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DIAGONAL-SCHUR COMPLEMENTS OF NEKRASOV MATRICES∗

SHIYUN WANG† , QI LI† , XU SUN† , AND ZHEN-HUA LYU†

Abstract. The Schur and diagonal-Schur complements are important tools in many fields. It was revealed that the

diagonal-Schur complements of Nekrasov matrices with respect to the index set {1} are Nekrasov matrices by Cvetković and

Nedović [Appl. Math. Comput., 208:225–230, 2009]. In this paper, we prove that the diagonal-Schur complements of Nekrasov

matrices with respect to any index set are Nekrasov matrices. Similar results hold for Σ-Nekrasov matrices. We also present

some results on Nekrasov diagonally dominant degrees. Numerical examples are given to verify the correctness of the results.
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1. Introduction. The diagonal-Schur complement is an important tool in numerical analysis, control

theory, matrix theory, and statistics [1, 2, 3]. There is a very close connection between Schur complements

and diagonal-Schur complements. In addition, the following structural perturbation of stationary linear

large-scale systems is usually considered in control theory [1, 4]:

(1.1)
dx

dt
= Ax,

where A is an n × n complex matrix and x is an n-dimensional vector. The matrix A is often written as:

A = Ã+Ă, where Ã is a diagonal matrix and Ă = A−Ã. Such a matrix Ă (can be written as a matrix minus

a diagonal matrix) is related to some diagonal-Schur complement. The structures of Ă and Ã are important

to investigate the stability of (1.1). Hence, the closure property of diagonal-Schur complements for some

special types of matrices, such as diagonally dominant matrices, H-matrices, and Nekrasov matrices, has

always been one of the issues of concern.

It has been proved in [2] that the diagonal-Schur complement of an H-matrix is also an H-matrix.

Similar results hold for some subclasses of H-matrices, such as strictly diagonally dominant (SDD) matrices

[1], Σ-SDD matrices [5], strictly doubly diagonally dominant matrices and γ-SDD matrices [2], and Dashnic–

Zumanovich matrices [6]. In 2020, Li, Huang, and Zhao [3] proved that the diagonal-Schur complements

of Dashnic–Zumanovich-type matrices may be Dashnic–Zumanovich-type matrices under certain conditions.

For more results about diagonal-Schur complements, one can refer to [7, 8, 9, 10] and the references therein.

Now we introduce some notations and symbols. Let Cn×n be the set of all n× n complex matrices (we

always assume n ≥ 2 in this paper) and 〈n〉 = {1, 2, · · · , n}. For any A = (aij) ∈ Cn×n, denote |A| = (|aij |).
The determinant of A is denoted by det(A). The comparison matrix of A is denoted by µ(A) = (uij)n×n
where
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uij =

{
|aij |, i = j;

−|aij |, i 6= j.

The symbol “◦” stands for the Hadamard product of two matrices, i.e., for A = (aij) ∈ Cn×n and B =

(bij) ∈ Cn×n, A ◦ B is defined as (aijbij). Let α and β be given subsets of 〈n〉. |α| stands for the cardinal

number of α. A(α, β) stands for the sub-matrix of A lying in the rows indexed by α and the columns indexed

by β. A(α, α) is called the principal sub-matrix of A, abbreviated to A(α), which stands for the sub-matrix

of A lying in the rows and columns indexed by α. If A(α) is nonsingular, then the Schur complement of

A ∈ Cn×n with respect to A(α) is denoted by A/α, i.e.,

A/α = A(ᾱ)−A(ᾱ, α)[A(α)]−1A(α, ᾱ),

where ᾱ = 〈n〉−α. The diagonal-Schur complement of A ∈ Cn×n with respect to A(α) is denoted by A/◦α,

i.e.,

A/◦α = A(ᾱ)− {A(ᾱ, α)[A(α)]−1A(α, ᾱ)} ◦ I.

Remark that we adopt the convention that A/◦∅ = A. For Schur complements, if B is a nonsingular

principal sub-matrix of A, and C is a nonsingular principal sub-matrix of B, then the following quotient

formula A/B = (A/C)/(B/C) holds [11]. However, the quotient formula does not hold in general for

diagonal-Schur complements.

The class of Nekrasov matrices, an important subclass of H-matrices, has a wide range of applications

in many fields, like computational mathematics, control, economics, and dynamic systems [12, 13, 14]. For

convenience, let Nn denote the set of all n × n complex Nekrasov matrices. Many results about Nekrasov

matrices have been obtained, such as infinity norm bounds for the inverse [15, 16], subdirect sums [17, 18],

and Schur complements [14, 19]. Given A ∈ Nn. It is clear that A/{1} ∈ Nn−1. As an application of the

quotient formula, one can easily get that A/{k} ∈ Nn−k. However, for a general α ⊂ 〈n〉, A/α may not be a

Nekrasov matrix [14]. In 2008, Cvetković and Nedović [6] proved that A/◦{1} is also a Nekrasov matrix. For

the lack of quotient formula, the problem of whether A/◦〈k〉 (1 < k < n) is also a Nekrasov matrix cannot

be directly concluded. It is well known that for any α ⊂ 〈n〉, A(α) ∈ N|α| and then A(α) is nonsingular. In

this paper, we show that, for any α ⊂ 〈n〉, A/◦α ∈ Nn−|α|. The similar results for Σ-Nekrasov matrices are

obtained by using scaling matrices.

The dominant degree can measure the separations of the Geršgorin discs from the origin, and so it is

an important tool in studying the location of the eigenvalues. The definition of diagonally dominant degree

of SDD matrices was first proposed in [20], and the location of the eigenvalues for the Schur complements

of SDD matrices, γ-SDD matrices, and DSDD matrices has been discussed in [20, 21, 22]. The Nekrasov

diagonally dominant degree of Nekrasov matrices was proposed in [14] and it has been applied to estimate

the bounds for the determinant of Nekrasov matrices [14]. We discuss the Nekrasov diagonally dominant

degree of diagonal-Schur complements after we obtained the closure property of diagonal-Schur complements

for Nekrasov matrices.

The rest of this paper is carried out as follows. In Section 2, we define some matrices, which are obtained

by µ[A(α ∪ {jt})] (jt ∈ ᾱ). We prove that these matrices are Nekrasov matrices and the determinants are

positive. These matrices and their properties play an important role in investigating the diagonal-Schur

complements for Nekrasov matrices. In Section 3, we present that the diagonal-Schur complements of

Nekrasov matrices are Nekrasov matrices. The Nekrasov diagonally dominant degrees are involved. Section

4 shows that the diagonal-Schur complements of Σ-Nekrasov matrices are also Σ-Nekrasov matrices.
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2. The preliminaries. In this section, we first introduce some notions and results related to this

paper. Then we propose two classes of matrices Ct and Dt. The positiveness of their determinants plays an

important role in the study of the diagonal-Schur complements for Nekrasov matrices.

Definition 2.1. Let A ∈ Cn×n. The matrix A is called an M -matrix if it can be written in the form of

A = sI − P, where I is the identity matrix, P is a nonnegative matrix, s > ρ(P ), and ρ(P ) is the spectral

radius of P .

Definition 2.2. Let A ∈ Cn×n. The matrix A is called an H-matrix if µ(A) is an M -matrix.

Definition 2.3. Let A = (aij) ∈ Cn×n. We say that A is a Nekrasov matrix if

|aii| > Ri(A), for all i ∈ 〈n〉,

and we call |aii| − Ri(A) the Nekrasov diagonally dominant degree for the i-th row of A, where Ri(A) is

defined as follows:

R1(A) =

n∑
j=2

|aij |, Ri(A) =

i−1∑
j=1

Rj(A)

|ajj |
|aij |+

n∑
j=i+1

|aij |, i ∈ 〈n〉 − {1}.

It is well known that a Nekrasov matrix is a nonsingular H-matrix. For any given nonempty subset S of

〈n〉, denote

RS1 (A) =
∑

j∈S,j 6=1

|a1j |; RSi (A) =

i−1∑
j=1

RSj (A)

|ajj |
|aij |+

n∑
j=i+1,j∈S

|aij |, i ∈ 〈n〉 − {1}.

Definition 2.4. Let A = (aij) ∈ Cn×n and S be a given nonempty subset of 〈n〉. A is called an

S-Nekrasov matrix if

|aii| > RSi (A), |ajj | > RS̄j (A)

and

[|aii| −RSi (A)][|ajj | −RS̄j (A)] > RS̄i (A)RSj (A),

for all i ∈ S and j ∈ S̄.

Definition 2.5. Let A ∈ Cn×n. A is called a Σ-Nekrasov matrix if there exists a nonempty subset S

of 〈n〉 such that A is an S-Nekrasov matrix.

Lemma 2.1. [23, p.131] If A is an H-matrix, then [µ(A)]−1 ≥ |A−1|.

Lemma 2.2. [23, p.117] If A is an M -matrix, then det(A) > 0.

Lemma 2.3. [11, p.5] Let A ∈ Cn×n and α be a nonempty proper subset of 〈n〉. If A(α) is nonsingular,

then det(A) = det(A(α))det(A/α).

Lemma 2.4. Let b > c ≥ 0, r > 0 and a ≥ rb. Then

b− c
a− rc

≤ b

a
.

If r = 1, then
b− c
a− c

≤ b

a
.
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Proof. Since r > 0, b > c and a ≥ rb, we get that

b− c > 0, a− rc ≥ rb− rc = r(b− c) > 0.

Noticing that a, b, r are positive numbers and c ≥ 0, it can be deduced that

a ≥ rb⇒ −ac ≤ −rbc
⇒ ab− ac ≤ ab− rbc
⇒ a(b− c) ≤ b(a− rc)

⇒ b− c
a− rc

≤ b

a
.

Now we define some matrices, which can be used to observe the closure property of the diagonally

Schur complements for Nekrasov matrices. For convenience, we denote the index set α (∅ 6= α ⊂ 〈n〉) and

ᾱ = 〈n〉 − α. The elements in both of α and ᾱ are listed in increasing order. To be precise, let

(2.1) α = {i1, i2, · · · , ik} ⊂ 〈n〉, i1 < i2 < · · · < ik,

and

(2.2) ᾱ = 〈n〉 − α = {j1, j2, · · · , jl} (l = n− k), j1 < j2 < · · · < jl.

Lemma 2.5. Let A ∈ Nn and let α = {i1, i2, · · · , ik} and ᾱ = {j1, j2, · · · , jl} (l = n − k) be defined

in (2.1) and (2.2), respectively. Given jt ∈ ᾱ with jt < ik, let α ∪ {jt} be listed in increasing order, i.e.,

α ∪ {jt} = {i1, · · · , ivt , jt, ivt+1
, · · · , ik} where ivt is the biggest number less than jt (if jt < i1, α ∪ {jt} =

{jt, i1, · · · , ik}). The matrix Ct is obtained from µ[A(α ∪ {jt})] by replacing |ajt,jt | with γ∗t , i.e.,

(2.3) Ct :=



|ai1,i1 | . . . −|ai1,ivt | −|ai1,jt | −|ai1,ivt+1
| . . . −|ai1,ik |

...
. . .

...
...

...

−|aivt ,i1 | . . . |aivt ,ivt |
...

...

−|ajt,i1 | . . . . . . γ∗t
...

...

−|aivt+1,i1 | . . . . . . . . . |aivt+1,ivt+1
|

...
. . .

−|aik,i1 | . . . −|aik,ivt | −|aik,jt | −|aik,ivt+1 | . . . |aik,ik |


,

where if
vt∑
m=1

Rim(A)

|aim,im |
|ajt,im |+

k∑
m=vt+1

|ajt,im | 6= 0,

then

γ∗t =
|ajt,jt |
Rjt(A)

(
vt∑
m=1

Rim(A)

|aim,im |
|ajt,im |+

k∑
m=vt+1

|ajt,im |

)
;

Otherwise, γ∗t = ε where ε is an arbitrary positive number. Then Ct ∈ Nk+1 and det(Ct) > 0.

Proof. Denote Ct = (cij). Notice that the condition

vt∑
m=1

Rim(A)

|aim,im |
|ajt,im |+

k∑
m=vt+1

|ajt,im | 6= 0,
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suggests Rjt(A) 6= 0, then the matrix Ct is well-defined. We first show Ct ∈ Nk+1. It is sufficient to show

that Rs(Ct) < |css| holds for all s ∈ 〈k + 1〉. We will prove it in the following three steps.

Step 1. Since A ∈ Nn, it is clear that

(2.4) Rs(Ct) ≤ Ris(A) < |css|, s ∈ 〈vt〉.

Step 2. We show that

(2.5) Rvt+1(Ct) < γ∗t = |cvt+1,vt+1|,

and

(2.6)
Rvt+1(Ct)

|cvt+1,vt+1|
≤ Rjt(A)

|ajt,jt |
.

By (2.4), we know that

Rvt+1(Ct)

=

vt∑
m=1

Rm(Ct)

|cmm|
|cvt+1,m|+

k+1∑
m=vt+2

|cvt+1,m|

=

vt∑
m=1

Rm(Ct)

|aim,im |
|ajt,im |+

k∑
m=vt+1

|ajt,im |

≤
vt∑
m=1

Rim(A)

|aim,im |
|ajt,im |+

k∑
m=vt+1

|ajt,im |.(2.7)

If
vt∑
m=1

Rim (A)
|aim,im |

|ajt,im |+
k∑

m=vt+1
|ajt,im | 6= 0, by A ∈ Nn, we have

Rvt+1(Ct) <
|ajt,jt |
Rjt(A)

(
vt∑
m=1

Rim(A)

|aim,im |
|ajt,im |+

k∑
m=vt+1

|ajt,im |

)
= γ∗t .

Hence, the inequality (2.5) holds. Moreover, by (2.7) it holds that

Rvt+1(Ct)

|cvt+1,vt+1|
=
Rvt+1(Ct)

γ∗t
≤

vt∑
m=1

Rim (A)
|aim,im |

|ajt,im |+
k∑

m=vt+1
|ajt,im |

γ∗t
=
Rjt(A)

|ajt,jt |
.

Then the inequality (2.6) holds. If
vt∑
m=1

Rim (A)
|aim,im |

|ajt,im |+
k∑

m=vt+1
|ajt,im | = 0, then γ∗t = ε and Rvt+1(Ct) = 0

and then inequalities in (2.5) and (2.6) hold trivially.

Step 3. We show that

(2.8) Rs(Ct) < |css|, s = vt + 2, . . . , k + 1.

by mathematical induction. First, it follows from (2.4) and (2.6) that

Rvt+2(Ct)
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=

vt+1∑
m=1

Rm(Ct)

|cmm|
|cvt+2,m|+

k+1∑
m=vt+3

|cvt+2,m|

=

vt∑
m=1

Rm(Ct)

|cmm|
|cvt+2,m|+

Rvt+1(Ct)

|cvt+1,vt+1|
|cvt+2,vt+1|+

k+1∑
m=vt+3

|cvt+2,m|

=

vt∑
m=1

Rm(Ct)

|aim,im |
|aivt+1,im |+

Rvt+1(Ct)

γ∗t
|aivt+1,jt |+

k∑
m=vt+2

|aivt+1,im |

≤
vt∑
m=1

Rim(A)

|aim,im |
|aivt+1,im |+

Rjt(A)

|ajt,jt |
|aivt+1,jt |+

k∑
m=vt+2

|aivt+1,im |.

Then, we have

Rvt+2(Ct) ≤ Rivt+1
(A) < |aivt+1,ivt+1

| = |cvt+2,vt+2|.

Suppose that Ru(Ct) ≤ Riu−1
(A) for vt+2 ≤ u ≤ s−1, where s is a fixed integer with vt+2 ≤ s−1 ≤ k.

Then, by (2.4) and (2.6) we can obtain that

Rs(Ct)

=

s−1∑
m=1

Rm(Ct)

|cmm|
|csm|+

k+1∑
m=s+1

|csm|

=

vt∑
m=1

Rm(Ct)

|cmm|
|csm|+

Rvt+1(Ct)

|cvt+1,vt+1|
|cs,vt+1|+

s−1∑
m=vt+2

Rm(Ct)

|cmm|
|csm|+

k+1∑
m=s+1

|csm|

=

vt∑
m=1

Rm(Ct)

|aim,im |
|ais−1,im |+

Rvt+1(Ct)

γ∗t
|ais−1,jt |

+

s−1∑
m=vt+2

Rm(Ct)

|aim−1,im−1
|
|ais−1,im−1 |+

k+1∑
m=s+1

|ais−1,im−1 |

≤
vt∑
m=1

Rim(A)

|aim,im |
|ais−1,im |+

Rjt(A)

|ajt,jt |
|ais−1,jt |

+

s−1∑
m=vt+2

Rim−1
(A)

|aim−1,im−1
|
|ais−1,im−1

|+
k+1∑

m=s+1

|ais−1,im−1
|

=

vt∑
m=1

Rim(A)

|aim,im |
|ais−1,im |+

Rjt(A)

|ajt,jt |
|ais−1,jt |

+

s−2∑
m=vt+1

Rim(A)

|aim,im |
|ais−1,im |+

k∑
m=s

|ais−1,im |.

It follows that Rs(Ct) ≤ Ris−1
(A) < |ais−1,is−1

| = |css|. Thus, we conclude that inequalities in (2.8) hold.

By (2.4), (2.5), and (2.8), we have Ct ∈ Nk+1, which implies that Ct is an H-matrix. We have µ(Ct) = Ct
is an M -matrix. Then det(Ct) > 0 by Lemma 2.2.

Lemma 2.6. Let A ∈ Nn and let α = {i1, i2, · · · , ik} and ᾱ = {j1, j2, · · · , jl} (l = n − k) be defined

in (2.1) and (2.2), respectively. Given jt ∈ ᾱ with jt > ik. Define
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(2.9) Dt :=


−|ai1,jt |

µ[A(α)]
...

−|aik,jt |

−|ajt,i1 | . . . −|ajt,ik |
k∑

m=1

|ajt,im |
|aim,im |

Rm(Dt) + ε

 ,

where ε is an arbitrary positive number. Then Dt ∈ Nk+1, det(Dt) > 0 and

(2.10) Rs(Dt) ≤
{
Ris(A), s ∈ 〈k〉;
Rjt(A), s = k + 1.

Proof. Since A ∈ Nn, we can easily testify that

|ais,is | > Ris(A) ≥ Rs(Dt), s ∈ 〈k〉.

Moreover, it holds trivially that

k∑
m=1

Rm(Dt)

|aim,im |
|ajt,im |+ ε >

k∑
m=1

Rm(Dt)

|aim,im |
|ajt,im | = Rk+1(Dt),

and

Rk+1(Dt) ≤ Rjt(A).

Then Dt ∈ Nk+1. Since Dt = µ(Dt), we have det(Dt) > 0 by Lemma 2.2 and (2.10) holds.

3. Diagonal-Schur complements of Nekrasov matrices. Given A = (aij) ∈ Nn, let α = {i1, i2,
· · · , ik} and ᾱ = {j1, j2, · · · , jl} (l = n − k) be defined in (2.1) and (2.2), respectively. This section will

prove A/◦α ∈ Nn−k. To begin with, we study the upper bound for

(|ajt,i1 |, . . . , |ajt,ik |)[µ(A(α))]−1

 |ai1,jt |...

|aik,jt |

 .

Lemma 3.1. Let A ∈ Nn and let α = {i1, i2, · · · , ik} and ᾱ = {j1, j2, · · · , jl} (l = n − k) be defined

in (2.1) and (2.2), respectively.

(i) For jt < ik, if
∑
iv<jt

Riv (A)
|aiv,iv |

|ajt,iv |+
∑
iv>jt

|ajt,iv | 6= 0, it holds that

(|ajt,i1 |, . . . , |ajt,ik |)[µ(A(α))]−1

 |ai1,jt |...

|aik,jt |


<
|ajt,jt |
Rjt(A)

∑
iv<jt

Riv (A)

|aiv,iv |
|ajt,iv |+

∑
iv>jt

|ajt,iv |

 .(3.1)

Otherwise, it holds that

(3.2) (|ajt,i1 |, . . . , |ajt,ik |)[µ(A(α))]−1

 |ai1,jt |...

|aik,jt |

 = 0.
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(ii) For jt > ik, we have

(3.3) (|ajt,i1 |, . . . , |ajt,ik |)[µ(A(α))]−1

 |ai1,jt |...

|aik,jt |

 ≤ k∑
v=1

Rv(Dt)

|aiv,iv |
|ajt,iv |.

Proof. For convenience, for t ∈ 〈l〉, we denote

(3.4) xt = (ajt,i1 , . . . , ajt,ik)T ,

and

(3.5) yt = (ai1,jt , . . . , aik,jt)
T .

We first prove (i). Let Ct be the same as in (2.3) and β = 〈k+1〉−{vt+1} (if jt < i1, β = 〈k+1〉−{1}).
By Lemma 2.3, we have

det(Ct) = det(Ct(β))det(Ct/β),

where

Ct(β) = µ(A(α)), Ct/β = γ∗t − |xTt |[µ(A(α))]−1|yt|.

Since A ∈ Nn, then A(α) ∈ Nk and µ(A(α)) is an M -matrix. By Lemma 2.2 and Lemma 2.5, we have

det(Ct(β)) > 0 and det(Ct) > 0. Then it holds that

(3.6) γ∗t > |xTt |[µ(A(α))]−1|yt|.

Recalling the definition of γ∗t , equalities in (3.1) and (3.2) hold.

Now we prove (ii). Let Dt be the same as in (2.9) and β = 〈k〉. By Lemma 2.3, we have

det(Dt) = det(Dt(β))det(Dt/β),

where

Dt(β) = µ(A(α)), Dt/β =

k∑
v=1

Rv(Dt)

|aiv,iv |
|ajt,iv |+ ε− |xTt |[µ(A(α))]−1|yt|.

By Lemma 2.2 and Lemma 2.6, we have det(Dt(β)) > 0 and det(Dt) > 0. Taking ε→ 0+, then equalities in

(3.3) hold immediately.

Theorem 3.1. Let A ∈ Nn and let α = {i1, i2, · · · , ik} and ᾱ = {j1, j2, · · · , jl} (l = n− k) be defined

in (2.1) and (2.2), respectively. Denote A/◦α = (a′tu). Then

(3.7) Rt(A/◦α) ≤ Rjt(A)−

∑
iv<jt

Riv (A)

|aiv,iv |
|ajt,iv |+

∑
iv>jt

|ajt,iv |

 , t ∈ 〈n− k〉.

Moreover, it holds that

(3.8)
Rt(A/◦α)

|a′tt|
≤ Rjt(A)

|ajt,jt |
, t ∈ 〈n− k〉.
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Proof. Let xt and yt be defined in (3.4) and (3.5), respectively. Then A/◦α can be obtained from A(ᾱ)

by replacing ajt,jt with ajt,jt − xTt [A(α)]−1yt for each t ∈ 〈l〉, i.e.,

A/◦α =

 aj1,j1 − xT1 [A(α)]−1y1 . . . aj1,jl
...

. . .
...

ajl,j1 . . . ajl,jl − xTl [A(α)]−1yl

 .
We show that (3.7) and (3.8) hold by mathematical induction. Recall that j1 is the smallest number in

ᾱ, then 〈j1 − 1〉 ⊆ α. Then

Rj1(A) =

j1−1∑
i=1

Ri(A)

|aii|
|aj1,i|+

n∑
i=j1+1

|aj1,i|

=
∑
iv<j1

Riv (A)

|aiv,iv |
|aj1,iv |+

 n∑
i=j1+1,i∈α

|aj1,i|+
n∑

i=j1+1,i∈ᾱ
|aj1,i|


=
∑
iv<j1

Riv (A)

|aiv,iv |
|aj1,iv |+

∑
iv>j1

|aj1,iv |+
l∑

u=2

|aj1,ju |.

Since R1(A/◦α) =
l∑

u=2
|aj1,ju |, we have

(3.9) R1(A/◦α) = Rj1(A)−

∑
iv<j1

Riv (A)

|aiv,iv |
|aj1,iv |+

∑
iv>j1

|aj1,iv |

 ,

which implies that (3.7) holds for t = 1.

By Lemma 2.1, we have

(3.10) |a′11| = |aj1,j1 − xT1 [A(α)]−1y1| ≥ |aj1,j1 | − |xT1 |[µ(A(α))]−1|y1|.

We show (3.8) holds for t = 1 under two cases: j1 < ik and j1 > ik where ik is the biggest number in α.

Case 1: j1 < ik. If ∑
iv<j1

Riv (A)

|aiv,iv |
|aj1,iv |+

∑
iv>j1

|ajt,iv | = 0,

together with (3.2), (3.9), and (3.10), we have

|xT1 |[µ(A(α))]−1|y1| = 0, R1(A/◦α) = Rj1(A), |a′11| = |aj1,j1 |.

Then (3.8) holds for t = 1 trivially.

Otherwise, by (3.1), we have

|xT1 |[µ(A(α))]−1|y1| <
|aj1,j1 |
Rj1(A)

∑
iv<j1

Riv (A)

|aiv,iv |
|aj1,iv |+

∑
iv>j1

|aj1,iv |

 .
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By (3.10), we have

|a′11| ≥ |aj1,j1 | −
|aj1,j1 |
Rj1(A)

∑
iv<j1

Riv (A)

|aiv,iv |
|aj1,iv |+

∑
iv>j1

|aj1,iv |

 .

Then it can be deduced from (3.9) that

R1(A/◦α)

|a′11|
≤

Rj1(A)−

( ∑
iv<j1

Riv (A)
|aiv,iv |

|aj1,iv |+
∑
iv>j1

|aj1,iv |

)

|aj1,j1 | −
|aj1,j1 |
Rj1

(A)

( ∑
iv<j1

Riv (A)
|aiv,iv |

|aj1,iv |+
∑
iv>j1

|aj1,iv |

) .

Recalling Lemma 2.4, we get inequality (3.8) holds for t = 1 under the case j1 < ik.

Case 2: j1 > ik, i.e., j1 > iv for all v ∈ 〈k〉. It follows from (3.3) that

|xT1 |[µ(A(α))]−1|y1| ≤
k∑
v=1

Rv(D1)

|aiv,iv |
|aj1,iv |.

By (3.10) it holds that

|a′11| ≥ |aj1,j1 | −
k∑
v=1

Rv(D1)

|aiv,iv |
|aj1,iv |.

Then by (2.10), (3.9), and Lemma 2.4, we have

R1(A/◦α)

|a′11|
≤
Rj1(A)−

k∑
v=1

Riv (A)
|aiv,iv |

|aj1,iv |

|aj1,j1 | −
k∑
v=1

Rv(D1)
|aiv,iv |

|aj1,iv |
≤
Rj1(A)−

k∑
v=1

Riv (A)
|aiv,iv |

|aj1,iv |

|aj1,j1 | −
k∑
v=1

Riv (A)
|aiv,iv |

|aj1,iv |
≤ Rj1(A)

|aj1,j1 |
.

Then the inequality (3.8) holds for t = 1 under the case j1 > ik. Now we have already proved that (3.7) and

(3.8) always hold for t = 1 .

Assume that the following inequality holds for any u with 1 ≤ u < t, where t is a given positive integer

with 1 < t ≤ l:

(3.11)
Ru(A/◦α)

|a′uu|
≤ Rju(A)

|aju,ju |
, 1 ≤ u < t.

Note that

Rt(A/◦α) =

t−1∑
u=1

Ru(A/◦α)

|a′uu|
|a′tu|+

l∑
u=t+1

|a′tu|

=

t−1∑
u=1

Ru(A/◦α)

|a′uu|
|ajt,ju |+

l∑
u=t+1

|ajt,ju |,
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and

Rjt(A)

=

jt−1∑
m=1

Rm(A)

|amm|
|ajt,m|+

n∑
m=jt+1

|ajt,m|

=

(
jt−1∑

m=1,m∈α

Rm(A)

|amm|
|ajt,m|+

jt−1∑
m=1,m∈ᾱ

Rm(A)

|amm|
|ajt,m|

)

+

 n∑
m=jt+1,m∈α

|ajt,m|+
n∑

m=jt+1,m∈ᾱ
|ajt,m|


=
∑
iv<jt

Riv (A)

|aiv,iv |
|ajt,iv |+

t−1∑
u=1

Rju(A)

|aju,ju |
|ajt,ju |+

∑
iv>jt

|ajt,iv |+
l∑

u=t+1

|ajt,ju |.

By (3.11), we have

Rjt(A)−Rt(A/◦α)

=

t−1∑
u=1

(
Rju(A)

|aju,ju |
− Ru(A/◦α)

|a′uu|

)
|ajt,ju |+

∑
iv<jt

Riv (A)

|aiv,iv |
|ajt,iv |+

∑
iv>jt

|ajt,iv |

≥
∑
iv<jt

Riv (A)

|aiv,iv |
|ajt,iv |+

∑
iv>jt

|ajt,iv |,

i.e.,

Rt(A/◦α) ≤ Rjt(A)−

∑
iv<jt

Riv (A)

|aiv,iv |
|ajt,iv |+

∑
iv>jt

|ajt,iv |

 ,

which implies that (3.7) holds.

By Lemma 2.1, we have

(3.12) |a′tt| = |ajt,jt − xTt [A(α)]−1yt| ≥ |ajt,jt | − |xTt |[µ(A(α))]−1|yt|.

We consider two cases: jt < ik and jt > ik.

Case 1: jt < ik. If
∑
iv<jt

Riv (A)
|aiv,iv |

|ajt,iv |+
∑
iv>jt

|ajt,iv | = 0, by (3.2), (3.7), and (3.12), we know (3.8) holds

trivially. Otherwise, by (3.1) and (3.12), we have

|a′tt| ≥ |ajt,jt | −
|ajt,jt |
Rjt(A)

∑
iv<jt

Riv (A)

|aiv,iv |
|ajt,iv |+

∑
iv>jt

|ajt,iv |

 .

Then it can be deduced from (3.7) that

Rt(A/◦αk)

|a′tt|
≤

Rjt(A)−

( ∑
iv<jt

Riv (A)
|aiv,iv |

|ajt,iv |+
∑
iv>jt

|ajt,iv |

)

|ajt,jt | −
|ajt,jt |
Rjt (A)

( ∑
iv<jt

Riv (A)
|aiv,iv |

|ajt,iv |+
∑
iv>jt

|ajt,iv |

) .
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By Lemma 2.4, we get (3.8) holds under the case jt < ik.

Case 2: jt > ik, i.e., jt > iv for all v ∈ 〈k〉. It follows from (3.3) and (3.12) that

|a′tt| ≥ |ajt,jt | −
k∑
v=1

Rv(Dt)

|aiv,iv |
|ajt,iv |,

which, together with (2.10) and (3.7), implies that

Rt(A/◦α)

|a′tt|
≤
Rjt(A)−

k∑
v=1

Riv (A)
|aiv,iv |

|ajt,iv |

|ajt,jt | −
k∑
v=1

Riv (A)
|aiv,iv |

|ajt,iv |
≤ Rjt(A)

|ajt,jt |
.

We get (3.8) holds under the case jt > ik.

Now we have already proved that inequalities in (3.7) and (3.8) always hold for any t ∈ 〈l〉. The proof

is completed.

Corollary 3.1. Let A ∈ Nn and α ⊂ 〈n〉. Then A/◦α ∈ Nn−|α|.

Now we study Nekrasov diagonally dominant degrees of A/◦α.

Theorem 3.2. Let A ∈ Nn and let α = {i1, i2, · · · , ik} and ᾱ = {j1, j2, · · · , jl} (l = n− k) be defined

in (2.1) and (2.2), respectively. Denote A/◦α = (a′tu). Then

|a′tt| −Rt(A/◦α) > 0, t ∈ 〈n− k〉.

Moreover, given jt ∈ ᾱ with jt > ik, then

|a′tt| −Rt(A/◦α) ≥ |ajt,jt | −Rjt(A) + g(t) ≥ |ajt,jt | −Rjt(A),

where Dt is given by (2.9) and

g(t) =

k∑
v=1

|ajt,iv |
|aiv,iv |

(Riv (A)−Rv(Dt)) ≥ 0.

Proof. By Theorem 3.1, we have A/◦α ∈ Nn−k, then we get |a′tt| − Rt(A/◦α) > 0 for all t ∈ 〈n − k〉.
Suppose jt > ik. We know that jt > iv for all v ∈ 〈k〉. Combining Lemma 2.1, (3.3) with (3.7), we have

|a′tt| −Rt(A/◦α)

= |ajt,jt − xTt [A(α)]−1yt| −Rt(A/◦α)

≥ |ajt,jt | − |xTt |[µ(A(α))]−1|yt| −Rt(A/◦α)

≥ |ajt,jt | −
k∑
v=1

Rv(Dt)

|aiv,iv |
|ajt,iv | −Rjt(A) +

k∑
v=1

Riv (A)

|aiv,iv |
|ajt,iv |

= |ajt,jt | −Rjt(A) + g(t)

≥ |ajt,jt | −Rjt(A).
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Remark 3.1. Theorem 3.2 suggests that |a′tt| −Rt(A/◦α) > 0 always holds for all t ∈ 〈n− k〉. If jt < ik,

both |a′tt| − Rt(A/◦α) ≤ |ajt,jt | − Rjt(A) and |a′tt| − Rt(A/◦α) ≥ |ajt,jt | − Rjt(A) may occur. If jt > ik, it

always holds that |a′tt| −Rt(A/◦α) ≥ |ajt,jt | −Rjt(A).

Corollary 3.2. Let A ∈ Nn and α = 〈k〉 where k is a positive integer with k < n. Denote A/◦α = (a′tu).

Then

|a′tt| −Rt(A/◦α) ≥ |ak+t,k+t| −Rk+t(A) for all t ∈ 〈n− k〉.

Example 3.1. Consider the matrix

A =



20 0 10 0 0 0

4 10 0 0 0 0

1 1 1 0 0 0

0 0 0 100 0 10

0 0 0 −10 20 0

0 0 0 9 1 1


.

It is easy to verify that A is a Nekrasov matrix. For any α ⊂ 〈6〉, by computation, we know that A/◦α ∈
N6−|α| always holds but A/α is not necessarily a Nekrasov matrix (see Table 1).

Table 1

The closure properties of Schur and diagonal-Schur complements of the matrix A.

α A/◦α A/α α A/◦α A/α

{3} Yes No {1, 3, 6} Yes No

{6} Yes No {2, 3, 6} Yes No

{1, 6} Yes No {3, 4, 5} Yes No

{2, 6} Yes No {3, 4, 6} Yes No

{3, 4} Yes No {3, 5, 6} Yes No

{3, 5} Yes No {1, 2, 3, 6} Yes No

{3, 6} Yes No {3, 4, 5, 6} Yes No

{1, 2, 6} Yes No others Yes Yes

Example 3.2. Consider the matrix

A =


A1 O O O

O A1 O O

O O A1 O

I O O A2

 ,
where“O” denotes the 4× 4 zero matrix, “I” denotes the 4× 4 identity matrix and

A1 =


8 1 1 0

12 8 0 1

5 7 8 0

16 7 0 8

 , A2 =


8 1 1 0

12 8 0 1

5 7 8 0

16 7 0 10

 .
It is easy to testify that A ∈ N16. Let α = {3, 6, 9, 12} = {i1, i2, i3, i4}. Then

ᾱ = {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 15, 16} = {j1, j2, . . . , j12}.
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Denote A = (aij)16×16 and A/◦α = (a′tu)12×12. For each 1 ≤ t ≤ 12, let

Vt =
Rjt(A)

|ajt,jt |
; vt =

Rt(A/◦α)

|a′tt|
.

In Fig.1, the red “◦” denotes the value of Vt and the blue “◦” denotes the value of vt. It can be seen from

Fig.1 that

0 ≤ Rt(A/◦α)

|a′tt|
= vt ≤ Vt =

Rjt(A)

|ajt,jt |
< 1, 1 ≤ t ≤ 12,

which is consistent with (3.8) in Theorem 3.1.

For each 1 ≤ t ≤ 12, we know that jt < i4 = 12 if and only if 1 ≤ t ≤ 8. Let

Ut = |ajt,jt | −Rjt(A); ut = |a′tt| −Rt(A/◦α).

In Fig.2, the red “∗” denotes the value of Ut and the blue “∗” denotes the value of ut. It can be seen from

Fig.2 that both Ut ≥ ut and Ut ≤ ut may occur for 1 ≤ t ≤ 8 and only Ut ≤ ut occurs for 9 ≤ t ≤ 12. In

fact, we can see that U4 > u4 and Ut ≤ ut for t 6= 4. This is consistent with Theorem 3.2.

Fig. 1. The comparison of Vt and vt.

4. Diagonal-Schur complements of Σ-Nekrasov matrices. This section discusses the diagonal-

Schur complements for Σ-Nekrasov matrices by using scaling matrices.

Lemma 4.1. [6] Let A ∈ Cn×n. Then A is a Σ-Nekrasov matrix if and only if there exists a diagonal

matrix W = diag{w1, . . . , wn} such that AW is a Nekrasov matrix where wi = γ > 0 for i ∈ S and wi = 1

for i ∈ S̄.

Theorem 4.1. Let S be a nonempty proper subset of 〈n〉 and let α = {i1, i2, · · · , ik} and ᾱ = {j1, j2, · · · ,
jl} be defined in (2.1) and (2.2), respectively. If A = (aij) ∈ Cn×n is an S-Nekrasov matrix, then A/◦α is

an {s1, . . . , st}-Nekrasov matrix where S ∩ ᾱ = {js1 , . . . , jst}.
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Fig. 2. The comparison of Ut and ut.

Proof. Since A = (aij) is an S-Nekrasov matrix, by Lemma 4.1, there exists a diagonal matrix W =

diag{w1, . . . , wn} such that AW is a Nekrasov matrix where

(4.1) wi =

{
γ > 0, i ∈ S,
1, i ∈ S̄.

It follows from Theorem 3.1 that the matrix (AW )/◦α is a Nekrasov matrix. By [2], we have

(4.2) (AW )/◦α = (A/◦α)W (ᾱ).

Recalling that ᾱ is the same as in (2.2), we know W (ᾱ) can be written as W (ᾱ) = diag{wj1 , · · · , wjl} where

wju is determined by (4.1), i.e.,

(4.3) wju =

{
γ > 0, ju ∈ S ∩ ᾱ = {js1 , . . . , jst},
1, ju ∈ S̄ ∩ ᾱ = ᾱ− {js1 , . . . , jst}.

Combining (4.2) and Lemma 4.1, we have A/◦α is an {s1, . . . , st}-Nekrasov matrix.

Remark 4.1. Generally, the set {js1 , . . . , jst} may not be equal to {s1, . . . , st}.

Corollary 4.1. Let S and α be nonempty proper subsets of 〈n〉. Let A = (aij) ∈ Cn×n be an S-Nekrasov

matrix. If S ⊆ α or S̄ ⊆ α, A/◦α is a Nekrasov matrix.

Proof. It is clear that S ∩ ᾱ = ∅ if S ⊆ α. Then by (4.3), W (ᾱ) = I and hence A/◦α = (AW )/◦α is a

Nekrasov matrix. It is clear that S∩ ᾱ = ᾱ if S̄ ⊆ α. Analogously, we can obtain that A/◦α = γ−1(AW )/◦α

is a Nekrasov matrix.

Example 4.1. Consider the following matrix:

A =


5 4 2 0 0

0 5 0 0 2

5 0 10 0 0

0 15 0 10 0

0 0 0 0 5

 .
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It is clear that A = (aij)5×5 is not a Nekrasov matrix, but it is an S-Nekrasov matrix for S = {2, 4, 5}
because it can be computed that

RS̄2 (A) = RS̄4 (A) = RS̄5 (A) = RS5 (A) = 0, RS1 (A) = RS3 (A) = 4,

RS̄1 (A) = RS2 (A) = RS̄3 (A) = 2, RS4 (A) = 6,

and for all i ∈ S = {2, 4, 5} and j ∈ S̄ = {1, 3}, it holds that

|aii| > RSi (A), |ajj | > RS̄j (A),

[|aii| −RSi (A)][|ajj | −RS̄j (A)] > RS̄i (A)RSj (A).

Take α = {3, 5}, then ᾱ = {j1, j2, j3} = {1, 2, 4}. By computation, we get

A/◦α =

 4 4 0

0 5 0

0 15 10

 .
It is clear that A/◦α = (a′tu)3×3 is not a Nekrasov matrix and S ∩ ᾱ = {2, 4} = {j2, j3}. Denote S∗ = {2, 3}.
By computations, we have

RS̄
∗

1 (A/◦α) = RS̄
∗

2 (A/◦α) = RS
∗

2 (A/◦α) = RS̄
∗

3 (A/◦α) = RS
∗

3 (A/◦α) = 0

and

RS
∗

1 (A/◦α) = 4.

Then it holds that

|a′22| > RS
∗

2 (A/◦α), |a′33| > RS
∗

3 (A/◦α), |a′11| > RS̄
∗

1 (A/◦α),

and [
|a′22| −RS

∗

2 (A/◦α)
] [
|a′11| −RS̄

∗

1 (A/◦α)
]
> RS̄

∗

2 (A/◦α)RS
∗

1 (A/◦α),[
|a′33| −RS

∗

3 (A/◦α)
] [
|a′11| −RS̄

∗

1 (A/◦α)
]
> RS̄

∗

3 (A/◦α)RS
∗

1 (A/◦α).

Hence, A/◦α is a {2, 3}-Nekrasov matrix, which is consistent with Theorem 4.1. Remark that A/◦α is not a

{j2, j3}-Nekrasov matrix obviously.
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