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THE INVERSE OF A SYMMETRIC NONNEGATIVE MATRIX CAN BE COPOSITIVE*

ROBERT B. REAMST

Abstract. Let A be an n X n symmetric matrix. We first show that if A and its pseudoinverse are strictly copositive, then
A is positive semidefinite, which extends a similar result of Han and Mangasarian. Suppose A is invertible, as well as being
symmetric. We showed in an earlier paper that if A~! is nonnegative with n zero diagonal entries, then A can be copositive
(for instance, this happens with the Horn matrix), and when A is copositive, it cannot be of form P + N, where P is positive
semidefinite and N is nonnegative and symmetric. Here, we show that if A~1 is nonnegative with n — 1 zero diagonal entries
and one positive diagonal entry, then A can be of the form P + N, and we show how to construct A. We also show that if A~1
is nonnegative with one zero diagonal entry and n — 1 positive diagonal entries, then A cannot be copositive.
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1. Introduction. A matrix A € R™*" is said to be nonnegative, if every entry of A is nonnegative.
Similarly, a vector x € R" is nonnegative if all its components are nonnegative, and this is denoted x > 0.
For 1 <1¢ < n, we will use e; to denote the vector in R™ with a 1 in the ¢th position and all other entries zero.
We will use e to denote the vector with all its n components equal to 1. A symmetric matrix A € R"*" is
said to be positive semidefinite if 7 Az > 0, for all x € R™, while A is positive definite if 27 Az > 0, for all
x € R™ such that x # 0. A symmetric matrix A € R"*" is said to be copositive if 7 Az > 0, for all 2 € R"
such that = > 0, while A is strictly copositive if 27 Ax > 0, for all z > 0, x # 0.

Clearly, for A € R*"*™ if A is the sum of a positive semidefinite matrix P and a symmetric nonnegative
matrix N, then A is copositive. However, it can be shown that not all copositive matrices are of the form
P + N. Copositive matrices that are not of form P + N are called exceptional. Diananda [6] proved there
are no exceptional matrices when n < 4, i.e., every copositive matrix is of the form P 4+ N, when n < 4.
The most well-known example of an exceptional matrix is the Horn matrix, which is 5 x 5 [12, 17]. For
a vector x = (21,...,2,)7 € R", we will denote the Euclidean norm by ||z||z = /> 1, 22 = V2T, and
the one-norm by ||z|[1 = i, |2, so that ||z]|; = 2Te, when 2 > 0. It can be shown ([10, 13, 21]) for
a copositive matrix A that if we have 7 Az = 0 for > 0, then Az > 0. A matrix A € R™*" is said to
be interior if ming>q ||z, =1 27 Az is achieved in the interior of {z € R"|z > 0, ||z||; = 1}. In other words,
there is a minimizing vector u with all positive components. (See [12], for instance, for some results about
interior matrices.) R(A) will denote the range of a matrix, that is, to say R(A) = {Ax|z € R"}.

In Section 2, we extend a result of Han and Mangasarian. In Section 3, we present a copositive con-
struction of the inverse of a nonnegative matrix with n — 1 zero diagonal entries and one positive diagonal
entry. In Section 4, we show that it is not possible for the inverse of a nonnegative matrix, which has n — 1
positive diagonal entries and one zero diagonal entry, to be copositive. In Section 5, we consider some other
special cases.
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2. A result of Han and Mangasarian extended. In [9], Han and Mangasarian proved that if A
and A~! are strictly copositive, then A is positive definite. The pseudoinverse we shall use is the Moore—
Penrose generalized inverse, denoted Af. The four defining properties of AT are ATAAT = A, AATA = A,
AA' and AT A are symmetric, for which A is unique [15]. In fact, when A is symmetric, it can be seen that

At = UTdiag(A%, ey )\ik, 0,...,0)U, where A = UTdiag(\y, ..., \,0,...,0)U, with U an orthogonal matrix
and Ap,..., )\, the nonzero eigenvalues of A. The pseudoinverse of a copositive matrix was studied in [20].

Theorem 2.1 will use a result by Marshall and Olkin [18], which states that any strictly copositive matrix
A is scalable. Scalable means that there is a diagonal matrix D, with positive diagonal entries, such that
DAD has row (and column) sums 1. Theorem 2.1 will also make use of the result that if a matrix A € R**"
is copositive and interior, then A is positive semidefinite. (See Corollary 2 of [12], or Lemma 1 of [6].) A
useful observation quoted by Hiriart-Urruty and Seeger (Theorem 7.6 of [11]), as part of a theorem proved
by Han and Mangasarian (although they do not state it this way), follows after making the assumption that
A and A~! are both copositive: one of them is strictly copositive if and only if the other is. To see this,
write 0 = 27 Az = 2T AA~' Az, and remember that 27 Az = 0 implies Az > 0. Replacing A~" with A does
not change the observation.

THEOREM 2.1. Let A € R™*™. If A and AT are strictly copositive, then A is positive semidefinite.

Proof. Since A is strictly copositive, we know that there is a diagonal matrix D, with positive diagonal
entries, such that DADe = e. Write DAD = VTAV | where A = diag(\1,...,\,0,...,0) and V is orthog-
onal. Then (DAD)" = VTATV, where AT = diag(/\%, ..,/\—116,07 ...,0), and (DAD)'e = e. In other words,
without loss of generality when proving the theorem we may assume that Ae = e and Afe = e.

Next, let ming >, |jz||,=1 xT Az = X. Then X > 0, since A is strictly copositive. Also, (Iie)TA(Iie) > A,
for all z > 0, i.e., xT Az > A(2Te)?, which can be rewritten as z7(A — Xee?)z > 0, and thus A — Aee” i
copositive. Now let u be a minimizing vector, so that u” (A — Aee®)u = 0, then z = (A — AeeT)u > 0.

Since At is copositive (actually strictly), we have

2TAT = uT (A = XeeT)AT(A = NeeT)u,
= uT(AATA — eeT — XeeT + NneeT )u,
= T(A eeDu + MuTe)?(nh — 1),
=0+ AnA—1)>0.

Then nA —1 >0, and \ > % But also (%e)TA(l e) > A, giving % = enT—f > )\, so that \ = % We have

just shown that z = (A — Aee”)u = 0, i.e., Au = LeTue = Le. The minimizing vector u may have zero

components, but as %e is (also) a minimizing vector, A is copositive and interior, and therefore positive

semidefinite. 0

Unlike for Han and Mangasarian’s result, the converse of Theorem 2.1 does not hold, as can be

2 -1 1
seen by considering A = <(1) 8) or ( 11 _11 > . The matrix A = [ —1 1 0 |, for which AT =
1 0 1

2 -1 1
—1 5 4 |, illustrates that it is possible to have both A and A' strictly copositive, and this situation
1 4 5
is not covered by Han and Mangasarian’s result. Another way to state these results is to say that if we
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want to characterize those matrices for which both A and A=! (or A") are strictly copositive, we need look
no further than the positive (semi)definite matrices. The problem of characterizing the matrices for which
both A and A~! (or AT) are copositive, but not strictly copositive, seems to be unsolved. (See Section 7.4
of [11].) If we only consider when A and A~! are both nonnegative, then A is the product of a permutation
matrix and a diagonal matrix with positive diagonal entries (see [8], or Lemma 1.1 of Minc [16]). Such a
matrix A is called a generalized permutation matriz. If A and A" are both nonnegative, then A has been
characterized in Theorem 5.2 of Berman and Plemmons [2]. Tt is well known that if A is copositive with
all zero diagonal entries then A must be nonnegative. (This follows from el Ae; = 0, for each 4, implies
Ae; > 0.) In [14], we showed that if A~! is a nonnegative matrix with all zero diagonal entries, then A
may or may not be copositive, but when A is copositive it cannot be of the form P + N, i.e., A must be
exceptional. Symmetric nonnegative matrices with all zeroes on the diagonal are studied in [5], where such
matrices are called hollow. It is easy to show that any nonnegative matrix, not necessarily invertible, with all
positive diagonal entries must be strictly copositive. If A~! is nonnegative with all positive diagonal entries,
then A~! is strictly copositive, and if in addition A is copositive, then from Han and Mangasarian’s result,
A is positive definite. The consideration of what happens to A as we make assumptions with some of the
diagonal entries of nonnegative A~! being zero or positive leads us to the theorems of Sections 3 and 4.

3. When the inverse of a nonnegative matrix is of form P+N. For the proof of Theorem 3.1,
we recall the well-known fact [15] for invertible A € R"*", and a,b € R", such that 1 + b7 A~1a # 0, that
when A + ab? is invertible, it can be written (A + ab?)~! = A7 — %. Theorem 3.1 characterizes
the invertible, nonnegative matrices A~!, with n — 1 zero diagonal entries and one positive diagonal entry,

such that A is copositive of form P + N.

THEOREM 3.1. Let A € R™*"™ be symmetric and invertible. Suppose that A~ is nonnegative with n — 1
zero diagonal entries and one positive diagonal entry, and A is of form P+ N (without loss of generality with
N having all zeroes on the diagonal). Then, under permutation similarity, the positive semidefinite matrix
P has form P = \uu”, where A > 0, and u has its first n—1 components (when they are nonzero) having the
same sign (as each other), and its nth component of opposite sign, while the symmetric nonnegative matriz
N has its upper left (n — 1) x (n — 1) block as a generalized permutation matriz, with all zeros elsewhere in
N. Also, n must be odd.

Proof. Suppose that A~! is nonnegative with exactly n — 1 zeroes on the diagonal, and without loss of
generality (as this can be achieved with a permutation similarity) such that the lone positive diagonal entry
lies in the bottom right corner of A=!. If N = 0, then A would have to be positive definite, but then A~!
could not have any zeros on the diagonal. If P = 0, then N would have to be a generalized permutation
matrix with a positive entry in the bottom right-hand corner, and the theorem holds, just that v = e,.
Suppose, for what follows, that we do not have the latter situation.

Now, 0 = el A7le; = el AP AA te; = e A71(P + N)A~te;, implies Px; =0, for each i =1,...,n—1,
where z; = A~ 'e;. It follows that P has rank one, and P = A\uu”, for some A > 0 and © € R”. Because

MuuT A= le; =0, foreach i = 1,...,n—1, this implies u” A~ le; = 0, foreachi = 1,...,n—1, and uT A~ te,, >
0 (actually u” A=te,, # 0, but we can replace u with —u to achieve this). Next, uZ A=t = (0,...,0,u” A7 e,),
0
or rewritten as a column vector A=ty = : = (uTA7te,)e,. Then
0

uT A= 1e,
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u=(N+ uul)(ul A e,)en,
= (u" A e,)Ne, + AMue,)(uf A7 e, )u,

and rearranging gives [1 — A(uTe,)(uT A~ e,)u = (uf A~ e, )Ne,. If Ne, # 0, then u € R(N), and setting
T p—1

"= 1_)\(u¥e’4)(u§’j4_1e > e have u = uNe,, and A = N + Muul = N + A\u?Nenel N = N(I + Mp2enel N).

If N were singular, so would A be singular, so we must have N nonsingular. But then (N+ Auu®)"'=N"1—

—1 T —1
%, as uT N7y = p%el' Ne, = 0, which implies 1 + Au” N~u > 0. Then consider e/ NA~1Ne; =

_ _ 1 T -1 A T i 2 A T i 2

eI N(N + duu) "' Ne; = el N[N~ — AN wur N Ne, = el Ney — il = — bl < 0, for
some i € {1,...,n — 1}, which contradicts A~! being a nonnegative matrix. In other words, we must have
Ne, = 0.

! ](\)[ 8 ), where N € R(n=Dx(n=1)

Finally, write u = ( ), where & € R"!, u,, € R, and N = (

n

N+ aa” uyi o A .
Then A = + T ", |, and because A is invertible we must have u, # 0. If N were singular,
Aupt Au
with zero eigenvector ¥ (say), then ( —aTs ), would be a zero eigenvector for A, which is not possible.
Un
. o -1 -1 1 xXr—14
o . . N +xaa” A N —a N .
Thus, N is nonsingular. Since ( )\—;n;;‘ )\UJ2U > = ( IRV S +§\%T év_lﬂ is nonnegative,
n Uy Au?
then N must be a generalized permutation matrix. Also, the nonzero components of & must all have the
same sign, with u,, of opposite sign. Since N—! has all zeros on its diagonal, n is odd. ]

Determining whether there are exceptional matrices A, for which A~! is nonnegative with exactly n — 1
zero entries on the diagonal, even when n =5 or 6 (see [1, 7]), is beyond the scope of this paper.

4. When the inverse of a nonnegative matrix is not copositive. If A = (a;;) € R™*" is a
symmetric, nonnegative matrix with all positive diagonal entries (and therefore strictly copositive), and

D= diag(\/%, ey \/alﬂ), then DAD has all diagonal entries equal to 1. Replacing DAD with A, we have
1 a2 a1z - Qip
X1 il
a2 1 azs - ag,
T2 T2
Az=| @3 a3 1 -+ asz, . > . . In other words, for such an A, we have Az > =,
T, Tn
A1p A2n  A3n " 1
for all x > 0. We will use this below. Theorem 4.1 was proved in [13]. (See also [3, 4, 19])
THEOREM 4.1. Let A € R™ " be symmetric, and A = ( 1b47} b ), where A; € R(v=Dx(n=1) ' ¢ gn—1
c

and c € R. Then A is copositive if and only if ¢ > 0; Ay is copositive; if ¢ > 0 then z7(A; — %)z >0, for
all x >0, with x € R*™1, such that 27b < 0; if c =0 then b > 0.
Theorem 4.1 is needed to prove Theorem 4.2.

THEOREM 4.2. Let A € R™ " be symmetric and invertible. Suppose that A=t is nonnegative with one
zero diagonal entry and n — 1 positive diagonal entries. Then A cannot be copositive.
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Proof. Suppose, for the sake of obtaining a contradiction, that A is copositive. With A~! nonnegative
and having only one zero on the diagonal, under permutation similarity and positive diagonal congruence

8 ), where A; € R*=Dx(=1) ' ¢ R"=1 and nonnegative A;

has all ones on the diagonal (so A; is strictly copositive).

A
we may assume A~! has the form ( b;

A; must be nonsingular, since suppose A; is singular, then 27 A; = 0, for nonzero z € R*~!. Next,

since there is B% b2 , with By € R(»=Dx(=1) ", ¢ R™ ¢ > 0, such that A:,} b le b2 =
b; ¢ bt 0 b; ¢

( é (1) ), this implies A1by + cb = 0. But 27 A1by + c2zTb = 0, means czTb =0, so 27b=0or ¢ =0. We
also have that A By +bbY = I, then 27 A; By + 27bby = 2. If 27b = 0, the preceding equation implies z = 0,
so we are left with ¢ = 0. But ¢ = el Ae,, = 0 implies Ae,, > 0, which implies b > 0. Then A;by = 0 implies
b2TA1b2 = 0, which is not possible since A; is strictly copositive, unless by = 0. But then ¢ = 0 would make
A singular. So we must have that A; is nonsingular. Moreover, by = —cA~'b and 1 = bTby = —cb” A1,
implies that b7 A7 b < 0.

—1  A7'epTA? ATl

1 bTA-1p bT ATy . . .
We also have A = e : . From Theorem 4.1, since A is copositive, we know
" _
bT A D bT AT
- AtebTAY . - -
that A;! — Sri—m— is copositive, and 2T A] 'z >0, for all x > 0 such that 27 A;'b > 0.

Finally, consider the nonnegative vector z = A;b — b, for which zTAflb =b"b—bT A6 > 0. Then we
know 2T A7 2 = T (A —T)A7 (AL — Db = bT (A1 + AT —21)b > 0, which can be rearranged to say b” A;b—

20T > —bTAflb >0, i.e., bTA1b > 2b7h, or bi;};b > 2. Let x = maxy, >0 (Alj_b)" = maxp,>0 %7 so that

(A1b); > xb;, for all i € {1,...,n—1}. We also have that b* A0 = Y"1 | b;(A1b); = E;’;Zl biw, where
J

we only include the positive b;’s in the sum (k of them, say). Then b” A1b < (b7 +---+b? ) maxy,»o %gb)i =
blox, ie., x > bTb;f‘gb > 2. Now we notice that Ab > zb > 2b and redefine the nonnegative vector z as
z = Ayb — 2b, for which we have 2T A7'b = b7b — 20T A7*b > 0. Then (again) we know that 2T A; 'z =
bT (A —20) A7 (A —20)b = b7 (A +4A7 —4I)b > 0, which (again) can be rearranged to say b A;b—4b7b >
74bTA1_1b > 0, i.e., BT Ab > 4bTbh, or bqu‘f‘blb > 4, and continuing like this we arrive at a contradiction. So,
A must not be copositive. ]

5. Concluding remarks. The author does not know how to improve on Theorem 3.1 to the case where
there are exactly k zeroes on the diagonal, and 1 < k < n — 1, without additional assumptions on the non-
. . . . N+UUT uvT
negative A7, If we could make assumptions on the entries of A~* to conclude A = ( VUT VT ),
N1 ~-N-lyv!
—(V-HTUTN-t (vVT)"l+ UV HTN-HUVY)

us to deduce an analogous description of the form of A=1. Or, Theorem 5 of [14] would be a different way

where V is invertible, then A~! = ( ) , would enable

to make assumptions on A1,

It does not appear that Theorem 4.2 can be improved on to suppose A~! has two zero diagonal entries
and n—2 positive diagonal entries, without additional assumptions on the nonnegative A~!, because although
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0L 10V /-16 -16 12 4 0110\ /1 1 0 -1
100 1| | -16 -16 4 12 s not copasitive. | 1 00 T [ 1 1 -1 0
1 0 1 1 | | 12 4 -1 -3 P {101 1] 10 -1 1 0
0 1 1 1 4 12 -3 -1 01 1 1 -1 0 0 1

is copositive. These are not just examples for n = 4, because we can easily make these matrices be the upper
left 4 x 4 blocks of n X n matrices which have lower right blocks as the identity matrix I,,_4, and all zeroes
elsewhere. Or, making different additional assumptions on nonnegative A~!, suppose n = 2k and A b=

_ 1 1
( BOT g >, where B is k x k and invertible, and C' is nonzero. Then A = ( (B é*lCB )

Y

and choosing §j = Be, where e € R¥, we have y= (O) € R" nonnegative and y? Ay = 97 [-(BT)"*CB~!

—eTCe < 0, so that A cannot be copositive.
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