THE INVERSE OF A SYMMETRIC NONNEGATIVE MATRIX CAN BE COPOSITIVE*

ROBERT B. REAMS ${ }^{\dagger}$

Abstract

Let A be an $n \times n$ symmetric matrix. We first show that if A and its pseudoinverse are strictly copositive, then A is positive semidefinite, which extends a similar result of Han and Mangasarian. Suppose A is invertible, as well as being symmetric. We showed in an earlier paper that if A^{-1} is nonnegative with n zero diagonal entries, then A can be copositive (for instance, this happens with the Horn matrix), and when A is copositive, it cannot be of form $P+N$, where P is positive semidefinite and N is nonnegative and symmetric. Here, we show that if A^{-1} is nonnegative with $n-1$ zero diagonal entries and one positive diagonal entry, then A can be of the form $P+N$, and we show how to construct A. We also show that if A^{-1} is nonnegative with one zero diagonal entry and $n-1$ positive diagonal entries, then A cannot be copositive.

Key words. Nonnegative matrix, Positive semidefinite matrix, Copositive matrix, Exceptional matrix, Pseudoinverse.

AMS subject classifications. 15A10, 15A63, 15B48.

1. Introduction. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be nonnegative, if every entry of A is nonnegative. Similarly, a vector $x \in \mathbb{R}^{n}$ is nonnegative if all its components are nonnegative, and this is denoted $x \geq 0$. For $1 \leq i \leq n$, we will use e_{i} to denote the vector in \mathbb{R}^{n} with a 1 in the i th position and all other entries zero. We will use e to denote the vector with all its n components equal to 1 . A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is said to be positive semidefinite if $x^{T} A x \geq 0$, for all $x \in \mathbb{R}^{n}$, while A is positive definite if $x^{T} A x>0$, for all $x \in \mathbb{R}^{n}$ such that $x \neq 0$. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is said to be copositive if $x^{T} A x \geq 0$, for all $x \in \mathbb{R}^{n}$ such that $x \geq 0$, while A is strictly copositive if $x^{T} A x>0$, for all $x \geq 0, x \neq 0$.

Clearly, for $A \in \mathbb{R}^{n \times n}$, if A is the sum of a positive semidefinite matrix P and a symmetric nonnegative matrix N, then A is copositive. However, it can be shown that not all copositive matrices are of the form $P+N$. Copositive matrices that are not of form $P+N$ are called exceptional. Diananda [6] proved there are no exceptional matrices when $n \leq 4$, i.e., every copositive matrix is of the form $P+N$, when $n \leq 4$. The most well-known example of an exceptional matrix is the Horn matrix, which is 5×5 [12, 17]. For a vector $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$, we will denote the Euclidean norm by $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}=\sqrt{x^{T} x}$, and the one-norm by $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$, so that $\|x\|_{1}=x^{T} e$, when $x \geq 0$. It can be shown ([10, 13, 21]) for a copositive matrix A that if we have $x^{T} A x=0$ for $x \geq 0$, then $A x \geq 0$. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be interior if $\min _{x \geq 0,\|x\|_{1}=1} x^{T} A x$ is achieved in the interior of $\left\{x \in \mathbb{R}^{n} \mid x \geq 0,\|x\|_{1}=1\right\}$. In other words, there is a minimizing vector u with all positive components. (See [12], for instance, for some results about interior matrices.) $\mathcal{R}(A)$ will denote the range of a matrix, that is, to say $\mathcal{R}(A)=\left\{A x \mid x \in \mathbb{R}^{n}\right\}$.

In Section 2, we extend a result of Han and Mangasarian. In Section 3, we present a copositive construction of the inverse of a nonnegative matrix with $n-1$ zero diagonal entries and one positive diagonal entry. In Section 4, we show that it is not possible for the inverse of a nonnegative matrix, which has $n-1$ positive diagonal entries and one zero diagonal entry, to be copositive. In Section 5, we consider some other special cases.

[^0]2. A result of Han and Mangasarian extended. In [9], Han and Mangasarian proved that if A and A^{-1} are strictly copositive, then A is positive definite. The pseudoinverse we shall use is the MoorePenrose generalized inverse, denoted A^{\dagger}. The four defining properties of A^{\dagger} are $A^{\dagger} A A^{\dagger}=A, A A^{\dagger} A=A$, $A A^{\dagger}$ and $A^{\dagger} A$ are symmetric, for which A^{\dagger} is unique [15]. In fact, when A is symmetric, it can be seen that $A^{\dagger}=U^{T} \operatorname{diag}\left(\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{k}}, 0, \ldots, 0\right) U$, where $A=U^{T} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}, 0, \ldots, 0\right) U$, with U an orthogonal matrix and $\lambda_{1}, \ldots, \lambda_{k}$, the nonzero eigenvalues of A. The pseudoinverse of a copositive matrix was studied in [20]. Theorem 2.1 will use a result by Marshall and Olkin [18], which states that any strictly copositive matrix A is scalable. Scalable means that there is a diagonal matrix D, with positive diagonal entries, such that $D A D$ has row (and column) sums 1 . Theorem 2.1 will also make use of the result that if a matrix $A \in \mathbb{R}^{n \times n}$ is copositive and interior, then A is positive semidefinite. (See Corollary 2 of [12], or Lemma 1 of [6].) A useful observation quoted by Hiriart-Urruty and Seeger (Theorem 7.6 of [11]), as part of a theorem proved by Han and Mangasarian (although they do not state it this way), follows after making the assumption that A and A^{-1} are both copositive: one of them is strictly copositive if and only if the other is. To see this, write $0=x^{T} A x=x^{T} A A^{-1} A x$, and remember that $x^{T} A x=0$ implies $A x \geq 0$. Replacing A^{-1} with A^{\dagger} does not change the observation.

Theorem 2.1. Let $A \in \mathbb{R}^{n \times n}$. If A and A^{\dagger} are strictly copositive, then A is positive semidefinite.
Proof. Since A is strictly copositive, we know that there is a diagonal matrix D, with positive diagonal entries, such that $D A D e=e$. Write $D A D=V^{T} \Lambda V$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}, 0, \ldots, 0\right)$ and V is orthogonal. Then $(D A D)^{\dagger}=V^{T} \Lambda^{\dagger} V$, where $\Lambda^{\dagger}=\operatorname{diag}\left(\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{k}}, 0, \ldots, 0\right)$, and $(D A D)^{\dagger} e=e$. In other words, without loss of generality when proving the theorem we may assume that $A e=e$ and $A^{\dagger} e=e$.

Next, let $\min _{x \geq 0,\|x\|_{1}=1} x^{T} A x=\lambda$. Then $\lambda>0$, since A is strictly copositive. Also, $\left(\frac{x}{x^{T} e}\right)^{T} A\left(\frac{x}{x^{T} e}\right) \geq \lambda$, for all $x \geq 0$, i.e., $x^{T} A x \geq \lambda\left(x^{T} e\right)^{2}$, which can be rewritten as $x^{T}\left(A-\lambda e e^{T}\right) x \geq 0$, and thus $A-\lambda e e^{T}$ is copositive. Now let u be a minimizing vector, so that $u^{T}\left(A-\lambda e e^{T}\right) u=0$, then $z=\left(A-\lambda e e^{T}\right) u \geq 0$.

Since A^{\dagger} is copositive (actually strictly), we have

$$
\begin{aligned}
z^{T} A^{\dagger} z & =u^{T}\left(A-\lambda e e^{T}\right) A^{\dagger}\left(A-\lambda e e^{T}\right) u \\
& =u^{T}\left(A A^{\dagger} A-\lambda e e^{T}-\lambda e e^{T}+\lambda^{2} n e e^{T}\right) u \\
& =u^{T}\left(A-\lambda e e^{T}\right) u+\lambda\left(u^{T} e\right)^{2}(n \lambda-1) \\
& =0+\lambda(n \lambda-1) \geq 0
\end{aligned}
$$

Then $n \lambda-1 \geq 0$, and $\lambda \geq \frac{1}{n}$. But also $\left(\frac{1}{n} e\right)^{T} A\left(\frac{1}{n} e\right) \geq \lambda$, giving $\frac{1}{n}=\frac{e^{T} e}{n^{2}} \geq \lambda$, so that $\lambda=\frac{1}{n}$. We have just shown that $z=\left(A-\lambda e e^{T}\right) u=0$, i.e., $A u=\frac{1}{n} e^{T} u e=\frac{1}{n} e$. The minimizing vector u may have zero components, but as $\frac{1}{n} e$ is (also) a minimizing vector, A is copositive and interior, and therefore positive semidefinite.

Unlike for Han and Mangasarian's result, the converse of Theorem 2.1 does not hold, as can be seen by considering $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ or $\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$. The matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$, for which $A^{\dagger}=$ $\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 5 & 4 \\ 1 & 4 & 5\end{array}\right)$, illustrates that it is possible to have both A and A^{\dagger} strictly copositive, and this situation is not covered by Han and Mangasarian's result. Another way to state these results is to say that if we
want to characterize those matrices for which both A and A^{-1} (or A^{\dagger}) are strictly copositive, we need look no further than the positive (semi)definite matrices. The problem of characterizing the matrices for which both A and A^{-1} (or A^{\dagger}) are copositive, but not strictly copositive, seems to be unsolved. (See Section 7.4 of [11].) If we only consider when A and A^{-1} are both nonnegative, then A is the product of a permutation matrix and a diagonal matrix with positive diagonal entries (see [8], or Lemma 1.1 of Minc [16]). Such a matrix A is called a generalized permutation matrix. If A and A^{\dagger} are both nonnegative, then A has been characterized in Theorem 5.2 of Berman and Plemmons [2]. It is well known that if A is copositive with all zero diagonal entries then A must be nonnegative. (This follows from $e_{i}^{T} A e_{i}=0$, for each i, implies $A e_{i} \geq 0$.) In [14], we showed that if A^{-1} is a nonnegative matrix with all zero diagonal entries, then A may or may not be copositive, but when A is copositive it cannot be of the form $P+N$, i.e., A must be exceptional. Symmetric nonnegative matrices with all zeroes on the diagonal are studied in [5], where such matrices are called hollow. It is easy to show that any nonnegative matrix, not necessarily invertible, with all positive diagonal entries must be strictly copositive. If A^{-1} is nonnegative with all positive diagonal entries, then A^{-1} is strictly copositive, and if in addition A is copositive, then from Han and Mangasarian's result, A is positive definite. The consideration of what happens to A as we make assumptions with some of the diagonal entries of nonnegative A^{-1} being zero or positive leads us to the theorems of Sections 3 and 4 .
3. When the inverse of a nonnegative matrix is of form $\boldsymbol{P}+\boldsymbol{N}$. For the proof of Theorem 3.1, we recall the well-known fact [15] for invertible $A \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}^{n}$, such that $1+b^{T} A^{-1} a \neq 0$, that when $A+a b^{T}$ is invertible, it can be written $\left(A+a b^{T}\right)^{-1}=A^{-1}-\frac{A^{-1} a b^{T} A^{-1}}{1+b^{T} A^{-1} a}$. Theorem 3.1 characterizes the invertible, nonnegative matrices A^{-1}, with $n-1$ zero diagonal entries and one positive diagonal entry, such that A is copositive of form $P+N$.

Theorem 3.1. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and invertible. Suppose that A^{-1} is nonnegative with $n-1$ zero diagonal entries and one positive diagonal entry, and A is of form $P+N$ (without loss of generality with N having all zeroes on the diagonal). Then, under permutation similarity, the positive semidefinite matrix P has form $P=\lambda u u^{T}$, where $\lambda>0$, and u has its first $n-1$ components (when they are nonzero) having the same sign (as each other), and its nth component of opposite sign, while the symmetric nonnegative matrix N has its upper left $(n-1) \times(n-1)$ block as a generalized permutation matrix, with all zeros elsewhere in N. Also, n must be odd.

Proof. Suppose that A^{-1} is nonnegative with exactly $n-1$ zeroes on the diagonal, and without loss of generality (as this can be achieved with a permutation similarity) such that the lone positive diagonal entry lies in the bottom right corner of A^{-1}. If $N=0$, then A would have to be positive definite, but then A^{-1} could not have any zeros on the diagonal. If $P=0$, then N would have to be a generalized permutation matrix with a positive entry in the bottom right-hand corner, and the theorem holds, just that $u=e_{n}$. Suppose, for what follows, that we do not have the latter situation.

Now, $0=e_{i}^{T} A^{-1} e_{i}=e_{i}^{T} A^{-1} A A^{-1} e_{i}=e_{i}^{T} A^{-1}(P+N) A^{-1} e_{i}$, implies $P x_{i}=0$, for each $i=1, \ldots, n-1$, where $x_{i}=A^{-1} e_{i}$. It follows that P has rank one, and $P=\lambda u u^{T}$, for some $\lambda>0$ and $u \in \mathbb{R}^{n}$. Because $\lambda u u^{T} A^{-1} e_{i}=0$, for each $i=1, \ldots, n-1$, this implies $u^{T} A^{-1} e_{i}=0$, for each $i=1, \ldots, n-1$, and $u^{T} A^{-1} e_{n}>$ 0 (actually $u^{T} A^{-1} e_{n} \neq 0$, but we can replace u with $-u$ to achieve this). Next, $u^{T} A^{-1}=\left(0, \ldots, 0, u^{T} A^{-1} e_{n}\right)$, or rewritten as a column vector $A^{-1} u=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ u^{T} A^{-1} e_{n}\end{array}\right)=\left(u^{T} A^{-1} e_{n}\right) e_{n}$. Then

$$
\begin{aligned}
u & =\left(N+\lambda u u^{T}\right)\left(u^{T} A^{-1} e_{n}\right) e_{n} \\
& =\left(u^{T} A^{-1} e_{n}\right) N e_{n}+\lambda\left(u^{T} e_{n}\right)\left(u^{T} A^{-1} e_{n}\right) u
\end{aligned}
$$

and rearranging gives $\left[1-\lambda\left(u^{T} e_{n}\right)\left(u^{T} A^{-1} e_{n}\right)\right] u=\left(u^{T} A^{-1} e_{n}\right) N e_{n}$. If $N e_{n} \neq 0$, then $u \in \mathcal{R}(N)$, and setting $\mu=\frac{u^{T} A^{-1} e_{n}}{1-\lambda\left(u^{T} e_{n}\right)\left(u^{T} A^{-1} e_{n}\right)}$, we have $u=\mu N e_{n}$, and $A=N+\lambda u u^{T}=N+\lambda \mu^{2} N e_{n} e_{n}^{T} N=N\left(I+\lambda \mu^{2} e_{n} e_{n}^{T} N\right)$. If N were singular, so would A be singular, so we must have N nonsingular. But then $\left(N+\lambda u u^{T}\right)^{-1}=N^{-1}-$ $\frac{\lambda N^{-1} u u^{T} N^{-1}}{1+\lambda u^{T} N^{-1} u}$, as $u^{T} N^{-1} u=\mu^{2} e_{n}^{T} N e_{n}=0$, which implies $1+\lambda u^{T} N^{-1} u>0$. Then consider $e_{i}^{T} N A^{-1} N e_{i}=$ $e_{i}^{T} N\left(N+\lambda u u^{T}\right)^{-1} N e_{i}=e_{i}^{T} N\left[N^{-1}-\frac{\lambda N^{-1} u u^{T} N^{-1}}{1+\lambda u^{T} N^{-1} u}\right] N e_{i}=e_{i}^{T} N e_{i}-\frac{\lambda\left(u^{T} e_{i}\right)^{2}}{1+\lambda u^{T} N^{-1} u}=-\frac{\lambda\left(u^{T} e_{i}\right)^{2}}{1+\lambda u^{T} N^{-1} u}<0$, for some $i \in\{1, \ldots, n-1\}$, which contradicts A^{-1} being a nonnegative matrix. In other words, we must have $N e_{n}=0$.

Finally, write $u=\binom{\hat{u}}{u_{n}}$, where $\hat{u} \in \mathbb{R}^{n-1}, u_{n} \in \mathbb{R}$, and $N=\left(\begin{array}{cc}\hat{N} & 0 \\ 0 & 0\end{array}\right)$, where $\hat{N} \in \mathbb{R}^{(n-1) \times(n-1)}$. Then $A=\left(\begin{array}{cc}\hat{N}+\lambda \hat{u} \hat{u}^{T} & \lambda u_{n} \hat{u} \\ \lambda u_{n} \hat{u}^{T} & \lambda u_{n}^{2}\end{array}\right)$, and because A is invertible we must have $u_{n} \neq 0$. If \hat{N} were singular, with zero eigenvector \hat{v} (say), then $\binom{\hat{v}}{\frac{-\hat{u}^{T} \hat{v}}{u_{n}}}$, would be a zero eigenvector for A, which is not possible. Thus, \hat{N} is nonsingular. Since $\left(\begin{array}{cc}\hat{N}+\lambda \hat{u} \hat{u}^{T} & \lambda u_{n} \hat{u} \\ \lambda u_{n} \hat{u}^{T} & \lambda u_{n}^{2}\end{array}\right)^{-1}=\left(\begin{array}{cc}\hat{N}^{-1} & -\frac{1}{u_{n}} \hat{N}^{-1} \hat{u} \\ -\frac{1}{u_{n}} \hat{u}^{T} \hat{N}^{-1} & \frac{1+\lambda \hat{u}^{T} \hat{N}^{-1} \hat{u}}{\lambda u_{n}^{2}}\end{array}\right)$ is nonnegative, then \hat{N} must be a generalized permutation matrix. Also, the nonzero components of \hat{u} must all have the same sign, with u_{n} of opposite sign. Since \hat{N}^{-1} has all zeros on its diagonal, n is odd.

Determining whether there are exceptional matrices A, for which A^{-1} is nonnegative with exactly $n-1$ zero entries on the diagonal, even when $n=5$ or 6 (see $[1,7]$), is beyond the scope of this paper.
4. When the inverse of a nonnegative matrix is not copositive. If $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is a symmetric, nonnegative matrix with all positive diagonal entries (and therefore strictly copositive), and $D=\operatorname{diag}\left(\frac{1}{\sqrt{a_{11}}}, \ldots, \frac{1}{\sqrt{a_{n n}}}\right)$, then $D A D$ has all diagonal entries equal to 1 . Replacing $D A D$ with A, we have $A x=\left(\begin{array}{ccccc}1 & a_{12} & a_{13} & \cdots & a_{1 n} \\ a_{12} & 1 & a_{23} & \cdots & a_{2 n} \\ a_{13} & a_{23} & 1 & \cdots & a_{3 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1 n} & a_{2 n} & a_{3 n} & \cdots & 1\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \geq\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$. In other words, for such an A, we have $A x \geq x$, for all $x \geq 0$. We will use this below. Theorem 4.1 was proved in [13]. (See also [3, 4, 19])

THEOREM 4.1. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, and $A=\left(\begin{array}{cc}A_{1} & b \\ b^{T} & c\end{array}\right)$, where $A_{1} \in \mathbb{R}^{(n-1) \times(n-1)}, b \in \mathbb{R}^{n-1}$, and $c \in \mathbb{R}$. Then A is copositive if and only if $c \geq 0 ; A_{1}$ is copositive; if $c>0$ then $x^{T}\left(A_{1}-\frac{b b^{T}}{c}\right) x \geq 0$, for all $x \geq 0$, with $x \in \mathbb{R}^{n-1}$, such that $x^{T} b \leq 0$; if $c=0$ then $b \geq 0$.

Theorem 4.1 is needed to prove Theorem 4.2.
ThEOREM 4.2. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and invertible. Suppose that A^{-1} is nonnegative with one zero diagonal entry and $n-1$ positive diagonal entries. Then A cannot be copositive.

Proof. Suppose, for the sake of obtaining a contradiction, that A is copositive. With A^{-1} nonnegative and having only one zero on the diagonal, under permutation similarity and positive diagonal congruence we may assume A^{-1} has the form $\left(\begin{array}{cc}A_{1} & b \\ b^{T} & 0\end{array}\right)$, where $A_{1} \in \mathbb{R}^{(n-1) \times(n-1)}, b \in \mathbb{R}^{n-1}$, and nonnegative A_{1} has all ones on the diagonal (so A_{1} is strictly copositive).
A_{1} must be nonsingular, since suppose A_{1} is singular, then $z^{T} A_{1}=0$, for nonzero $z \in \mathbb{R}^{n-1}$. Next, since there is $\left(\begin{array}{cc}B_{1} & b_{2} \\ b_{2}^{T} & c\end{array}\right)$, with $B_{1} \in \mathbb{R}^{(n-1) \times(n-1)}, b_{2} \in \mathbb{R}^{n}, c \geq 0$, such that $\left(\begin{array}{cc}A_{1} & b \\ b^{T} & 0\end{array}\right)\left(\begin{array}{cc}B_{1} & b_{2} \\ b_{2}^{T} & c\end{array}\right)=$ $\left(\begin{array}{ll}I & 0 \\ 0 & 1\end{array}\right)$, this implies $A_{1} b_{2}+c b=0$. But $z^{T} A_{1} b_{2}+c z^{T} b=0$, means $c z^{T} b=0$, so $z^{T} b=0$ or $c=0$. We also have that $A_{1} B_{1}+b b_{2}^{T}=I$, then $z^{T} A_{1} B_{2}+z^{T} b b_{2}=z$. If $z^{T} b=0$, the preceding equation implies $z=0$, so we are left with $c=0$. But $c=e_{n}^{T} A e_{n}=0$ implies $A e_{n} \geq 0$, which implies $b_{2} \geq 0$. Then $A_{1} b_{2}=0$ implies $b_{2}^{T} A_{1} b_{2}=0$, which is not possible since A_{1} is strictly copositive, unless $b_{2}=0$. But then $c=0$ would make A singular. So we must have that A_{1} is nonsingular. Moreover, $b_{2}=-c A^{-1} b$ and $1=b^{T} b_{2}=-c b^{T} A^{-1} b$, implies that $b^{T} A_{1}^{-1} b<0$.

We also have $A=\left(\begin{array}{cc}A_{1}^{-1}-\frac{A_{1}^{-1} b b^{T} A_{1}^{-1}}{b^{T} A^{-1} b} & \frac{A_{1}^{-1} b}{b^{T} A_{1}^{-1} b} \\ \frac{b^{T} A_{1}^{-1}}{b^{T} A_{1}^{-1} b} & \frac{-1}{b^{T} A_{1}^{-1} b}\end{array}\right)$. From Theorem 4.1, since A is copositive, we know that $A_{1}^{-1}-\frac{A_{1}^{-1} b b^{T} A_{1}^{-1}}{b^{T} A^{-1} b}$ is copositive, and $x^{T} A_{1}^{-1} x \geq 0$, for all $x \geq 0$ such that $x^{T} A_{1}^{-1} b \geq 0$.

Finally, consider the nonnegative vector $z=A_{1} b-b$, for which $z^{T} A_{1}^{-1} b=b^{T} b-b^{T} A^{-1} b \geq 0$. Then we know $z^{T} A_{1}^{-1} z=b^{T}\left(A_{1}-I\right) A_{1}^{-1}\left(A_{1}-I\right) b=b^{T}\left(A_{1}+A_{1}^{-1}-2 I\right) b \geq 0$, which can be rearranged to say $b^{T} A_{1} b-$ $2 b^{T} b \geq-b^{T} A_{1}^{-1} b>0$, i.e., $b^{T} A_{1} b>2 b^{T} b$, or $\frac{b^{T} A_{1} b}{b^{T} b}>2$. Let $x=\max _{b_{i}>0} \frac{\left(A_{1} b\right)_{i}}{b_{i}}=\max _{b_{i}>0} \frac{b_{i}\left(A_{1} b\right)_{i}}{b_{i}^{2}}$, so that $\left(A_{1} b\right)_{i} \geq x b_{i}$, for all $i \in\{1, \ldots, n-1\}$. We also have that $b^{T} A_{1} b=\sum_{i=1}^{n} b_{i}\left(A_{1} b\right)_{i}=\sum_{j=i_{1}}^{i_{k}} b_{j}^{2} \frac{b_{j}\left(A_{1} b\right)_{j}}{b_{j}^{2}}$, where we only include the positive b_{j} 's in the sum (k of them, say). Then $b^{T} A_{1} b \leq\left(b_{i_{1}}^{2}+\cdots+b_{i_{k}}^{2}\right) \max _{b_{i}>0} \frac{b_{i}\left(A_{1} b\right)_{i}}{b_{i}^{2}}=$ $b^{T} b x$, i.e., $x \geq \frac{b^{T} A_{1} b}{b^{T} b}>2$. Now we notice that $A b \geq x b \geq 2 b$ and redefine the nonnegative vector z as $z=A_{1} b-2 b$, for which we have $z^{T} A_{1}^{-1} b=b^{T} b-2 b^{T} A_{1}^{-1} b \geq 0$. Then (again) we know that $z^{T} A_{1}^{-1} z=$ $b^{T}\left(A_{1}-2 I\right) A_{1}^{-1}\left(A_{1}-2 I\right) b=b^{T}\left(A_{1}+4 A_{1}^{-1}-4 I\right) b \geq 0$, which (again) can be rearranged to say $b^{T} A_{1} b-4 b^{T} b \geq$ $-4 b^{T} A_{1}^{-1} b>0$, i.e., $b^{T} A_{1} b>4 b^{T} b$, or $\frac{b^{T} A_{1} b}{b^{T} b}>4$, and continuing like this we arrive at a contradiction. So, A must not be copositive.
5. Concluding remarks. The author does not know how to improve on Theorem 3.1 to the case where there are exactly k zeroes on the diagonal, and $1<k<n-1$, without additional assumptions on the nonnegative A^{-1}. If we could make assumptions on the entries of A^{-1} to conclude $A=\left(\begin{array}{cc}\hat{N}+U U^{T} & U V^{T} \\ V U^{T} & V V^{T}\end{array}\right)$, where V is invertible, then $A^{-1}=\left(\begin{array}{cc}\hat{N}^{-1} & -\hat{N}^{-1} U V^{-1} \\ -\left(V^{-1}\right)^{T} U^{T} \hat{N}^{-1} & \left(V V^{T}\right)^{-1}+\left(U V^{-1}\right)^{T} \hat{N}^{-1}\left(U V^{-1}\right)\end{array}\right)$, would enable us to deduce an analogous description of the form of A^{-1}. Or, Theorem 5 of [14] would be a different way to make assumptions on A^{-1}.

It does not appear that Theorem 4.2 can be improved on to suppose A^{-1} has two zero diagonal entries and $n-2$ positive diagonal entries, without additional assumptions on the nonnegative A^{-1}, because although

$$
\left(\begin{array}{cccc}
0 & \frac{1}{4} & 1 & 0 \\
\frac{1}{4} & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
-16 & -16 & 12 & 4 \\
-16 & -16 & 4 & 12 \\
12 & 4 & -1 & -3 \\
4 & 12 & -3 & -1
\end{array}\right) \text { is not copositive, }\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
1 & 1 & 0 & -1 \\
1 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

is copositive. These are not just examples for $n=4$, because we can easily make these matrices be the upper left 4×4 blocks of $n \times n$ matrices which have lower right blocks as the identity matrix I_{n-4}, and all zeroes elsewhere. Or, making different additional assumptions on nonnegative A^{-1}, suppose $n=2 k$ and $A^{-1}=$ $\left(\begin{array}{cc}0 & B \\ B^{T} & C\end{array}\right)$, where B is $k \times k$ and invertible, and C is nonzero. Then $A=\left(\begin{array}{cc}-\left(B^{T}\right)^{-1} C B^{-1} & \left(B^{T}\right)^{-1} \\ B^{-1} & 0\end{array}\right)$, and choosing $\hat{y}=B e$, where $e \in \mathbb{R}^{k}$, we have $y=\binom{\hat{y}}{0} \in \mathbb{R}^{n}$ nonnegative and $y^{T} A y=\hat{y}^{T}\left[-\left(B^{T}\right)^{-1} C B^{-1}\right] \hat{y}=$ $-e^{T} C e<0$, so that A cannot be copositive.

REFERENCES

[1] A. Afonin, R. Hildebrand, and P.J.C. Dickinson. The extreme rays of the 6×6 copositive cone. J. Global Optim., 79:153-190, 2021.
[2] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Math, vol. 9. SIAM, Philadelphia, 1994.
[3] I. Bomze. Remarks on the recursive structure of copositivity. J. Inform. Optim. Sci., 8(3):243-260, 1987.
[4] I. Bomze. Perron-Frobenius property of copositive matrices, and a block copositivity criterion. Linear Algebra Appl., 429(1):68-71, 2008.
[5] Z.B. Charles, M. Farber, C.R. Johnson, and L. Kennedy-Shaffer. Nonpositive eigenvalues of hollow, symmetric, nonnegative matrices. SIAM J. Matrix Anal. Appl., 34(3):1384-1400, 2013.
[6] P.H. Diananda. On non-negative forms in real variables some or all of which are non-negative. Proc. Camb. Philos. Soc., 58:17-25, 1962.
[7] P.J.C. Dickinson, M. Dür, L. Gijben, and R. Hildebrand. Irreducible elements of the copositive cone. Linear Algebra Appl., 439:1605-1626, 2013.
[8] R. DeMarr. Nonnegative matrices with nonnegative inverses. Proc. Amer. Math. Soc., 35(1):307-308, 1972.
[9] S.-P. Han and O.L. Mangasarian. Conjugate cone characterization of positive definite and semidefinite matrices. Linear Algebra Appl., 56:89-103, 1984.
[10] A.J. Hoffman and F. Pereira. On copositive matrices with -1, 0, 1 entries. J. Comb. Theory (A), 14:302-309, 1973.
[11] J.-B. Hiriart-Urruty and A. Seegar. A variational approach to copositive matrices. SIAM Rev., 52(4):593-629, 2010.
[12] C.R. Johnson and R. Reams. Constructing copositive matrices from interior matrices. Electron. J. Linear Algebra, 17:9-20, 2008.
[13] C.R. Johnson and R. Reams. Spectral theory of copositive matrices. Linear Algebra Appl., 395:275-281, 2005.
[14] C.R. Johnson and R. Reams. Sufficient Conditions to be Exceptional. Spec. Matrices, 4:67-72, 2016.
[15] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, New York, 1985.
[16] H. Minc. Nonnegative Matrices. Wiley, New York, 1988.
[17] A.W. Marshall, I. Olkin, and B.C. Arnold. Inequalities: Theory of Majorization and Its Applications. Second edition. Springer, New York, 2011.
[18] A. W. Marshall and I. Olkin. Scaling of matrices to achieve specified row and column sums. Numer. Math., 12:83-90, 1968.
[19] P. Li and F.Y. Yu. Criteria for copositive matrices of order four. Linear Algebra Appl., 194:109-124, 1993.
[20] N. Shaked-Monderer. On the generalized inverse of a copositive matrix. Linear Multilinear Algebra, 68:1384-1394, 2020.
[21] H. Väliaho. Criteria for copositive matrices. Linear Algebra Appl., 81:19-34, 1986.

[^0]: *Received by the editors on May 6, 2023. Accepted for publication on September 8, 2023. Handling Editor: Michael Tsatsomeros. Corresponding Author: Robert B. Reams.
 ${ }^{\dagger}$ Department of Mathematics, SUNY Plattsburgh, Plattsburgh, New York 12901, USA (robert.reams@plattsburgh.edu).

