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ON INEQUALITIES INVOLVING THE
HADAMARD PRODUCT OF MATRICES*

B. MOND' AND J. PECARIC!

Abstract. Recently, the authors established a number of inequalities involving integer powers of
the Hadamard product of two positive definite Hermitian matrices. Here these results are extended
in two ways. First, the restriction to integer powers is relaxed to include all real numbers not in
the open interval (—1,1). Second, the results are extended to the Hadamard product of any finite
number of Hermitian positive definite matrices.
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1. Introduction. Let A and B be n X n matrices. Ao B denotes the Hadamard
product and A ® B the Kronecker product of A and B.

These two products are related by the following relation [2], [3].

There exists an n? x n selection matrix .J such that J7.J = I and

AoB =J(A® B)J.

Note that JT is the n x n? matrix [Ey; Ess ... Epy], where Ej; is the n x n matrix of
zeros except for a one in the (7,7)th position.

Using this result, in [4] the authors proved a number of inequalities involving
integer powers of the Hadamard product of two positive definite Hermitian matrices.
Here we extend these results in two ways. First, the restriction to integer powers
is relaxed to include all real numbers not in the open interval (—1,1). Second, the
results are extended to the Hadamard product of any finite number of n x n Hermitian
positive definite matrices.

2. Notation and Preliminary Results. The Hadamard and Kronecker prod-

k
ucts of matrices A;, i = 1,...k, will be denoted by igl and ®, respectively.

i=1
We shall make frequent use of the following property of the Kronecker product:

(AB) ® (CD) = (A® C)(B ® D).

For a finite number of matrices 4;, B;, i =1,...,k, this becomes
k k k
(1) [T4:) @[] B:) =]]4i® By).
i=1 i=1 i=1
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Let A be a positive definite n x n Hermitian matrix. There exists a matrix U such
that

A=U*\,Ne, ..., \JU, UU =1,

where [A1, A2, ..., \y] is the diagonal matrix with A;, the positive eigenvalues of A,
along the diagonal [1]. For any real number s, A?® is defined by

A5 = U*[AS NS, .., AT

LEMMA 2.1. Let A and B be positive definite Hermitian n X n matrices and s a
nonzero real number. Then

(2) A® @ B®* = (A® B)®.

Proof. Assume
B=V*[v1,y2,---»7]V, V'V =1,
where -; are the eigenvalues of B. Then
A*@B* = U*M,.. ., 0) @ (Vi ..., 7mlV)
= U@ VI)(A,-- Al hi, DU eV)
=UaV)(A,.... @i, mDUeV)=(A®B)*>. O
Note that
UV (UeV) =U*V)UV)
=U*V)(V*V)=1QI=1,.

Equation (2) extends readily, for a finite number of n x n positive definite Hermitian
matrices 4;, i=1,...,k, to

k k §
®) Qu - (@)
i=1 i=1
LEMMA 2.2. Let A;, i = 1,...,k, be n x n matrices. There exists an n* x n
selection matriz P such that PTP =1

and

k
S 4 = pT )
(4) o Ai=P (@AJ P.

We prove this for three matrices.! The extension from m to m + 1 is similar.

AoBoC =AoJT(B®C(C)J
=JT A (JT(BrC)J)J
= JT((IAI) ® (JT(B ® C)J))J
=JIIoJT) Ao BaC)(I®J)J by (1)
=J'Ie )T (AeBoaC)I®J)J
=JT(A®B®C)J,

I This proof was provided by George Visick in a private communication.
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where J is the n® x n matrix J = (I ® J).J. Note that J7.J = I.

3. Results. In this section, 4;, i = 1,...,k, will denote n x n positive definite
Hermitian matrices. A; > A; means that A; — A; is positive semidefinite.

THEOREM 3.1. Letr and s be real numbers r < s, and either r ¢ (—1,1) and
s¢(-L,1)ors>1>r>1

orrg—lgsg—%. Then

1/s . 1/r
(5) (845)" = (fan)
i=1 i=1
Proof. We make use of the following result [5].
Let A be an n x n positive definite Hermitian matrix and let V' be an n x ¢ matrix
such that V*V = I. Then

(V*Asv)l/s > (V*Arv)l/r

for allreal  and s, r < s, such that either r ¢ (—1,1) ands ¢ (—1,1)ors >1>r > 1
orrg—lgsg—%.

Here instead of V', we use the n* x n selection matrix P given by (4). Noting (3),
we have

I
—
!
—
03¢
T
&
~—
N
~—
V
)
H
02y
e
=
~—
S
N
~—
=

Some special cases of (5) are the following;:

(L) <

A
—
<.

| o=
A

N
&£
N

or, equivalently
For r > 1, we have

or, equivalently,

(L= (2"

For r = 2, the last two inequalities become

(1) ()"

o
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and

(iﬁl A’Vz) < (151 Ai) 1/2 )

THEOREM 3.2. Let r and s be nonzero real numbers such that s > r and
s¢ (=1,1) orr ¢ (—1,1). Then

() (ig1AE)1/3SA(‘g A:)l/r’

i=1

where

v = M/m, and M and m are, respectively, the largest and smallest eigenvalues of

k
® A;. Also,
i=1

koo 1/s koo 1/r
(b) (;1 Ai) B (zil Ai) <Al
where
(7) A = max {[JM + (1= 0)m*]* = [JM" + (1= 6)m']/"}.
€[o,1

Proof. Let A be an n X n positive definite Hermitian matrix with eigenvalues
contained in the interval [m, M], where 0 < m < M, and let V' be an n x ¢t matrix
such that V*V = I. If r and s are nonzero real numbers such that r < s and either
s¢ (=1,1) orr ¢ (—1,1), then [6]

(8) (V*Asv)l/s < A(V*Arv)l/r
where A is given by (6), and
(9) (VFASV)Ys — (VAT < AT

where A is given by (7). Thus for part (a), from (8) and noting (3) and (4), we have

1/s & 1/s k s 1/s
[ (@] - (@)
=1 i=1
k r 1/r & 1/r . L
- o . Ak
<A|P (@A) pl =Alp ((Zgl)A,)P _A(lzlAi)
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60
For part (b), from (9),
ke 1s k 1/r k 1/s k 1/r
(iilA?) - (Z.;A;") = |PT ((Xl)A;?> pl - |P"T (@Ai) p
/s 1/r
<AI. 0O

k s k r
PT< fh) P PT<Q§fg> P
=1 =1

REMARK 3.3. The cases k = 2 of the above results were also considered in [7]

3.1. Special Cases. For s =2 and r = 1, we get

/
(L) <G (L)
and
(zi ?)1/2 B (z£1Ai) = 4(1;](\?\4'_4-7”1’3;]
For s=1and r =—1, we get

and
(54)- (2 47) < WA —vmpr

We note that the eigenvalues of ® A; are the n* products of the eigenvalues of

i=1
A;, i =1,...,k. Thus, if the eigenvalues of 4;, i = 1,...,k, are ordered as

M>A > >M >0, i=1,...,k

k

then the maximum and minimum eigenvalues of ® A; are M = H Al and
i=1

i=1

k

k
m = H Al . This leads to the following four inequalities:

i=1
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ﬁﬂ+ﬁ&
(10) (i:glAi) < = k = (iiA;l)_l,
4 AN
i=1
2
(121A’) - (ZélAz_l)_l < H/\’ — H)\% I

Finally, by taking A; " for A; in (10), we obtain
Y A

IR IR
( g Afl) < Ni=l i—1 ( k Ai)il.

i=1" - k i=1

A[T AN,
i=1

The inequalities here are generalizations of those given in [4]. Additional inequal-
ities of a similar kind are possible and will be considered elsewhere.
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