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MATRICES HAVING NONZERO OUTER INVERSES∗

IULIA-ELENA CHIRU† AND SEPTIMIU CRIVEI†

Abstract. It is well known that every nonzero von Neumann regular m×n-matrix A over an arbitrary ring R has a nonzero

outer inverse n × m-matrix B in the sense that B = BAB. Generalizing previous work on von Neumann regular matrices,

the matrices having nonzero outer inverses over semiperfect rings are characterized as the matrices having some entry outside

the Jacobson radical of R. Such matrices over finite semiperfect rings and finite commutative rings are counted, and several

applications are given.
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1. Introduction. Having the root in the work of von Neumann [20], who studied rings now bearing his

name, an m×n-matrix A over a ring R is called von Neumann regular if it has an inner inverse (or generalized

inverse) in the sense that there is an n×m-matrix B over R such that ABA = A. An interesting problem

in Linear Algebra is the study of von Neumann regular matrices and their generalized inverses over a ring.

This was first investigated by Rao [16] over commutative rings and continued by numerous authors, such as

Prasad [15], Lam and Swan [9], Ben-Israel and Greville [2], or Rao [17]. Some supplementary motivation for

their study has been provided by their applications to other research fields, such as control theory, systems

theory, operator algebras, or cryptography.

An n×m-matrix B is called an outer inverse of an m×n-matrix A if BAB = B. If A is a von Neumann

regular m × n-matrix with inner inverse n ×m-matrix B, then it is well known and easy to see that BAB

is an outer inverse of A. Clearly, if A is nonzero von Neumann regular, then its outer inverse is nonzero.

The problem of characterizing outer inverses of matrices over commutative rings was first stated and studied

by Robinson [18], who also gave credit to a previous unpublished manuscript by Stanimirović. Recently,

Chiru, Crivei and Olteanu [5, 6] established some intrinsic characterizations of (strongly) von Neumann

regular matrices over commutative rings as well as some related counting results. As a continuation of our

previous work, in this paper, we consider the more general class of matrices having nonzero outer inverses

over arbitrary rings, and we look for some intrinsic descriptions of such matrices.

We first study nonzero outer inverses of elements of an arbitrary ring. It is clear that if an element of

a ring R has a nonzero outer inverse, then it must be outside the Jacobson radical J(R) of R. The main

problem we discuss is to find a relevant class of rings R which satisfy the converse, that is, every element

outside J(R) has a nonzero outer inverse. In this direction, we prove that semiperfect rings (that is, rings R

such that R/J(R) is semisimple Artinian and idempotents lift modulo J(R)) satisfy this property. During

the process, we show a result of possible independent interest, namely that elements having a nonzero outer

inverse lift modulo one-sided ideals of exchange rings.
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Next we study nonzero outer inverses of matrices over an arbitrary ring. Thus, we show that the

existence of an entry having a nonzero outer inverse ensures that the matrix A has a nonzero outer inverse,

which in turn implies that A must have an entry outside the Jacobson radical of the ring. We prove that

these conditions are equivalent, and they provide a constructive criterion for matrices having a nonzero outer

inverse in the case of a large class of rings, namely the class of semiperfect rings. Examples of semiperfect

rings include local rings, one-sided Artinian rings, semiprimary rings, and one-sided perfect rings. We also

give an example showing that our result cannot be generalized to matrices over semilocal rings.

Finally, we count matrices having a nonzero outer inverse over finite semiperfect rings and finite commu-

tative rings, and we give several applications to rings of residue classes, products of Galois rings, quaternion

rings over rings of residue classes, and finite group algebras. Such results may also have applications to

cryptography, by describing and counting the elements of the key space of some cryptosystems, in a similar

way as for von Neumann regular matrices, e.g., see the key exchange protocol and the public key encryption

with keyword search scheme from [11].

Throughout the paper, m,n ≥ 1 will be integers, and R will be an associative ring with identity. Also,

we denote by Mm,n(R), Mn(R), Zn, J(R) and U(R) the set of m × n-matrices over R, the set of n × n-

matrices over R, the ring of residue classes modulo n, the Jacobson radical of R, and the set of units of R,

respectively. Also, we denote by rad(M) the Jacobson radical of a right R-module M .

2. Nonzero outer inverses of elements of a ring. We will first look at 1 × 1-matrices, that is,

elements of a ring R. In order to do that, we need some ring-theoretic notions.

Recall that a ring R is called local if it has a unique maximal one-sided ideal. Also, R is called semiperfect

if R/J(R) is semisimple Artinian and idempotents lift modulo J(R). If R is a commutative semiperfect ring,

then it is well known that it is a finite direct product of commutative local rings.

A one-sided ideal I of R is called strongly lifting if whenever x2 − x ∈ I for some x ∈ R (i.e., x is

idempotent modulo I), there is an idempotent e ∈ xR such that e − x ∈ I [13]. Note that this property is

left–right symmetric, and the Jacobson radical J of a ring is a strongly lifting ideal provided idempotents

lift modulo J .

A ring R is called an exchange ring (or a suitable ring) if there is an idempotent e ∈ R such that

e− x ∈ (x2 − x)R, and this concept is left–right symmetric [12]. Note that exchange rings are exactly those

rings for which idempotents lift modulo all one-sided ideals.

It will be useful in the following concept, which generalizes lifting of von Neumann regular elements

modulo one-sided ideals in the sense of Khurana, Lam and Nielsen [8].

Definition 2.1. Let I be a one-sided ideal of R. We say that elements having a nonzero outer inverse

lift modulo I, if whenever x+ I ∈ R/I has a nonzero outer inverse in R/I, there is an element a ∈ R having

a nonzero outer inverse in R such that x− a ∈ I.

Now we extend [8, Theorem 4.9] from von Neumann regular elements to elements having a nonzero outer

inverse.

Proposition 2.2. Let I be a strongly lifting right ideal of R. Then elements having a nonzero outer

inverse lift modulo I.
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Proof. Let x+I ∈ R/I with a nonzero outer inverse y+I ∈ R/I. Then we have (y+I)(x+I)(y+I) = y+I,

whence yxy − y ∈ I, and thus (yx)2 − yx ∈ I. Since I is strongly lifting, there is an idempotent e ∈ yxR,

say e = yxr, such that e − yx ∈ I. We have ey − yxy = (e − yx)y ∈ I, which together with yxy − y ∈ I
implies that ey − y ∈ I. Note that e 6= 0, because y /∈ I. It follows easily that (rey)x(rey) = rey, which

shows that rey is an outer inverse of x. We claim that rey 6= 0. Suppose to the contrary that rey = 0. Since

e = yxr and e is idempotent, we have e = e3 = yxreyxr = 0, which is a contradiction. This shows that rey

is a nonzero outer inverse of x. Hence, elements having a nonzero outer inverse lift modulo I.

We have some useful consequence of Proposition 2.2 in the case of exchange rings and, in particular, von

Neumann regular rings, π-regular rings or semiperfect rings, the latter being the case of interest for us.

Corollary 2.3. Let I be a one-sided ideal of an exchange ring R. Then elements having a nonzero

outer inverse lift modulo I.

Proof. Note that one-sided ideals of exchange rings are strongly lifting [13, Theorem 4] and use Propo-

sition 2.2.

Now the following theorem may be stated and proved.

Theorem 2.4. If an element a ∈ R has a nonzero outer inverse, then a /∈ J(R). If R is semiperfect,

then the converse is also true.

Proof. Let a ∈ R have a nonzero outer inverse b ∈ R. Then we have b(1 − ab) = 0. If a ∈ J(R), then

1− ab ∈ U(R), which implies b = 0, a contradiction. Hence, a /∈ J(R).

Next suppose that R is semiperfect. We shall show that every element a /∈ J(R) has a nonzero outer

inverse. First, note that local rings trivially have this property, because every element outside J(R) has an

inverse. Moreover, matrix rings over local rings R have this property, because if A = (aij) /∈ rad(Mm,n(R)) =

Mm,n(J(R)), then there is some aij ∈ R \ J(R) = U(R), which yields a nonzero outer inverse B = (bij) of

A all of whose entries are zero except for bji = a−1ij . Furthermore, direct products
∏

i∈I Ri of rings with this

property also have this property. In fact, an element a = (ai)i∈I ∈
∏

i∈I Ri has a nonzero outer inverse if

and only if ai has a nonzero outer inverse for some i ∈ I.

Since R is semiperfect, we may write R/J(R) ∼=
⊕s

k=1Mnk
(Dk) for some positive integers n1, . . . , ns

and division rings D1, . . . , Ds by the Wedderburn–Artin Theorem. By the above considerations, it follows

that a+ J(R) has a nonzero outer inverse. Since every semiperfect ring is an exchange ring (or one may use

the fact that the Jacobson radical of a semiperfect ring is strongly lifting), elements having a nonzero outer

inverse lift modulo J(R) by Corollary 2.3 (or Proposition 2.2). Precisely, by the proof of Proposition 2.2, a

has a nonzero outer inverse, as required.

3. Nonzero outer inverses of matrices over a ring. We begin this section with an easy, but useful

result on outer inverses.

Lemma 3.1. Let A ∈Mm,n(R) be a matrix having an outer inverse B ∈Mn,m(J(R)). Then B = 0n,m.

Proof. Since BAB = B, the matrix AB is idempotent, hence AB is von Neumann regular. But B ∈
Mn,m(J(R)), which implies that AB ∈ Mm(J(R)), because J(R) is an ideal of R. Then we have AB = 0m
by [9, Lemma 3.1], whence it follows that B = 0n,m.

Now we may extend Theorem 2.4 from elements of a ring to matrices over a ring as follows. In the case

of square matrices, this follows immediately from Theorem 2.4 applied to the ring Mn(R), but next we give

it for arbitrary matrices, that is, elements of the right R-module Mm,n(R).
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Theorem 3.2. Let A = (aij) ∈Mm,n(R). Consider the following statements:

(i) There exists some aij having a nonzero outer inverse.

(ii) A has a nonzero outer inverse.

(iii) A /∈Mm,n(J(R)).

Then (i)=⇒(ii)=⇒(iii). The implication (iii)=⇒(i) is true for every semiperfect ring.

In this case, a nonzero outer inverse of A is the matrix B ∈Mn,m(R) having all entries zero, except for

the entry (j, i), which is a nonzero outer inverse of aij.

Proof. (i) =⇒ (ii) This is trivial. A nonzero outer inverse B ∈ Mn,m(R) of A is the matrix having all

entries zero, except for the entry (j, i), which is a nonzero outer inverse of aij .

(ii) =⇒ (iii) Suppose that A has a nonzero outer inverse B ∈ Mn,m(R). Let us assume that A ∈
Mm,n(J(R)). As J(R) is an ideal of R, we have BA ∈Mn(J(R)). Since BAB = B, it follows that BA has

outer inverse BA. By Lemma 3.1, we must have BA = 0n, which implies B = 0n,m, a contradiction. Thus,

we have A /∈Mm,n(J(R)).

(iii) =⇒ (i) Assume that A /∈ Mm,n(J(R)). Denote by p : R → R/J(R) the natural ring epimorphism,

and by h : Mm,n(R)→Mm,n(R/J(R)) the induced homomorphism of right R-modules defined by h((aij)) =

(p(aij)). Since R is semiperfect, we may write R/J(R) ∼=
⊕s

k=1Rk, where Rk = Mnk
(Dk) for some

positive integers n1, . . . , ns and division rings D1, . . . , Ds by the Wedderburn–Artin Theorem. For every

k ∈ {1, . . . , s}, denote by hk : Mm,n(R) → Mm,n(Rk) the canonical projection. Since h(A) 6= 0m,n, there

is k ∈ {1, . . . , s} such that hk(A) 6= 0m,n. Then hk(A) has an invertible entry, which implies that h(A) has

an entry, say a′ij , having a nonzero outer inverse, say b′. Since every semiperfect ring is an exchange ring,

one may use Corollary 2.3 in order to lift the element a′ij ∈ R/J(R) which has a nonzero outer inverse b′

to an element aij ∈ R which has a nonzero outer inverse b. A nonzero outer inverse of A is the matrix

B ∈Mn,m(R) having all entries zero, except for the entry (j, i), which is b.

Noting that any finite direct product of local rings is semiperfect, we have the following corollary.

Corollary 3.3. Let R be a finite direct product of local rings, and let A ∈Mm,n(R). Then the following

are equivalent:

(i) A has an entry with a nonzero outer inverse.

(ii) A has a nonzero outer inverse.

(iii) A /∈Mm,n(J(R)).

Next let us illustrate Theorem 2.4.

Example 3.4. Let A = (aij) =

2 3 4 6

8 9 10 0

2 3 8 9

 ∈ M3,4(Z12). Note that Z12 is a semiperfect ring,

I = J(Z12) = {0, 6}, and there is a ring isomorphism Z12/J(Z12) ∼= Z6. With the above notation, we

have h(A) = (a′ij) =

2 3 4 0

2 3 4 0

2 3 2 3

 ∈ M3,4(Z6). Let x = a23 = 10 ∈ Z12, and note that x + I has the

nonzero outer inverse y + I with y = 4 ∈ Z12. Following the proof of Proposition 2.2, we are looking for

an idempotent e = yxr ∈ yxZ12 = 4Z12 such that e − yx = e − 4 ∈ I = J(Z12). Choosing e = 4 for
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r = 1, the element rey = 4 is a nonzero outer inverse of x = 10. Then a nonzero outer inverse of A is

B =


0 0 0

0 0 0

0 4 0

0 0 0

 ∈M4,3(Z12) by Theorem 2.4.

Let us also see an example in the case of matrices over a noncommutative ring.

Example 3.5. Consider the formal triangular matrix ring R =

(
Z12 Z12

0 Z12

)
. Since Z12 is a semiperfect

ring, so is R by [7, Corollary 2.5]. Note that I = J(R) =

(
J(Z12) Z12

0 J(Z12)

)
=

(
{0, 6} Z12

0 {0, 6}

)
[7,

Corollary 2.2], and there is a ring isomorphism R/J(R) ∼= Z6 × Z6 [7, Corollary 2.3]. Let

A = (aij) =


(

2 3

0 9

) (
4 6

0 0

)
(

8 9

0 3

) (
10 0

0 9

)
 ∈M2(R).

With the above notation, we have h(A) =

(
(2, 3) (4, 0)

(2, 3) (4, 3)

)
∈ M2(Z6 × Z6). Let x = a22 =

(
10 0

0 9

)
∈ R.

After the identification given by the above ring isomorphism, x+ I = (4, 3) ∈ Z6×Z6 has the nonzero outer

inverse y + I = (4, 0) ∈ Z6 × Z6 with y =

(
4 0

0 0

)
∈ R. As in the proof of Proposition 2.2, we are looking

for an idempotent e = yxr ∈ yxR =

(
4 0

0 0

)
R such that e − yx = e −

(
4 0

0 0

)
∈ I = J(R). Choosing

e =

(
4 0

0 0

)
for r = I2 ∈ R, the element rey =

(
4 0

0 0

)
is a nonzero outer inverse of x =

(
10 0

0 9

)
. By

Theorem 2.4, a nonzero outer inverse of A is

B =


(

0 0

0 0

) (
0 0

0 0

)
(

0 0

0 0

) (
4 0

0 0

)
 ∈M2(R).

In general, Theorem 2.4 does not hold for semilocal rings, as the following example shows. Recall that

a ring R is called semilocal if R/J(R) is semisimple Artinian.

Example 3.6. Consider the localizations Z(p) and Z(q) of the ring of integers to some distinct primes

p and q. Then the ring R = Z(p) ∩ Z(q) is a semilocal ring with two maximal ideals (p) and (q) generated

by p and q, respectively, because R/J(R) = R/(pq) ∼= R/(p) × R/(q). But R is not semiperfect, because

idempotents do not lift modulo J(R). Note that x = a
b ∈ R has a nonzero outer inverse if and only

if x ∈ U(R) if and only if a and pq are relatively prime. Now let us choose p = 3 and q = 5, hence

R = Z(3) ∩ Z(5). Let A =

(
3 5

5 9

)
∈M2(R). No entry of A has a nonzero outer inverse, but A is invertible,

and thus it has a nonzero outer inverse, namely A−1 = 1
2

(
9 −5

−5 3

)
∈M2(R). Also, A′ =

(
3 0

0 0

)
∈M2(R)

and A′ /∈M2(J(R)) = M2(15R), but it is easily seen that A′ has no nonzero outer inverse.
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4. Counting matrices having nonzero outer inverses. For a finite semiperfect ring, Theorem 2.4

allows us to easily determine the number of m × n-matrices over R having a nonzero outer inverse, which

will be denoted by V O(Mm,n(R)).

Proposition 4.1. Let R be finite semiperfect. Then V O(Mm,n(R)) = |Mm,n(R)| − |Mm,n(J(R))|.

We may give more detailed consequences in the case of matrices over commutative rings. Recall that

every finite commutative ring is a direct product of local finite commutative rings (e.g., see [10, (VI.2)].

Proposition 4.2. Let R be finite commutative, say R = R1×· · ·×Rs for some local finite commutative

rings. Then V O(Mm,n(R)) =
∏s

k=1 |Mm,n(Rk)| −
∏s

k=1 |Mm,n(J(Rk))|.

Proof. Since Mm,n(R) =
∏s

k=1Mm,n(Rk) and Mm,n(J(R)) =
∏s

k=1Mm,n(J(Rk)), by Corollary 3.3 we

have V O(Mm,n(R)) =
∏s

k=1 |Mm,n(Rk)| −
∏s

k=1 |Mm,n(J(Rk))|, which proves the required formula.

Corollary 4.3. Let R = Dq1 × · · · × Dqs be a direct product of fields. Then V O(Mm,n(R)) =∏s
k=1 q

mn
k − 1.

Corollary 4.4. Let l = pr11 · · · prss for some distinct primes p1, . . . , ps and positive integers r1, . . . , rs.

Then V O(Mm,n(Zl)) =
∏s

k=1 p
rkmn
k −

∏s
k=1 p

(rk−1)mn
k .

Proof. Use Proposition 4.2 for the product Zl
∼= Zp

r1
1
× · · · × Zprs

s
of local rings.

Let p be a prime, and let k, d be integers. Following [10, Chapter XVI], recall that a Galois ring is a

ring R ∼= Zpr [x]/(h(x)) for some monic polynomial h(x) ∈ Zpr [x] of degree d which is irreducible in Zp[x].

Such a Galois ring, which is denoted by GR(pr, d), has prd elements and characteristic pr, it is a local

commutative ring with maximal ideal (p) = pGR(pr, d) and GR(pr, d)/(p) ∼= Fpd . Note that GR(p, d) = Fpd

and GR(pr, 1) = Zpr .

Now Proposition 4.2 yields the following corollary, which extends Corollary 4.4.

Corollary 4.5. Let R = R1 × · · · × Rs be a direct product of Galois rings Rk = GR(prkk , dk) for

k ∈ {1, . . . , s}. Then V O(Mm,n(R)) =
∏s

k=1 p
rkdkmn
k −

∏s
k=1 p

(rk−1)dkmn
k .

As a further application, we may also determine the number of elements having a nonzero outer inverse

in the quaternion ring over R. Denote H(R) = {r0 + r1i+ r2j+ r3k | r0, r1, r2, r3 ∈ R} = R⊕Ri⊕Rj⊕Rk,
where i2 = j2 = k2 = ijk = −1, ij = −ji and i, j, k commute with R elementwise. With componentwise

addition and multiplication using the above relations, one obtains the quaternion ring over R (e.g., see [4]).

Corollary 4.6. Let l = pr11 · · · prss be an odd integer for some distinct primes p1, . . . , ps and positive

integers r1, . . . , rs. Then V O(H(Zl)) =
∏s

k=1 p
4rk
k −

∏s
k=1 p

4(rk−1)
k .

Proof. We have H(Zl) ∼= M2(Zl) by [4, Corollary 3.13]. Then use Corollary 4.4.

Next we count matrices having a nonzero outer inverse over some finite group algebras Fq[G], where Fq

is a field with q elements and G is a group with l elements. By Maschke’s Theorem, the group algebra Fq[G]

is semisimple if and only if char(Fq) does not divide l. In this case, one may use the Wedderburn–Artin

Theorem in order to get an isomorphism of Fq-algebras Fq[G] ∼=
⊕s

k=1Mnk
(Dk) for some positive integers

n1, . . . , ns and finite fields D1, . . . , Ds [14, Theorem 3.4.9]. For every k ∈ {1, . . . , s}, denote qk = |Dk| = qdk ,

where dk = [Dk : Fq] is the degree of the field extension Dk over Fq.

When G is an Abelian group with l elements, the Wedderburn–Artin Theorem reduces to the Perlis–

Walker Theorem [14, Theorem 3.5.4], which yields an isomorphism of Fq-algebras Fq[G] ∼=
⊕

d|l adFq(ζd),
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where ζd is a primitive root of unity of order d, ed = [Fq(ζd) : Fq], nd is the number of elements of order

d of G, ad = nd

ed
, and adFq(ζd) denotes the direct sum of ad different fields all of which are isomorphic to

the field extension Fq(ζd) of Fq, where |Fq(ζd)| = qed . Then Corollary 4.3 immediately gives the following

result, in which we use the above notation.

Proposition 4.7. Let G be a group with l elements, and let Fq be a field with q elements such that

char(Fq) does not divide l. Then:

(i) V O(Mm,n(Fq[G])) =
∏s

k=1 q
mnn2

k

k − 1.

(ii) If G is Abelian, then V O(Mm,n(Fq[G])) =
∏s

k=1 q
mnedad − 1.

Finally, we consider the more interesting case of a cyclic group G with l elements, that is, G ∼= Zl. This

time we have a formula for the number of m× n-matrices over Fq[G] having a nonzero outer inverse even if

the group algebra Fq[G] is not semisimple.

Proposition 4.8. Let l ≥ 2 be an integer and let Fq be a finite field with q elements. Write xl − 1 =

p1(x)r1 · · · ps(x)rs for some distinct irreducible polynomials p1(x), . . . , ps(x) ∈ Fq[x] with degrees d1, . . . , ds,

respectively, and positive integers r1, . . . , rs. Then V O(Mm,n(Fq[Zl])) =
∏s

k=1 q
rkmn
k −

∏s
k=1 q

(rk−1)mn
k ,

where qk = qdk for every k ∈ {1, . . . , s}.

Proof. We have the following classical isomorphism of Fq-algebras:

Fq[Zl] ∼= Fq[x]/(xl − 1) ∼= Fq[x]/(p1(x)r1)× · · · × Fq[x]/(ps(x)rs)

(e.g., see [14, p. 145]). For every k ∈ {1, . . . , s}, Rk = Fq[x]/(pk(x)rk) is a local ring with maximal ideal

Mk = (pk(x))/(pk(x)rk). We also have |Rk| = qdkrk , |Rk/Mk| = qdk and |Mk| = |Rk|
|Rk/Mk| = qdk(rk−1).

Finally, use Proposition 4.2.

Remark 4.9. (1) The above results also hold for m = n = 1. For instance, if R = R1 × · · · × Rs is a

direct product of local finite rings, then V O(R) =
∏s

k=1 |Rk| −
∏s

k=1 |J(Rk)|. They extend counting results

on von Neumann regular elements of Zl [1, 19] and of certain group algebras [3].

(2) Unlike the numbers of (strongly) von Neumann regular matrices over finite rings (see [5, 6]), the

number of matrices having a nonzero outer inverse over finite rings does not yield a multiplicative function.

For instance, we have:

V O(M2(Z2)×M2(Z3)) = V O(M2(Z6)) = 1295 6= 15 · 80 = V O(M2(Z2)) · V O(M2(Z3)).
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