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THE INVERSE OF A SYMMETRIC NONNEGATIVE MATRIX CAN BE COPOSITIVE∗

ROBERT B. REAMS†

Abstract. Let A be an n×n symmetric matrix. We first show that if A and its pseudoinverse are strictly copositive, then

A is positive semidefinite, which extends a similar result of Han and Mangasarian. Suppose A is invertible, as well as being

symmetric. We showed in an earlier paper that if A−1 is nonnegative with n zero diagonal entries, then A can be copositive

(for instance, this happens with the Horn matrix), and when A is copositive, it cannot be of form P + N , where P is positive

semidefinite and N is nonnegative and symmetric. Here, we show that if A−1 is nonnegative with n − 1 zero diagonal entries

and one positive diagonal entry, then A can be of the form P +N , and we show how to construct A. We also show that if A−1

is nonnegative with one zero diagonal entry and n− 1 positive diagonal entries, then A cannot be copositive.
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1. Introduction. A matrix A ∈ Rn×n is said to be nonnegative, if every entry of A is nonnegative.

Similarly, a vector x ∈ Rn is nonnegative if all its components are nonnegative, and this is denoted x ≥ 0.

For 1 ≤ i ≤ n, we will use ei to denote the vector in Rn with a 1 in the ith position and all other entries zero.

We will use e to denote the vector with all its n components equal to 1. A symmetric matrix A ∈ Rn×n is

said to be positive semidefinite if xTAx ≥ 0, for all x ∈ Rn, while A is positive definite if xTAx > 0, for all

x ∈ Rn such that x 6= 0. A symmetric matrix A ∈ Rn×n is said to be copositive if xTAx ≥ 0, for all x ∈ Rn

such that x ≥ 0, while A is strictly copositive if xTAx > 0, for all x ≥ 0, x 6= 0.

Clearly, for A ∈ Rn×n, if A is the sum of a positive semidefinite matrix P and a symmetric nonnegative

matrix N , then A is copositive. However, it can be shown that not all copositive matrices are of the form

P + N . Copositive matrices that are not of form P + N are called exceptional. Diananda [6] proved there

are no exceptional matrices when n ≤ 4, i.e., every copositive matrix is of the form P + N , when n ≤ 4.

The most well-known example of an exceptional matrix is the Horn matrix, which is 5 × 5 [12, 17]. For

a vector x = (x1, . . . , xn)T ∈ Rn, we will denote the Euclidean norm by ||x||2 =
√∑n

i=1 x
2
i =
√
xTx, and

the one-norm by ||x||1 =
∑n
i=1 |xi|, so that ||x||1 = xT e, when x ≥ 0. It can be shown ([10, 13, 21]) for

a copositive matrix A that if we have xTAx = 0 for x ≥ 0, then Ax ≥ 0. A matrix A ∈ Rn×n is said to

be interior if minx≥0,||x||1=1 x
TAx is achieved in the interior of {x ∈ Rn|x ≥ 0, ||x||1 = 1}. In other words,

there is a minimizing vector u with all positive components. (See [12], for instance, for some results about

interior matrices.) R(A) will denote the range of a matrix, that is, to say R(A) = {Ax|x ∈ Rn}.

In Section 2, we extend a result of Han and Mangasarian. In Section 3, we present a copositive con-

struction of the inverse of a nonnegative matrix with n − 1 zero diagonal entries and one positive diagonal

entry. In Section 4, we show that it is not possible for the inverse of a nonnegative matrix, which has n− 1

positive diagonal entries and one zero diagonal entry, to be copositive. In Section 5, we consider some other

special cases.
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2. A result of Han and Mangasarian extended. In [9], Han and Mangasarian proved that if A

and A−1 are strictly copositive, then A is positive definite. The pseudoinverse we shall use is the Moore–

Penrose generalized inverse, denoted A†. The four defining properties of A† are A†AA† = A, AA†A = A,

AA† and A†A are symmetric, for which A† is unique [15]. In fact, when A is symmetric, it can be seen that

A† = UTdiag( 1
λ1
, . . . , 1

λk
, 0, . . . , 0)U , where A = UTdiag(λ1, . . . , λk, 0, . . . , 0)U , with U an orthogonal matrix

and λ1, . . . , λk, the nonzero eigenvalues of A. The pseudoinverse of a copositive matrix was studied in [20].

Theorem 2.1 will use a result by Marshall and Olkin [18], which states that any strictly copositive matrix

A is scalable. Scalable means that there is a diagonal matrix D, with positive diagonal entries, such that

DAD has row (and column) sums 1. Theorem 2.1 will also make use of the result that if a matrix A ∈ Rn×n

is copositive and interior, then A is positive semidefinite. (See Corollary 2 of [12], or Lemma 1 of [6].) A

useful observation quoted by Hiriart-Urruty and Seeger (Theorem 7.6 of [11]), as part of a theorem proved

by Han and Mangasarian (although they do not state it this way), follows after making the assumption that

A and A−1 are both copositive: one of them is strictly copositive if and only if the other is. To see this,

write 0 = xTAx = xTAA−1Ax, and remember that xTAx = 0 implies Ax ≥ 0. Replacing A−1 with A† does

not change the observation.

Theorem 2.1. Let A ∈ Rn×n. If A and A† are strictly copositive, then A is positive semidefinite.

Proof. Since A is strictly copositive, we know that there is a diagonal matrix D, with positive diagonal

entries, such that DADe = e. Write DAD = V TΛV , where Λ = diag(λ1, . . . , λk, 0, . . . , 0) and V is orthog-

onal. Then (DAD)† = V TΛ†V , where Λ† = diag( 1
λ1
, . . . , 1

λk
, 0, . . . , 0), and (DAD)†e = e. In other words,

without loss of generality when proving the theorem we may assume that Ae = e and A†e = e.

Next, let minx≥0,||x||1=1 x
TAx = λ. Then λ > 0, since A is strictly copositive. Also, ( x

xT e
)TA( x

xT e
) ≥ λ,

for all x ≥ 0, i.e., xTAx ≥ λ(xT e)2, which can be rewritten as xT (A − λeeT )x ≥ 0, and thus A − λeeT is

copositive. Now let u be a minimizing vector, so that uT (A− λeeT )u = 0, then z = (A− λeeT )u ≥ 0.

Since A† is copositive (actually strictly), we have

zTA†z = uT (A− λeeT )A†(A− λeeT )u,

= uT (AA†A− λeeT − λeeT + λ2neeT )u,

= uT (A− λeeT )u+ λ(uT e)2(nλ− 1),

= 0 + λ(nλ− 1) ≥ 0.

Then nλ − 1 ≥ 0, and λ ≥ 1
n . But also ( 1

ne)
TA( 1

ne) ≥ λ, giving 1
n = eT e

n2 ≥ λ, so that λ = 1
n . We have

just shown that z = (A − λeeT )u = 0, i.e., Au = 1
ne

Tue = 1
ne. The minimizing vector u may have zero

components, but as 1
ne is (also) a minimizing vector, A is copositive and interior, and therefore positive

semidefinite.

Unlike for Han and Mangasarian’s result, the converse of Theorem 2.1 does not hold, as can be

seen by considering A =

(
1 0

0 0

)
or

(
1 −1

−1 1

)
. The matrix A =

 2 −1 1

−1 1 0

1 0 1

, for which A† =

 2 −1 1

−1 5 4

1 4 5

, illustrates that it is possible to have both A and A† strictly copositive, and this situation

is not covered by Han and Mangasarian’s result. Another way to state these results is to say that if we
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want to characterize those matrices for which both A and A−1 (or A†) are strictly copositive, we need look

no further than the positive (semi)definite matrices. The problem of characterizing the matrices for which

both A and A−1 (or A†) are copositive, but not strictly copositive, seems to be unsolved. (See Section 7.4

of [11].) If we only consider when A and A−1 are both nonnegative, then A is the product of a permutation

matrix and a diagonal matrix with positive diagonal entries (see [8], or Lemma 1.1 of Minc [16]). Such a

matrix A is called a generalized permutation matrix. If A and A† are both nonnegative, then A has been

characterized in Theorem 5.2 of Berman and Plemmons [2]. It is well known that if A is copositive with

all zero diagonal entries then A must be nonnegative. (This follows from eTi Aei = 0, for each i, implies

Aei ≥ 0.) In [14], we showed that if A−1 is a nonnegative matrix with all zero diagonal entries, then A

may or may not be copositive, but when A is copositive it cannot be of the form P + N , i.e., A must be

exceptional. Symmetric nonnegative matrices with all zeroes on the diagonal are studied in [5], where such

matrices are called hollow. It is easy to show that any nonnegative matrix, not necessarily invertible, with all

positive diagonal entries must be strictly copositive. If A−1 is nonnegative with all positive diagonal entries,

then A−1 is strictly copositive, and if in addition A is copositive, then from Han and Mangasarian’s result,

A is positive definite. The consideration of what happens to A as we make assumptions with some of the

diagonal entries of nonnegative A−1 being zero or positive leads us to the theorems of Sections 3 and 4.

3. When the inverse of a nonnegative matrix is of form P+N. For the proof of Theorem 3.1,

we recall the well-known fact [15] for invertible A ∈ Rn×n, and a, b ∈ Rn, such that 1 + bTA−1a 6= 0, that

when A + abT is invertible, it can be written (A + abT )−1 = A−1 − A−1abTA−1

1+bTA−1a
. Theorem 3.1 characterizes

the invertible, nonnegative matrices A−1, with n − 1 zero diagonal entries and one positive diagonal entry,

such that A is copositive of form P +N .

Theorem 3.1. Let A ∈ Rn×n be symmetric and invertible. Suppose that A−1 is nonnegative with n− 1

zero diagonal entries and one positive diagonal entry, and A is of form P +N (without loss of generality with

N having all zeroes on the diagonal). Then, under permutation similarity, the positive semidefinite matrix

P has form P = λuuT , where λ > 0, and u has its first n−1 components (when they are nonzero) having the

same sign (as each other), and its nth component of opposite sign, while the symmetric nonnegative matrix

N has its upper left (n− 1)× (n− 1) block as a generalized permutation matrix, with all zeros elsewhere in

N . Also, n must be odd.

Proof. Suppose that A−1 is nonnegative with exactly n− 1 zeroes on the diagonal, and without loss of

generality (as this can be achieved with a permutation similarity) such that the lone positive diagonal entry

lies in the bottom right corner of A−1. If N = 0, then A would have to be positive definite, but then A−1

could not have any zeros on the diagonal. If P = 0, then N would have to be a generalized permutation

matrix with a positive entry in the bottom right-hand corner, and the theorem holds, just that u = en.

Suppose, for what follows, that we do not have the latter situation.

Now, 0 = eTi A
−1ei = eTi A

−1AA−1ei = eTi A
−1(P +N)A−1ei, implies Pxi = 0, for each i = 1, . . . , n− 1,

where xi = A−1ei. It follows that P has rank one, and P = λuuT , for some λ > 0 and u ∈ Rn. Because

λuuTA−1ei = 0, for each i = 1, . . . , n−1, this implies uTA−1ei = 0, for each i = 1, . . . , n−1, and uTA−1en >

0 (actually uTA−1en 6= 0, but we can replace u with −u to achieve this). Next, uTA−1 = (0, . . . , 0, uTA−1en),

or rewritten as a column vector A−1u =


0
...

0

uTA−1en

 = (uTA−1en)en. Then
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u = (N + λuuT )(uTA−1en)en,

= (uTA−1en)Nen + λ(uT en)(uTA−1en)u,

and rearranging gives [1−λ(uT en)(uTA−1en)]u = (uTA−1en)Nen. If Nen 6= 0, then u ∈ R(N), and setting

µ = uTA−1en
1−λ(uT en)(uTA−1en)

, we have u = µNen, and A = N + λuuT = N + λµ2Nene
T
nN = N(I + λµ2ene

T
nN).

If N were singular, so would A be singular, so we must have N nonsingular. But then (N+λuuT )−1 =N−1−
λN−1uuTN−1

1+λuTN−1u
, as uTN−1u = µ2eTnNen = 0, which implies 1 + λuTN−1u > 0. Then consider eTi NA

−1Nei =

eTi N(N + λuuT )−1Nei = eTi N [N−1 − λN−1uuTN−1

1+λuTN−1u
]Nei = eTi Nei −

λ(uT ei)
2

1+λuTN−1u
= − λ(uT ei)

2

1+λuTN−1u
< 0, for

some i ∈ {1, . . . , n − 1}, which contradicts A−1 being a nonnegative matrix. In other words, we must have

Nen = 0.

Finally, write u =

(
û

un

)
, where û ∈ Rn−1, un ∈ R, and N =

(
N̂ 0

0 0

)
, where N̂ ∈ R(n−1)×(n−1).

Then A =

(
N̂ + λûûT λunû

λunû
T λu2n

)
, and because A is invertible we must have un 6= 0. If N̂ were singular,

with zero eigenvector v̂ (say), then

(
v̂
−ûT v̂
un

)
, would be a zero eigenvector for A, which is not possible.

Thus, N̂ is nonsingular. Since

(
N̂ + λûûT λunû

λunû
T λu2n

)−1
=

(
N̂−1 − 1

un
N̂−1û

− 1
un
ûT N̂−1 1+λûT N̂−1û

λu2
n

)
is nonnegative,

then N̂ must be a generalized permutation matrix. Also, the nonzero components of û must all have the

same sign, with un of opposite sign. Since N̂−1 has all zeros on its diagonal, n is odd.

Determining whether there are exceptional matrices A, for which A−1 is nonnegative with exactly n− 1

zero entries on the diagonal, even when n = 5 or 6 (see [1, 7]), is beyond the scope of this paper.

4. When the inverse of a nonnegative matrix is not copositive. If A = (aij) ∈ Rn×n is a

symmetric, nonnegative matrix with all positive diagonal entries (and therefore strictly copositive), and

D = diag( 1√
a11
, . . . , 1√

ann
), then DAD has all diagonal entries equal to 1. Replacing DAD with A, we have

Ax=


1 a12 a13 · · · a1n
a12 1 a23 · · · a2n
a13 a23 1 · · · a3n
...

...
...

. . .
...

a1n a2n a3n · · · 1




x1
x2
...

xn

≥


x1
x2
...

xn

. In other words, for such an A, we have Ax ≥ x,

for all x ≥ 0. We will use this below. Theorem 4.1 was proved in [13]. (See also [3, 4, 19])

Theorem 4.1. Let A ∈ Rn×n be symmetric, and A =

(
A1 b

bT c

)
, where A1 ∈ R(n−1)×(n−1), b ∈ Rn−1,

and c ∈ R. Then A is copositive if and only if c ≥ 0; A1 is copositive; if c > 0 then xT (A1 − bbT

c )x ≥ 0, for

all x ≥ 0, with x ∈ Rn−1, such that xT b ≤ 0; if c = 0 then b ≥ 0.

Theorem 4.1 is needed to prove Theorem 4.2.

Theorem 4.2. Let A ∈ Rn×n be symmetric and invertible. Suppose that A−1 is nonnegative with one

zero diagonal entry and n− 1 positive diagonal entries. Then A cannot be copositive.
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Proof. Suppose, for the sake of obtaining a contradiction, that A is copositive. With A−1 nonnegative

and having only one zero on the diagonal, under permutation similarity and positive diagonal congruence

we may assume A−1 has the form

(
A1 b

bT 0

)
, where A1 ∈ R(n−1)×(n−1), b ∈ Rn−1, and nonnegative A1

has all ones on the diagonal (so A1 is strictly copositive).

A1 must be nonsingular, since suppose A1 is singular, then zTA1 = 0, for nonzero z ∈ Rn−1. Next,

since there is

(
B1 b2
bT2 c

)
, with B1 ∈ R(n−1)×(n−1), b2 ∈ Rn, c ≥ 0, such that

(
A1 b

bT 0

)(
B1 b2
bT2 c

)
=(

I 0

0 1

)
, this implies A1b2 + cb = 0. But zTA1b2 + czT b = 0, means czT b = 0, so zT b = 0 or c = 0. We

also have that A1B1 + bbT2 = I, then zTA1B2 + zT bb2 = z. If zT b = 0, the preceding equation implies z = 0,

so we are left with c = 0. But c = eTnAen = 0 implies Aen ≥ 0, which implies b2 ≥ 0. Then A1b2 = 0 implies

bT2 A1b2 = 0, which is not possible since A1 is strictly copositive, unless b2 = 0. But then c = 0 would make

A singular. So we must have that A1 is nonsingular. Moreover, b2 = −cA−1b and 1 = bT b2 = −cbTA−1b,
implies that bTA−11 b < 0.

We also have A =

 A−11 −
A−1

1 bbTA−1
1

bTA−1b

A−1
1 b

bTA−1
1 b

bTA−1
1

bTA−1
1 b

−1
bTA−1

1 b

. From Theorem 4.1, since A is copositive, we know

that A−11 −
A−1

1 bbTA−1
1

bTA−1b
is copositive, and xTA−11 x ≥ 0, for all x ≥ 0 such that xTA−11 b ≥ 0.

Finally, consider the nonnegative vector z = A1b− b, for which zTA−11 b = bT b− bTA−1b ≥ 0. Then we

know zTA−11 z = bT (A1−I)A−11 (A1−I)b = bT (A1 +A−11 −2I)b ≥ 0, which can be rearranged to say bTA1b−
2bT b ≥ −bTA−11 b > 0, i.e., bTA1b > 2bT b, or bTA1b

bT b
> 2. Let x = maxbi>0

(A1b)i
bi

= maxbi>0
bi(A1b)i

b2i
, so that

(A1b)i ≥ xbi, for all i ∈ {1, . . . , n− 1}. We also have that bTA1b =
∑n
i=1 bi(A1b)i =

∑ik
j=i1

b2j
bj(A1b)j

b2j
, where

we only include the positive bj ’s in the sum (k of them, say). Then bTA1b ≤ (b2i1 +· · ·+b2ik) maxbi>0
bi(A1b)i

b2i
=

bT bx, i.e., x ≥ bTA1b
bT b

> 2. Now we notice that Ab ≥ xb ≥ 2b and redefine the nonnegative vector z as

z = A1b − 2b, for which we have zTA−11 b = bT b − 2bTA−11 b ≥ 0. Then (again) we know that zTA−11 z =

bT (A1−2I)A−11 (A1−2I)b = bT (A1+4A−11 −4I)b ≥ 0, which (again) can be rearranged to say bTA1b−4bT b ≥
−4bTA−11 b > 0, i.e., bTA1b > 4bT b, or bTA1b

bT b
> 4, and continuing like this we arrive at a contradiction. So,

A must not be copositive.

5. Concluding remarks. The author does not know how to improve on Theorem 3.1 to the case where

there are exactly k zeroes on the diagonal, and 1 < k < n− 1, without additional assumptions on the non-

negative A−1. If we could make assumptions on the entries of A−1 to conclude A =

(
N̂ + UUT UV T

V UT V V T

)
,

where V is invertible, then A−1 =

(
N̂−1 −N̂−1UV −1

−(V −1)TUT N̂−1 (V V T )−1 + (UV −1)T N̂−1(UV −1)

)
, would enable

us to deduce an analogous description of the form of A−1. Or, Theorem 5 of [14] would be a different way

to make assumptions on A−1.

It does not appear that Theorem 4.2 can be improved on to suppose A−1 has two zero diagonal entries

and n−2 positive diagonal entries, without additional assumptions on the nonnegative A−1, because although
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
0 1

4 1 0
1
4 0 0 1

1 0 1 1

0 1 1 1


−1

=


−16 −16 12 4

−16 −16 4 12

12 4 −1 −3

4 12 −3 −1

 is not copositive,


0 1 1 0

1 0 0 1

1 0 1 1

0 1 1 1


−1

=


1 1 0 −1

1 1 −1 0

0 −1 1 0

−1 0 0 1


is copositive. These are not just examples for n = 4, because we can easily make these matrices be the upper

left 4× 4 blocks of n× n matrices which have lower right blocks as the identity matrix In−4, and all zeroes

elsewhere. Or, making different additional assumptions on nonnegative A−1, suppose n = 2k and A−1 =(
0 B

BT C

)
, where B is k× k and invertible, and C is nonzero. Then A =

(
−(BT )−1CB−1 (BT )−1

B−1 0

)
,

and choosing ŷ = Be, where e ∈ Rk, we have y=

(
ŷ

0

)
∈ Rn nonnegative and yTAy = ŷT [−(BT )−1CB−1]ŷ =

−eTCe < 0, so that A cannot be copositive.
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