vl are distinct new vertices and all the edges are positive. Let X be a unit eigenvector of λ (A (Γl)).

If λ (A (Γl)) ≤ −2, then we have

(i) xvi = fl−i(λ)xvi+1(0 ≤ i ≤ l − 1), where fi(λ) is a function on λ defined in Lemma 2.4 and

λ = λ (A (Γl));

(ii) For any fixed i(i = 0, 1, . . . , l − 1), we have |xvi+1
| ≤ |xvi | and xvixvi+1

≤ 0, with equalities if and

only if xv0 = 0.

Denoted by Wn(n ≥ 6) be the graph obtained from a path v1v2 · · · vn−4 by attaching two pendant

vertices to v1 and another two to vn−4 (Fig. 1). Let NΓ(v) or N(v) denote the neighbor set of vertex v in

Γ. The distance between vertices u and v of a signed graph Γ is denoted by dΓ(u, v) or d(u, v). By [6], we

have Spec(A(Wn)) = Spec(A(C4)) ∪ Spec(A(Pn−4)). Note that λ(A(Wn)) = −2.
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Γ

Γl

v0 v1 v2 vl−1 vl

Wn

v1 v2

vn

vn−1

vn−3

vn−2
vn−4

1

Figure 1. The signed graphs Wn and Γl.

Now we begin to prove Theorem 1.1.

Proof. Suppose that V (U−) = {v1, . . . , vn} and (Cg, σ) is the unique negative cycle in U−, where

Cg = v1v2v3 · · · vgv1. Then, U− can be viewed as attaching some trees Ti at the vertex vi(1 ≤ i ≤ g). Up to

switching equivalence, let v1vg be the unique negative edge of U−. We apply induction on n. The result is

clearly true for k = 1. Assume that k ≥ 2. Let X = (x1, x2, . . . , xn)T be a unit eigenvector corresponding

to λ(A(U−)). Then the following claims can be obtained.

Claim 1. xu 6= 0 for any vertex u ∈ V (U−) \ V ((Cg, σ)) .

On the contrary, assume that there is a vertex ur ∈ V (Tp) \ {vp}(1 ≤ p ≤ g) such that xur
= 0. Then,

there must exist a unique path P = vpu1 · · ·ur between vp and ur. If r = 1, then xvp = 0 and xup
= 0 for

any vertex up ∈ V (Tp) by Corollary 2.6. Let Tq (if exists) be another tree of U−, zl ∈ V (Tq) and d(zl) = 1.

Then, there exists a unique path P = vqz1 · · · zl between vq and zl. We assert that xzl−1
= 0. Otherwise, we

construct a new signed graph U∗ from U− by rotating the positive edge urvp to the non-edge position urzl−1

such that U∗ ∈ U−n,g,k and λ(A(U∗)) < λ(A(U−)) by Lemma 2.2, a contradiction. Furthermore, we can see

that zi = 0(i = 1, . . . , l) by Corollary 2.6. By the same arguments, we can prove that xu = 0 for any vertex

u ∈ V (U−) \ V ((Cg, σ)). Now, if r > 1, then we assert that xzl = 0. Otherwise, a new signed graph U∗ can

be obtained from U− by rotating the positive edge urur−1 to the non-edge position urzl such that U∗ ∈ U−n,g,k
and λ (A (U∗)) < λ (A (U−)) by Lemma 2.2, a contradiction. We can obtain that zj = 0(j = 1, . . . , l) by

Corollary 2.6. Similarly, we can prove that xu = 0 for any vertex u ∈ V (U−) \ V ((Cg, σ)). Recall that

xvp = 0. Hence, λ (A(U−)) = λ (A ((Cg, σ)− vp)) = λ (A (Pg−1)) = −2cosπg . However, since (Pg,+) is an

induced subgraph of U−, λ(A(U−)) = −2cosπg > −2cos π
g+1 = λ(A(Pg)) ≥ λ(A(U−)) by Lemma 2.1, a

contradiction.

Claim 2. (Cg, σ) contains only one vertex with degree greater than 2.

Otherwise, assume that vi and vj are two distinct vertices of the (Cg, σ) such that d(vi) ≥ 3 and d(vj) ≥ 3.

Let {viui, vjuj} ∈ E(U−), where {ui, uj} ∈ V (U−)\V ((Cg, σ)). Note that xui 6= 0 and xuj 6= 0 by Claim 1.

We first assume that xui
xuj

> 0. Without loss of generality, let xui
< 0 and xuj

< 0. If xvi ≤ xvj , then we

can construct a new signed graph U∗ from U− by rotating the positive edge uivi to the non-edge position uivj
such that U∗ ∈ U−n,g,k and λ(U∗) < λ(U−) by Lemma 2.2, a contradiction. If xvj < xvi , then a new signed

graph U∗ can be obtained from U− by deleting the positive edge ujvj and adding the positive edge ujvi such

that U∗ ∈ U−n,g,k and λ(U∗) < λ(U−) by Lemma 2.2, a contradiction. Now, we consider that xuixuj < 0.

Without loss of generality, let xui
> 0 and xuj

< 0. Let U−1 be the unbalanced signed unicyclic graph

obtained from U− by switching at the vertex vj and X ′ = (x′1, x
′
2, . . . , x

′
n)T be its eigenvector corresponding

to λ(U−1 ), where x′vj = −xvj and x′s = xs for any vertex vs ∈ V (U−) \ {vj}. Thus, x′ui
= xui

> 0 and

x′uj
= xuj < 0. If x′vi ≤ x′vj , then a new signed graph U∗ can be obtained from U−1 by rotating the negative
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edge ujvj to the non-edge position ujvi such that U∗ ∈ U−n,g,k and λ(U∗) < λ(U−1 ) = λ(U−) by Lemma 2.2,

a contradiction. If x′vi > x′vj , then we construct a new signed graph U∗ from U−1 by rotating the positive

edge uivi to the non-edge position uivj such that U∗ ∈ U−n,g,k λ (U∗) < λ
(
U−1
)

= λ (U−) by Lemma 2.2, a

contradiction.

Claim 3. There exists an integer i such that xvi 6= 0 for 1 ≤ i ≤ g.

On the contrary, we assume that xv1 = xv2 = · · · = xvg = 0. Let vs and vt be two distinct vertices of (Cg, σ),

and assume that there exists a vertex up(g < p ≤ n) such that vsup ∈ E(U−). We assert that xup
= 0.

Otherwise, we construct a new signed graph U∗ from U− by rotating the positive edge upvs to the non-edge

position upvt such that U∗ ∈ U−n,g,k and λ(A(U∗)) < λ(A(U−)) by Lemma 2.2, a contradiction. If d(up) = 2,

then λ(A(U−))xup
= xvs + xuq

by the eigenvalue equation for up, i.e., xuq
= 0, where uq ∈ N(up) \ {vs}.

If d(up) > 2, then we assert that xu = 0, where u ∈ N(up) \ {vs}. Otherwise, we construct a new signed

graph U∗ from U− by rotating the positive edge uup to the non-edge positive uvs such that U∗ ∈ U−n,g,k and

λ(A(U∗)) < λ(A(U−)) by Lemma 2.2, a contradiction. By the same arguments, xv1 = xv2 = · · · = xvn = 0,

which means that X = 0, a contradiction.

Claim 4. xv1 6= 0 or xvg 6= 0.

On the contrary, let xv1 = xvg = 0. We can divide into the two cases. Firstly, assume that g > 3. We

assert that xv2 = 0. Otherwise, we can construct a new signed graph U∗ from U− by reversing the sign

of the positive edge v1v2 and the negative edge v1vg such that U∗ ∈ U−n,g,k and λ(A(U∗)) < λ(A(U−)) by

Lemma 2.3. However, U∗ is switching isomorphic to U− and λ(A(U∗)) = λ(A(U−)), a contradiction. If

N(v2) \ {v1, v3} 6= ∅, then we assert that xz = 0 for any vertex z ∈ N(v2) \ {v1, v3}. Otherwise, there exists

a vertex z ∈ N(v2)\{v1, v3} such that xz 6= 0, we can construct a new signed graph U∗ from U− by rotating

the positive edge zv2 to the non-edge position zv1 such that U∗ ∈ U−n,g,k and λ(A(U∗)) < λ(A(U−)) by

Lemma 2.2, a contradiction. Note that λ(A(U−))xv2 = xv3 by the eigenvalue equation for v2, i.e., xv3 = 0.

Similarly, we obtain that xv1 = xv2 = · · · = xvg = 0, which contradicts with Claim 3. Now, we consider the

case that g = 3. If N(v1) \ {v3} = N(v3) \ {v1} = {v2}, then λ(A(U−))xv1 = xv2 by the eigenvalue equation

for v1, i.e., xv2 = 0. This contradicts with Claim 3. Assume that N(v1)\{v2, v3} 6= ∅ or N(v3)\{v1, v2} 6= ∅.
Without loss of generality, we just consider that N(v1) \ {v2, v3} 6= ∅. Let vp ∈ N(v1) \ {v2, v3}. Then we

assert that xvp = 0. Otherwise, we can construct a new signed graph U∗ from U− by rotating the positive

edge vpv1 to the non-edge position vpv3 such that U∗ ∈ U−n,g,k and λ(A(U∗)) < λ(A(U−)) by Lemma 2.2, a

contradiction. Note that λ(A(U−))xv1 = xv2 by the eigenvalue equation for v1, i.e., xv2 = 0, contradicting

Claim 3. Hence, xv1 6= 0 or xvg 6= 0.

Note that −X is also an eigenvector corresponding to λ(A(U−)) if X is an eigenvector corresponding to

λ(A(U−)). Without loss of generality, we always assume that xv1 > 0.

Claim 5. max
vi∈V ((Cg,σ))

d(vi) = k + 2.

Otherwise, there must be a vertex w ∈ V (U−)\V ((Cg, σ)) such that d(w) > 2. Up to switching equivalence,

let d(v1) > 2. Then, there exists a unique path P between v1 and w. Let N(w) = {w1, w2, . . . , wt} (t ≥ 3)

and w1 ∈ V (P ). Since (C3, σ) or (Wm, σ)(m ≥ 6) with the negative edge v1vg is an induced subgraph of U−,

λ(A(U−)) ≤ −2 by Lemma 2.1. It follows that xwi
xw < 0 for any i ∈ {2, . . . , t} by Corollary 2.6. If d(v1, w)

is even, then xwxv1 > 0 > xwi
xv1 and |xw| < |xv1 | by Corollary 2.6. Combining this with xv1 > 0, thus,

xv1 > xw > 0 and xwi < 0 for any i ∈ {3, . . . , t}. Then, a new signed graph U∗ can be obtained from U− by

rotating the positive edge wiw to the non-edge position wiv1 such that U∗ ∈ U−n,g,k and λ(A(U∗)) < λ(A(U−))
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by Lemma 2.2, a contradiction. If d(v1, w) is odd, then xwxv1 < 0 < xwixv1 and |xw| < |xv1 | by Corollary 2.6.

Hence, xv1 > 0 > xw and xwi
> 0 for any i ∈ {3, . . . , t}. Let U−2 be the unbalanced signed unicyclic graph

obtained from U− by switching at the vertex w and X ′ = (x′1, x
′
2, . . . , x

′
n)T be its eigenvector corresponding

to λ
(
A
(
U−2
))
, where x′w = −xw and x′vs = xvs for any vertex vs ∈ V (U−) \ {w}. So x′wi

= xwi
> 0 and

x′v1 > x′w > 0. Then, we can construct a new signed graph U∗ from U−2 by rotating the negative edge wiw

to the non-edge position wiv1 such that U∗ ∈ U−n,g,k and λ (A (U∗)) < λ
(
A
(
U−2
))

= λ (A (U−)) by Lemma

2.2, a contradiction.

Hence, by Claim 5, U− is an unbalanced signed unicyclic graph which is obtained from (Cg, σ) by

attaching k paths to v1. Denote by Pl1 , Pl2 , . . . , Plk the k paths.

Claim 6. |li − lj | ≤ 1 for 1 ≤ i, j ≤ k.

Otherwise, there exist two paths, say Pl1 = v1u1 · · ·ul1 and Pl2 = v1z1 · · · zl2 , such that l1 = l2 + t (t ≥ 2).

Since (C3, σ) or (K1,4, σ) with the negative edge v1vg is an induced subgraph of U−, λ(A(U−)) ≤ −2 by

Lemma 2.1. Firstly, let l2 be even and t be odd. Then, l1 is odd, and hence xzl2xv1 > 0, xul1
xv1 < 0

and xul1−1
xv1 > 0 by Corollary 2.6. Combining this with xv1 > 0, it follows that xul1

< 0 < xzl2 , xul1−1
.

We assert that |xul1−1
| > |xzl2 |. Otherwise, we can construct a new signed graph U∗ from U− by rotating

the positive edge ul1ul1−1 to the non-edge position ul1zl2 such that U∗ ∈ U−n,g,k and λ(A(U∗)) < λ(A(U−))

by Lemma 2.2, a contradiction. Note that xul1−2
xv1 < 0 and xzl2−1

xv1 < 0 by Corollary 2.6. Recall

that xv1 > 0, then xul1−2
< 0 and xzl2−1

< 0. If |xul1−2
| ≤ |xzl2−1

|, then xzl2−1
≤ xul1−2

< 0. Let

U∗ = U− − ul1−1ul1−2 − zl2zl2−1 + ul1−2zl2 + zl2−1ul1−1, then U∗ ∈ U−n,g,k, clearly. By Rayleigh quotient,

λ(A(U∗))− λ(A(U−)) ≤ XT
(
A(U∗)−A(U−)

)
X

= 2
(
xul1−1

− xzl2
) (
xzl2−1

− xul1−2

)
≤ 0.

If λ (A (U∗)) = λ (A (U−)), then X is also an eigenvector of A(U∗) corresponding to λ(A(U∗)). By the

eigenvalue equation for vertex ul1−2,{
λ(A(U−))xul1−2

= xul1−1
+ xul1−3

,

λ(A(U∗))xul1−2
= xzl2 + xul1−3

.

By the above equations, xul1−1
= xzl2 , which contradicts with |xul1−1

| > |xzl2 |. Thus, λ(A(U∗)) < λ(A(U−)),

a contradiction. We can obtain that |xul1−2
| > |xzl2−1

|. Similarly, we can assert that (if exists) |xul1−3
| >

|xl2−2|. For convenience, let v1 = z0. Therefore, using repeatedly the same arguments, we have |xut−1 | >
|xz0 | = |xv1 |. However, |xv1 | > |xui

| for 1 ≤ i ≤ l2 by Corollary 2.6, a contradiction.

Now, let l2 be even and t be even. Then, l1 is even, and hence, xul1
xv1 > 0 and xul1−1

xv1 < 0 by

Corollary 2.6. Combining this with xv1 > 0, then xul1
, xzl2 > 0 > xul1−1

. Let U−3 be the unbalanced

signed unicyclic graph obtained from U− by switching at the vertex ul1−1 and X ′ = (x′1, x
′
2, . . . , x

′
n)T

be its eigenvector corresponding to λ
(
A
(
U−3
))

, where x′ul1−1
= −xul1−1

and x′vs = xvs for any vertex

vs ∈ V (U−) \ {ul1−1}. We assert that |x′ul1−1
| > |x′zl2 |. Otherwise, a new signed graph U∗ can be obtained

from U−3 by rotating the negative edge ul1ul1−1 to the non-edge position ul1zl2 such that U∗ ∈ U−n,g,k
and λ (A (U∗)) < λ

(
A
(
U−3
))

= λ (A (U−)) by Lemma 2.2, a contradiction. Note that x′ul1−2
x′v1 > 0 >

x′zl2−1
x′v1 by Corollary 2.6, and hence x′ul1−2

> 0 > x′zl2−1
. We assume that |x′ul1−2

| ≤ |x′zl2−1
|. Let

U∗ = U−3 − ul1−1ul1−2 − zl2zl2−1 + ul1−2zl2 + zl2−1ul1−1 (ul1−1ul1−2, ul1−2zl2 are negative edges). By
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Rayleigh quotient, If λ (A (U∗)) = λ
(
A
(
U−3
))

, then X is also an eigenvector of A(U∗) corresponding to

λ(A(U∗)). Since x′ul1−1
6= x′zl2

, the eigenvalue equation cannot hold for ul1−2 in U∗ and U−3 . Thus,

λ (A (U∗)) < λ
(
A
(
U−3
))

= λ (A (U−)), a contradiction. We can derive that |x′ul1−2
| > |x′zl2−1

|. Similarly,

|xut−1 | > |xz0 | = |xv1 |, a contradiction.

Similarly, we can get a contradiction if l2 is odd. This completes the proof.

3. Proof of Theorem 1.3. Subdividing an edge uv of a graph means replacing edge uv by two edges

uw and wv, with w being a new vertex. Let Guv denote a new graph can obtained from G by subdividing

the edge uv, where G is a connected graph and uv ∈ E(G). A walk w1w2 · · ·ws(s ≥ 2) in a graph G is called

an internal path, if these k vertices are distinct (except possibly w1 = ws), dG(w1) > 2, dG(ws) > 2 and

dG(w2) = · · · = dG(ws−1) = 2 (unless s = 2).

Lemma 3.1. [12] Let G be a connected graph with uv ∈ E(G). If uv belongs to an internal path of G

and G is not isomorphic to Wn, then λ1(Guv) < λ1(G).

Denote by G1 ∪G2 the disjoint union of two graphs G1 and G2. Let k and n1, . . . , nk be some positive

integers. Let S(n1, . . . , nk) be the tree T with a unique vertex v of degree greater than 2, such that

T \ v ∼= Pn1
∪ · · · ∪ Pnk

. The tree S(n1, . . . , nk) (k ≥ 3) is often called starlike tree.

The proof of Theorem 1.3 as follows.

Proof. Suppose that V (U−) = {v1, . . . , vn} and (Cg, σ) is the unique negative cycle in U−, where

Cg = v1v2v3 · · · vgv1. Up to switching equivalence, let v1vg be the unique negative edge of U−. Note that

U−n (k) =
n−k⋃
g=3
U−n,g,k, then we can obtain that U− is switching isomorphic to one of the signed graphs in

{S−n,3,k, S−n,4,k, . . . , S−n,n−k,k} by Theorem 1.1. Let Pl1 , Pl2 , . . . , Plk be the k paths, i = 1, . . . , k. We can

assume that l1 ≤ l2 ≤ · · · ≤ lk, where Pl1 = v1z1 · · · zl1 and Pl2 = v1w1 · · ·wl2 . The result is trivial for g = 3.

Then assume that g > 3. Let X = (x1, x2, . . . , xn)T be a unit eigenvector corresponding to λ(A(U−)). It is

known that xv1 > 0 by the proof of Theorem 1.1. Then, we divide the proof into the following two cases.

Case 1. g is odd.

Since g ≥ 5, there must exist vi−1vi, vivj , vjvj+1 ∈ E((Cg, σ)) for 3 ≤ i ≤ g − 2. Let U∗ = U− −
vi−1vi − vivj − vjvj+1 + vi−1vj+1 + vizl1 + vjwl2 , then U∗ = S−n,g−2,k, clearly. Assume that (U1, σ) = U−1 =

U− − vi−1vi − vivj − vjvj+1 + vi−1vj+1. It is easy to notice that U is the graph from U1 by subdividing the

edge vi−1vj+1. By Lemma 3.1, λ1(A(U)) < λ1(A(U1)), thus,

λ(A(U−)) = −λ1(A(U)) > −λ1(A(U1)) = λ
(
A
(
U−1
))
.

Note that U−1 is an induced subgraph of U∗, then λ
(
A
(
S−n,g−2,k

))
= λ(A(U∗)) ≤ λ

(
A
(
U−1
))

by Lemma

2.1. Hence, λ
(
A
(
S−n,g−2,k

))
< λ(A(U−)). Therefore, from a repeated use of the same arguments, we can

obtain U− ∼= S−n,3,k.

Case 2. g is even.

By the eigenvalue equations for vertices v1, v2, . . . , vg, we can obtain

(3.1) λ(A(U−))xvg = −xv1 + xvg−1 ,
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and

(3.2) λ(A(U−))xvi = xvi−1 + xvi+1 for i = 2, 3, . . . , g − 1.

Let fi(λ(A(U−))) (i = 2, . . . , g2 − 1) be a function on λ(A(U−)) defined in Lemma 2.4. By (3.2) for i = 2,

we notice that

(3.3) λ(A(U−))xv2 = xv1 + xv3 .

Add equations (3.1) and (3.3), then

(3.4) λ(A(U−))(xv2 + xvg ) = xv3 + xvg−1
.

By (3.2) for i = 3 and i = g − 1, we have

(3.5) λ(A(U−))xv3 = xv2 + xv4 ,

and

(3.6) λ(A(U−))xvg−1
= xvg−2

+ xvg .

Thus, add equations (3.5) and (3.6),

(3.7) λ(A(U−))(xv3 + xvg−1
) = xv2 + xv4 + xvg−2

+ xvg .

According to (3.4) and (3.7),

(3.8) f2(λ(A(U−)))(xv3 + xvg−1
) = xv4 + xvg−2

.

Similarly,

(3.9) λ(A(U−))(xv4 + xvg−2
) = xv3 + xv5 + xvg−3

+ xvg−1
.

Then by (3.8) and (3.9),

(3.10) f3(λ(A(U−)))(xv4 + xvg−2
) = xv5 + xvg−3

.

By parity of reasoning, we can obtain

(3.11) f g
2−1(λ(A(U−)))(xv g

2

+ xv g
2
+2

) = xv g
2
+1

+ xv g
2
+1
.

Hence, λ(A(U−))f g
2−1(λ(A(U−)))xv g

2
+1

= 2xv g
2
+1
. So λ(A(U−))f g

2−1(λ(A(U−))) = 2 or xv g
2
+1

= 0. We

claim that λ(A(U−))f g
2−1(λ(A(U−))) 6= 2. Firstly, assume that 2 ≤ k ≤ n− 3. Since (K1,4, σ) with the neg-

ative edge v1vg is an induced subgraph of U−, λ(A(U−)) ≤ −2 by Lemma 2.1. Note that f g
2−1(λ(A(U−))) <

−1 by Lemma 2.4, and then λ(A(U−))f g
2−1(λ(A(U−))) > 2. Now we need to consider the case k = 1. If

g = 4, then λ(A(U−))f1(A(U−)) = λ2(A(U−)). Since (K1,3, σ) with the negative edge v1v4 is an induced sub-

graph of U−, λ(A(U−)) ≤ −
√

3 by Lemma 2.1. Then, λ(A(U−))f1(A(U−)) = λ2(A(U−)) ≥ 3. If g = 6, then

λ(A(U−))f2(A(U−)) = λ2(A(U−))−1. Since (S−7,6,1, σ) with the negative edge v1v6 is an induced subgraph of

U−, λ(A(U−)) < −1.9 by Lemma 2.1. Then, λ(A(U−))f2(A(U−)) = λ2(A(U−))−1 > 2. Next, assume that

g ≥ 8. Since (S (1, 3, 3) , σ) with a negative edge is an induced subgraph of U−, λ(A(U−)) ≤ −2 by Lemma

2.1. Note that f g
2−1(A(U−)) < −1 by Lemma 2.4 and then λ(A(U−))f g

2−1(λ(A(U−))) > 2. Hence, xv g
2
+1

=
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0, and then xv g
2

+xv g
2
+2

= 0. If xv g
2

= xv g
2
+2

= 0, then xv1 = · · · = xvg = 0 by the above equation, and hence

X = 0, a contradiction. Therefore, xv g
2
+2

= −xv g
2

. Let U∗ = U−− v g
2
v g

2 +1− v g
2 +1v g

2 +2 + v g
2
v g

2 +2 + v g
2 +1zl1 ,

then U∗ = S−n,g−1,k, clearly. By Rayleigh quotient,

λ(A(U∗))− λ(A(U−)) ≤ XT
(
A(U∗)−A(U−)

)
X

= xv g
2

xv g
2
+2

+ xv g
2
+1
xzl1 − xv g

2

xv g
2
+1
− xv g

2
+1
xv g

2
+2

= −x2
v g

2

< 0.

Note that the girth of U∗ is odd. Refer to the Case 1, U− ∼= S−n,3,k. The proof is complete.

4. Proof of Theorem 1.4. Let (Cn, σ) be the unbalanced cycle with order n, by [4],

Spec (A (Cn, σ)) = {2cos (2k + 1)π

n
, k = 0, 1, . . . , n− 1}.

Then,

λ (A (Cn, σ)) = 2cos

(
2
⌊
n
2

⌋
+ 1
)
π

n
=

{
−2cosπn , if n is even.

−2, if n is odd.

Next we give the proof of Theorem 1.4.

Proof. Suppose that V (U−) = {v1, . . . , vn} and (Cg, σ) is the unique negative cycle in U−, where

Cg = v1v2v3 · · · vgv1. Note that U−n,g =
n−g⋃
k=0

U−n,g,k, then U− is switching isomorphic to one of the signed

graphs in {S−n,g,0, S−n,g,1, . . . , S−n,g,n−g} by Theorem 1.1. The result is trivial for k = 0 and k = n− g. Thus,

assume that k ≥ 1. Let X = (x1, x2, . . . , xn)T be a unit eigenvector corresponding to λ(A(U−)). It is known

that xv1 > 0 by the proof of Theorem 1.1.

Case 1. 2 ≤ k < n− g.

Let Pl1 , Pl2 , . . . , Plk be the k paths of U−, where Pli = v1ui1ui2 · · ·uili for i = 1, 2, . . . , k. Since (C3, σ) or

(K1,4, σ) with a negative edge is an induced subgraph of S−n,g,k, λ
(
A
(
S−n,g,k

))
≤ −2 by Lemma 2.1. If

li = 1 for 1 ≤ i ≤ k, then the result is trivial. Next, we consider that there exists li ≥ 2 (1 ≤ i ≤ k).

We might as well assume that l1 ≥ 2. If l1 is odd, then xu1l1
xv1 < 0 < xu1l1−1

xv1 and |xu1l1−1
| < |xv1 | by

Corollary 2.6. Combining this with xv1 > 0, thus xv1 > xu1l1−1
> 0 and xu1l1

< 0. Then, we can construct

a new signed graph U∗ from S−n,g,k by rotating the positive edge u1l1u1l1−1 to the non-edge position u1l1v1

such that U∗ ∈ U−n,g,k+1 and λ (A (U∗)) < λ
(
A
(
S−n,g,k

))
by Lemma 2.2. Note that λ

(
A
(
S−n,g,k+1

))
≤

λ(A(U∗)) by Theorem 1.1. If l1 is even, then xu1l1
xv1 > 0 > xu1l1−1

xv1 and |xu1l1−1
| < |xv1 | by Corollary

2.6. Recall that xv1 > 0, it follows xu1l1
> 0 > xu1l1−1

. Let U−1 be the unbalanced signed unicyclic

graph obtained from S−n,g,k by switching at the vertex u1l1−1 and X ′ = (x′1, x
′
2, . . . , x

′
n)T be its eigenvector

corresponding to λ
(
A
(
U−1
))

, where x′u1l1−1
= −xu1l1−1

and x′vi = xvi for any vertex vi ∈ V (U−) \ {u1l1−1}.
Thus, x′u1l1

> 0 and x′v1 > x′u1l1−1
. Then, a new signed graph U∗ can be obtained from U−1 by rotating

the negative edge u1l1u1l1−1 to the non-edge position u1l1v1 such that U∗ ∈ U−n,g,k+1 and λ (A (U∗)) <

λ
(
A
(
U−1
))

= λ
(
A
(
S−n,g,k

))
by Lemma 2.2. Note that λ

(
A
(
S−n,g,k+1

))
≤ λ(A(U∗)) by Theorem 1.1.
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Therefore, λ
(
A
(
S−n,g,k+1

))
< λ

(
A
(
S−n,g,k

))
. Hence, one use repeatedly the same arguments, we can

obtain λ
(
A
(
S−n,g,n−g

))
≤ λ

(
A
(
S−n,g,k

))
.

Case 2. k = 1.

If n− g = 1, then the assertion is true. Hence, we just need to consider n− g ≥ 2. Firstly, assume that g is

odd. Since (Cg, σ) with a negative edge is an induced subgraph of S−n,g,1, then λ
(
A
(
S−n,g,1

))
≤ −2 by Lemma

2.1. Let Pl = v1u1 · · ·ul be the unique path in S−n,g,1, where l ≥ 2. If l is odd, then xul
xv1 < 0 < xul−1

xv1
and |xul−1

| < |xv1 | by Corollary 2.6. Combining this with xv1 > 0, thus xv1 > xul−1
> 0 and xul

< 0.

Hence, we can construct a new signed graph U∗ from S−n,g,1 by rotating the positive edge ulul−1 to the

non-edge position ulv1 such that U∗ ∈ U−n,g,2 and λ (A (U∗)) < λ
(
A
(
S−n,g,1

))
by Lemma 2.2. Note that

λ
(
A
(
S−n,g,2

))
≤ λ(A(U∗)) by Theorem 1.1. If l is even, then xul

xv1 > 0 > xul−1
xv1 and |xul−1

| < |xv1 |
by Corollary 2.6. Recall that xv1 > 0, thus xul

> 0 > xul−1
. Let U−2 be the unbalanced signed unicyclic

graph obtained from S−n,g,1 by switching at the vertex ul−1 and X ′ = (x′1, x
′
2, . . . , x

′
n)T be its eigenvector

corresponding to λ
(
A
(
U−2
))

, where x′ul−1
= −xul−1

and x′vi = xvi for any vertex vi ∈ V (U−)\{ul−1}. Note

that x′ul
> 0 and x′v1 > x′ul−1

. Hence, the new signed graph U∗ can be obtained from U−2 by rotating the

negative edge ulul−1 to the non-edge position ulv1 such that U∗ ∈ U−n,g,2 and λ (A (U∗)) < λ
(
A
(
U−2
))

=

λ
(
A
(
S−n,g,1

))
by Lemma 2.2. Note that λ

(
A
(
S−n,g,2

))
≤ λ(A(U∗)) by Theorem 1.1.

Next, assume that g is even. If n−g = 2, then there exists a unique path P3 = v1u1u2 in U− = S−g+2,g,1.

We have f2(λ)xu1 = xv1 by the eigenvalue equations for vertices xu1 and xu2 , where f2(λ) is defined in

Lemma 2.4 and λ = λ
(
A
(
S−g+2,g,1

))
. Since (K1,3, σ) with a negative edge is an induced subgraph of S−g+2,g,1,

λ
(
A
(
S−g+2,g,1

))
≤ −
√

3 by Lemma 2.1. Hence, f2(λ) = λ− 1
λ < −1, and then, |xu1

| < |xv1 |. Combining this

with xv1 > 0, then xu1
< 0 < xu2

. Let U−3 be the unbalanced signed unicyclic graph obtained from S−g+2,g,1

by switching at the vertex u1 and X ′ = (x′1, x
′
2, . . . , x

′
n)T be its eigenvector corresponding to λ

(
A
(
U−3
))

,

where x′u1
= −xu1 and x′vi = xvi for any vertex vi ∈ V (U−) \ {u1}. Then, x′u2

> 0 and x′v1 > x′u1
. Hence,

we can construct a new signed graph U∗ from U−3 by rotating the negative edge u2u1 to the non-edge

position u2v1 such that U∗ = S−g+2,g,2 and λ
(
A
(
S−g+2,g,2

))
< λ

(
A
(
U−3
))

= λ
(
A
(
S−g+2,g,1

))
by Lemma 2.2,

as desired. If n − g ≥ 3, then there is a unique path Pl = v1u1 · · ·ul in U− ∈ S−n,g,1, where l ≥ 3. We first

assume that xu3 ≥ 0. If xu2 > xu1 , then we can construct a new signed graph U∗ from U− by rotating

the positive edge u3u2 to the non-edge position u3u1 such that U∗ ∈ U−n,g,2 and λ(U∗) < λ
(
A
(
S−n,g,1

))
by

Lemma 2.2. Obviously, λ
(
A
(
S−n,g,2

))
< λ (A(U∗)) by Theorem 1.1. If xu1

≥ xu2
, then a new signed graph

U∗ can be obtained from U− by deleting the positive edge v1u1 and adding the positive edge v1u2 such that

U∗ ∈ U−n,g,2 and λ(U∗) < λ
(
A
(
S−n,g,1

))
by Lemma 2.2. Note that λ

(
A
(
S−n,g,2

))
< λ (A(U∗)) by Theorem

1.1. Next assume that xu3
< 0. Let U−4 be the unbalanced signed unicyclic graph obtained from S−n,g,1 by

switching at the vertex u2 and X ′ = (x′1, x
′
2, . . . , x

′
n)T be its eigenvector corresponding to λ

(
A
(
U−4
))

, where

x′u2
= −xu2

and x′vi = xvi for any vertex vi ∈ V (U−) \ {u2}. If x′u1
≤ x′u2

, then a new signed graph U∗

can be obtained from U−4 by deleting the negative edge u3u2 and adding the negative edge u3u1 such that

U∗ ∈ U−n,g,2 and λ(U∗) < λ
(
U−4
)

= λ
(
A
(
S−n,g,1

))
by Lemma 2.2. Obviously, λ

(
A
(
S−n,g,2

))
< λ (A(U∗)) by

Theorem 1.1. If x′u1
> x′u2

, then a new signed graph U∗ can be obtained from U−4 by rotating the positive

edge v1u1 to the non-edge position v1u2 such that U∗ ∈ U−n,g,2 and λ(U∗) < λ
(
U−4
)

= λ
(
A
(
S−n,g,1

))
by

Lemma 2.2. Note that λ
(
A
(
S−n,g,2

))
≤ λ(A(U∗)) by Theorem 1.1. Then, λ

(
A
(
S−n,g,2

))
< λ

(
A
(
S−n,g,1

))
.

Hence, according to the previous Case 1 for 2 ≤ k < n− g, from a repeated use of the same arguments, we

can draw the conclusion.
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(a): S−n,g (g even) (b): S−n,g (g odd)

vn

1

Figure 2. The signed graphs S−n,g,n−g.

Lemma 4.1. [2] Let Γ be a signed graph and v be one of its vertices. Then

Φ (Γ, λ) = λΦ (Γ− v, λ)−
∑
u∼v

Φ (Γ− {u, v} , λ)− 2
∑
C∈Cv

σ(C)Φ (Γ− C, λ) ,

where Cv denotes the set of signed cycles passing through v (we assume that Φ(∅, λ) = 1).

Remark 4.2. Let S−n,g,n−g be the signed graph as shown in Fig. 2. By the proof of the Theorem 1.4,

if g is even, then we will get xv2 + xvg = 0 and 0 6= xv2 = −xvg in S−n,g,n−g. If g is odd, then by similar

method of the Theorem 1.4, we can gain f g−1
2

(
A
(
S−n,g,n−g

))(
xv g+1

2

+ xv g+3
2

)
= xv g+1

2

+ xv g+3
2

. Thus,

f g−1
2

(A(S−n,g,n−g)) = 1 or xv g+1
2

+ xv g+3
2

= 0. Since (Cg, σ) with a negative edge is an induced subgraph of

S−n,g,n−g, λ(A(S−n,g,n−g)) ≤ −2 by Lemma 2.1. Note that f g−1
2

(A(S−n,g,n−g)) < −1 by Lemma 2.4. Then,

xv g+1
2

+ xv g+3
2

= 0. If xv g+1
2

= xv g+3
2

= 0, then xv1 = · · · = xvg = 0 and X = 0, a contradiction. By

parity of reasoning, xv2 + xvg = 0. Therefore, 0 6= xv2 = −xvg . By the eigenvalue equations of vg+i,

λ
(
A(S−n,g,n−g

)
)xvg+i

= xv1 for i = 1, . . . , n − g. Hence, we can derive that xvg+1
= · · · = xvn 6= 0 by the

proof of Theorem 1.4.

By [5],

Φ(Pn, λ) =

n∏
j=1

(
λ− 2cos

jπ

n+ 1

)
=
sin
(
(n+ 1) arccosλ2

)
sin
(
arccosλ2

) .

Then,

Φ(Pn,−2) =
sin ((n+ 1) arccos(−1))

sin (arccos(−1))
=
sin ((n+ 1)π)

sinπ
=

{
n+ 1, if n is even.

−(n+ 1), if n is odd.

Let Zn denote the tree of order n + 2 consisting of three paths P2, P2 and Pn sharing one end vertex. By

[6], we have

Spec(A(Zn)) = {2cos (2k + 1)π

2n+ 2
, k = 0, 1, . . . , n} ∪ {0}.

Then, the following corollary holds.
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Corollary 4.3. For n > g, we have the following statements.

(i) If n = g + 1, g is even and g > 8, then λ
(
A
(
S−n,g+1,n−g−1

))
> λ

(
A
(
S−n,g,n−g

))
.

(ii) If n = g + 1 and g is odd, then λ
(
A
(
S−n,g+1,n−g−1

))
> λ

(
A
(
S−n,g,n−g

))
.

(iii) If n > g + 1, then λ
(
A
(
S−n,g+1,n−g−1

))
> λ

(
A
(
S−n,g,n−g

))
.

Proof. (i) By Lemma 4.1,

Φ
(
S−g+1,g,1, λ

)
=
(
λ2 − 1

)
Φ (Pg−1, λ) + 2λ (1− Φ (Pg−2, λ)) .

Then,

Φ
(
S−g+1,g,1,−2

)
= 3Φ (Pg−1,−2)− 4 (1− Φ (Pg−2,−2)) = −3g − 4 (1− (g − 1)) = g − 8.

Note that Φ
(
S−g+1,g,1,−2

)
> 0 when g > 8. Thus, λ (A (Cg+1, σ)) = −2 > λ

(
A
(
S−g+1,g,1

))
.

(ii) It is true for g = 3. Hence, assume that g > 3. Note that (Zg−2, σ) with a negative edge is an induced

subgraph of S−g+1,g,1. Then, λ
(
A
(
S−g+1,g,1

))
≤ λ (A (Zg−2)) = −2cos π

2g−2 < −2cos π
g+1 = λ (A (Cg+1, σ)) by

Lemma 2.1.

(iii) We consider a pendant edge vt and two positive edges ts and sr of the cycle of S−n,g+1,n−g−1,

where d(v) = 1, d(t) > 2 and d(s) = d(r) = 2. Let X = (x1, x2, . . . , xn)T be a unit eigenvector corre-

sponding to λ
(
A
(
S−n,g+1,n−g−1

))
. By Remark 4.2, xv 6= 0. Without loss of generality, assume that xv < 0.

Note that S−n,g+1,n−g−1 has the minimum least eigenvalue in U−n,g+1 by Theorem 1.4. Then we assert that

xs < xt. Otherwise, we can construct a new signed graph S∗ from S−n,g+1,n−g−1 by rotating the positive

edge vt to the non-edge position vs such that S∗ ∈ U−n,g+1 and λ (A (S∗)) < λ
(
A
(
S−n,g+1

))
by Lemma 2.2,

a contradiction. By Remark 4.2 and the eigenvalue equations for v and t, λ
(
A
(
S−n,g+1,n−g−1

))
xv = xt,

and then (n− g − 1)xv + 2xs = λ
(
A
(
S−n,g+1,n−g−1

))
xt = λ2

(
A
(
S−n,g+1,n−g−1

))
xv. This implies that

2xs =
(
λ2
(
A
(
S−n,g+1,n−g−1

))
− n+ g + 1

)
xv. Since (K1,n−g+1,+) is an induced subgraph of S−n,g+1,n−g−1,

λ
(
A
(
S−n,g+1,n−g−1

))
≤ λ (A (K1,n−g+1)) = −√n− g + 1 by Lemma 2.1. Thus, xs ≥ xv. Next, we assert

that xr ≤ 0. Otherwise, we construct a new signed graph S∗ from S−n,g+1,n−g−1 by rotating the positive

edge rs to the non-edge position rv such that S∗ ∈ U−n,g+1 and λ (A (S∗)) < λ
(
A
(
S−n,g+1,n−g−1

))
by Lemma

2.2. However, S∗ is isomorphic to S−n,g+1,n−g−1 and λ (A (S∗)) = λ
(
A
(
S−n,g+1,n−g−1

))
, a contradiction.

Recall that xs < xt. Hence, we can construct the signed graph S−n,g,n−g from S−n,g+1,n−g−1 by rotating the

positive edge rs to the non-edge position rt. Thus, λ
(
A
(
S−n,g,n−g

))
< λ

(
A
(
S−n,g+1,n−g−1

))
by Lemma 2.2,

as required.

Denote by U−n,g+ the set of all unbalanced unicyclic graphs with order n and girth at least g. Then, the

following Corollary can be obtained by Theorem 1.4 and Corollary 4.3 immediately.

Corollary 4.4. For any graph U− ∈ U−n,g+ where n > g + 1, we have

λ
(
A
(
U−
))
≥ λ

(
A
(
S−n,g,n−g

))
,

the equality holds if and only if U− = S−n,g,n−g.
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