

ON THE STRONG ARNOL'D HYPOTHESIS AND THE CONNECTIVITY OF GRAPHS*

HEIN VAN DER HOLST[†]

Abstract. In the definition of the graph parameters $\mu(G)$ and $\nu(G)$, introduced by Colin de Verdière, and in the definition of the graph parameter $\xi(G)$, introduced by Barioli, Fallat, and Hogben, a transversality condition is used, called the Strong Arnol'd Hypothesis. In this paper, we define the Strong Arnol'd Hypothesis for linear subspaces $L \subseteq \mathbb{R}^n$ with respect to a graph G = (V, E), with $V = \{1, 2, \ldots, n\}$. We give a necessary and sufficient condition for a linear subspace $L \subseteq \mathbb{R}^n$ with respect to a graph G, and we obtain a sufficient condition for a linear subspace $L \subseteq \mathbb{R}^n$ with dim $L \leq 2$ to satisfy the Strong Arnol'd Hypothesis with respect to a graph G, and we obtain a sufficient condition for a linear subspace $L \subseteq \mathbb{R}^n$ with dim L = 3 to satisfy the Strong Arnol'd Hypothesis with respect to a graph G. We apply these results to show that if G = (V, E) with $V = \{1, 2, \ldots, n\}$ is a path, 2-connected outerplanar, or 3-connected planar, then each real symmetric $n \times n$ matrix $M = [m_{i,j}]$ with $m_{i,j} < 0$ if $ij \in E$ and $m_{i,j} = 0$ if $i \neq j$ and $ij \notin E$ (and no restriction on the diagonal), having exactly one negative eigenvalue, satisfies the Strong Arnol'd Hypothesis.

 ${\bf Key \ words.} \ {\rm Symmetric \ matrices, \ Nullity, \ Graphs, \ Transversality, \ Planar, \ Outerplanar, \ Graph minor.}$

AMS subject classifications. 05C50, 15A18.

1. Introduction. In the definition of the graph parameters $\mu(G)$ and $\nu(G)$, introduced by Colin de Verdière in respectively [2, 3] and [4], and in the definition of the graph parameter $\xi(G)$, introduced by Barioli, Fallat, and Hogben in [1], a transversality condition is used, called the Strong Arnol'd Hypothesis. The addition of this Strong Arnol'd Hypothesis allows to show the minor-monotonicity of these graph parameters. For example, $\mu(G') \leq \mu(G)$ if G' is a minor of G; we refer to Diestel [5] for the notions used in graph theory. It is this minor-monotonicity that makes these graph parameters so useful.

Let us first recall the definition of the Strong Arnol'd Hypothesis. For a graph G = (V, E) with vertex set $V = \{1, 2, ..., n\}$, denote by $\mathcal{S}(G)$ the set of all real symmetric $n \times n$ matrices $M = [m_{i,i}]$ with

$$m_{i,j} \neq 0, \ i \neq j \quad \Leftrightarrow \quad ij \in E.$$

The tangent space, $T_M \mathcal{S}(G)$, of $\mathcal{S}(G)$ at M is the space of all real symmetric $n \times n$

^{*}Received by the editors November 12, 2007. Accepted for publication on July 31, 2010. Handling Editor: Richard A. Brualdi.

[†]School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA (holst@math.gatech.edu). On leave from Eindhoven University of Technology.

On the Strong Arnol'd Hypothesis and the Connectivity of Graphs

matrices $A = [a_{i,j}]$ with $a_{i,j} = 0$ if $i \neq j$ and i and j are nonadjacent. Denote by $\mathcal{R}_{n,k}$ the manifold of all real symmetric $n \times n$ matrices of nullity k. The tangent space, $T_M \mathcal{R}_{n,k}$, of $\mathcal{R}_{n,k}$ at M is the space of all real symmetric $n \times n$ matrices $B = [b_{i,j}]$ such that $x^T B x = 0$ for all $x \in \ker(M)$. Here, $\ker(M)$ denotes the null space of M. A matrix $M \in \mathcal{S}(G)$ satisfies the Strong Arnol'd Hypothesis if the sum of $T_M \mathcal{S}(G)$ and $T_A \mathcal{R}_{n,k}$ equals the space of all real symmetric $n \times n$ matrices. So, a matrix $M \in \mathcal{S}(G)$ satisfies the Strong Arnol'd Hypothesis if and only if for each real symmetric $n \times n$ matrix B, there is a real symmetric matrix $A = [a_{i,j}]$ with $a_{i,j} = 0$ if $i \neq j$ and i and j nonadjacent, such that $x^T B x = x^T A x$ for each $x \in \ker(M)$.

Although stated above as a condition on the matrix M, it can be viewed as a condition on ker(M). In this paper, we extend the definition of the Strong Arnol'd Hypothesis to linear subspaces $L \subseteq \mathbb{R}^n$ with respect to a graph G = (V, E), where $V = \{1, 2, \ldots, n\}$. We give a necessary and sufficient condition for a linear subspace $L \subseteq \mathbb{R}^n$ with dim $L \leq 2$ to satisfy the Strong Arnol'd Hypothesis with respect to a graph G, and we obtain a sufficient condition for a linear subspace $L \subseteq \mathbb{R}^n$ with dim L = 3 to satisfy the Strong Arnol'd Hypothesis with respect to a graph G.

For a graph G = (V, E), let $\mathcal{O}(G)$ be the set of all $M = [m_{i,j}] \in \mathcal{S}(G)$ such that $m_{i,j} < 0$ for each adjacent pair of vertices i and j. Notice that for a matrix $M \in \mathcal{O}(G)$ with exactly one negative eigenvalue, the tangent space of $\mathcal{O}(G)$ at M is the same as the tangent space of $\mathcal{S}(G)$ at M. The parameter $\mu(G)$ is defined as the largest nullity of any $M = [m_{i,j}] \in \mathcal{O}(G)$ such that M has exactly one negative eigenvalue and satisfies the Strong Arnol'd Hypothesis. This graph parameter characterizes outerplanar graphs as those graphs G for which $\mu(G) \leq 2$, and planar graphs as those graphs G for which $\mu(G) \leq 2$, and Schrijver [9] for an introduction to this graph parameter. We show that in certain cases each $M \in \mathcal{O}(G)$ with exactly one negative eigenvalue (automatically) satisfies the Strong Arnol'd Hypothesis. More precisely, if G is a path, 2-connected outerplanar, or 3-connected planar, then each $M \in \mathcal{O}(G)$ with exactly one negative eigenvalue satisfies the Strong Arnol'd Hypothesis.

2. The Strong Arnol'd Property for linear subspaces. A representation of linearly independent vectors $x_1, x_2, \ldots, x_r \in \mathbb{R}^n$ is a function $\phi : \{1, 2, \ldots, n\} \to \mathbb{R}^r$ such that

$$\begin{bmatrix} \phi(1) & \phi(2) & \dots & \phi(n) \end{bmatrix} = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_r^T \end{bmatrix}$$

A representation of a linear subspace L of \mathbb{R}^n is a representation of some basis of L.

H. van der Holst

Let $\phi: \{1, 2, \ldots, n\} \to \mathbb{R}^r$ be a representation of a basis x_1, x_2, \ldots, x_r of a linear subspace L of \mathbb{R}^n , and let G = (V, E) be a graph with vertex set $V = \{1, 2, \ldots, n\}$. If A is a nonsingular $r \times r$ matrix and the linear span of the symmetric $r \times r$ matrices $\phi(i)\phi(i)^T$, $i \in V$, and $\phi(i)\phi(j)^T + \phi(j)\phi(i)^T$, $ij \in E$, is equal to the space of all symmetric $r \times r$ matrices, then the same holds for the linear span of $A\phi(i)\phi(i)^T A^T$, $i \in V$, and $A\phi(i)\phi(j)^T A^T + A\phi(j)\phi(i)^T A^T$, $ij \in E$. This suggests to define the following property for linear subspaces of \mathbb{R}^n .

An r-dimensional linear subspace L of \mathbb{R}^n satisfies the Strong Arnol'd Hypothesis with respect to G if for any representation $\phi : \{1, 2, \ldots, n\} \to \mathbb{R}^r$ of a basis of L, the linear span of all matrices of the form $\phi(i)\phi(i)^T$, $i \in V$, and $\phi(i)\phi(j)^T + \phi(j)\phi(i)^T$, $ij \in E$, is equal to the space of all symmetric $r \times r$ matrices. Equivalently, an rdimensional linear subspace L of \mathbb{R}^n satisfies the Strong Arnol'd Hypothesis if the $r \times r$ all-zero matrix is the only symmetric $r \times r$ matrix N such that $\phi(i)^T N \phi(j) = 0$, $ij \in E$, and $\phi(i)^T N \phi(i) = 0$, $i \in V$. If it is clear what graph G we are dealing with, we only write that L satisfies the Strong Arnol'd Hypothesis, omitting the part with respect to G.

The next lemma shows why we call this property the Strong Arnol'd Hypothesis.

LEMMA 2.1. Let G = (V, E) be a graph with vertex set $V = \{1, 2, ..., n\}$. A matrix $M \in S(G)$ has the Strong Arnol'd Hypothesis if and only if ker(M) has the Strong Arnol'd Hypothesis.

Proof. Choose a basis x_1, x_2, \ldots, x_r of ker(M), and let ϕ be a representation of x_1, x_2, \ldots, x_r .

M satisfies the Strong Arnol'd Hypothesis if and only if for every symmetric $n \times n$ matrices A, there is a symmetric $n \times n$ matrix $B = [b_{i,j}]$ with $b_{i,j} = 0$ if $i \neq j$ and iand j are nonadjacent, such that for all $x \in \ker(M)$, $x^T A x = x^T B x$. Hence, M has the Strong Arnol'd Hypothesis if and only if for every symmetric $r \times r$ matrices C, there is a symmetric $n \times n$ matrix $B = [b_{i,j}]$ with $b_{i,j} = 0$ if $i \neq j$ and i and j are nonadjacent, such that

$$C = \begin{bmatrix} x_1 & \dots & x_r \end{bmatrix}^T B \begin{bmatrix} x_1 & \dots & x_r \end{bmatrix}.$$

This is equivalent to: M has the Strong Arnol'd Hypothesis if and only if the linear span of all matrices of the form $\phi(i)\phi(i)^T$, $i \in V$, and $\phi(i)\phi(j)^T + \phi(j)\phi(i)^T$, $ij \in E$, is equal to the space of all symmetric $r \times r$ matrices. \square

Let G = (V, E) be a graph. For $S \subseteq V$, we denote by N(S) the set of all vertices in $V \setminus S$ adjacent to a vertex in S, and we denote by G[S] the subgraph induced by S. For $x \in \mathbb{R}^n$, we denote $\operatorname{supp}(x) = \{i \mid x_i \neq 0\}$. Two subsets of the vertex set or two subgraphs of a graph *touch* if they have common vertex or are adjacent. If two

On the Strong Arnol'd Hypothesis and the Connectivity of Graphs

subsets of the vertex set or two subgraphs of a graph do not touch, then we say that they are *separated*.

LEMMA 2.2. Let L be a linear space of \mathbb{R}^n of dimension r and let $\phi : V \to \mathbb{R}^r$ be a representation of the basis x_1, x_2, \ldots, x_r of L. Then there is a symmetric $r \times r$ matrix $N = [n_{i,j}]$ with $n_{1,2} = n_{2,1} = 1$ and $n_{i,j} = 0$ elsewhere, such that $\phi(i)^T N \phi(i) = 0$ for all $i \in V$ and $\phi(i)^T N \phi(j) = 0$ for all $ij \in E$ if and only if $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ are separated.

Proof. It is easily checked that $\phi(i)^T N \phi(i) = 0$ for all $i \in V$ and $\phi(i)^T N \phi(j) = 0$ for all $ij \in E$ if $supp(x_1)$ and $supp(x_2)$ are separated.

Conversely, from $\phi(i)^T N \phi(i) = 0$, $i \in V$, it follows that $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ have no common vertex, and from $\phi(i)^T N \phi(j) = 0$, $ij \in E$, it follows that $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ are not adjacent. Hence, $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ are separated. \square

If a linear subspace $L \subseteq \mathbb{R}^n$ has dim $L \leq 2$, then the following theorem gives a sufficient and necessary condition for L to satisfy the Strong Arnol'd Hypothesis with respect to G.

THEOREM 2.3. Let G = (V, E) be a graph with vertex set $V = \{1, 2, ..., n\}$ and let $k \leq 2$. A k-dimensional linear subspace L of \mathbb{R}^n does not satisfy the Strong Arnol'd Hypothesis if and only if there are nonzero vectors $x_1, x_2 \in L$ such that $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ are separated.

Proof. k = 1. This is easy as every 1-dimensional linear subspace L satisfies the Strong Arnol'd Hypothesis, and there are no two nonzero vectors $x_1, x_2 \in L$ such that $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ are separated.

k = 2. If there are nonzero vectors $x_1, x_2 \in L$ for which $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ are separated, then L does not satisfy the Strong Arnol'd Hypothesis, by Lemma 2.2.

Conversely, suppose that L does not satisfy the Strong Arnol'd Hypothesis. Since L has dimension 2, we can find two vertices u and v and a basis x, z of L with $x_u = 1, z_u = 0$ and $x_v = 0, z_v = 1$. Let $\phi : V \to \mathbb{R}^2$ be a representation of x, z. As L does not satisfy the Strong Arnol'd Hypothesis, there is a nonzero symmetric 2×2 matrix $N = [n_{i,j}]$ such that $\phi(i)^T N \phi(i) = 0$ for all $i \in V$ and $\phi(i)^T N \phi(j) = 0$ for all $i j \in E$. In particular, since $\phi(u) = [1, 0]^T$ and $\phi(v) = [0, 1]^T$, $n_{1,1} = n_{2,2} = 0$. Hence, by Lemma 2.2, $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ are separated. \Box

Theorem 2.3 need not hold when dim L = 3, as the following example shows. Let G = (V, E) be the graph with $V = \{1, 2, ..., 5\}$ and $E = \emptyset$, and let L be the linear

H. van der Holst

subspace of \mathbb{R}^5 spanned by the vectors

[1]		0		[0]
0		1		0
0	,	0	,	1
1		1		1
1		2		3

Every two nonzero vectors $x_1, x_2 \in L$ touch, but L does not satisfy the Strong Arnol'd Hypothesis, as can be easily verified.

If a linear subspace $L \subseteq \mathbb{R}^n$ has dim L = 3, then the following theorem gives a sufficient condition for L to satisfy the Strong Arnol'd Hypothesis.

THEOREM 2.4. Let G = (V, E) be a graph with vertex set $V = \{1, 2, ..., n\}$, and let L be a linear subspace of \mathbb{R}^n with dim L = 3. Let $\phi : V \to \mathbb{R}^3$ be a representation of L. If there are adjacent vertices u and v in G such that $\phi(u)$ and $\phi(v)$ are linearly independent, and there are no nonzero vectors $x_1, x_2 \in L$ such that $\sup(x_1)$ and $\sup(x_2)$ are separated, then L satisfies the Strong Arnol'd Hypothesis.

Proof. For the sake of contradiction, assume that L does not satisfy the Strong Arnol'd Hypothesis. Then there is a nonzero symmetric 3×3 matrix $N = [n_{i,j}]$ such that $\phi(i)^T N \phi(i) = 0$ for all $i \in V$ and $\phi(i)^T N \phi(j) = 0$ for all $ij \in E$. There exists a nonsingular matrix A such that $A^T N A$ is a diagonal matrix in which each of the diagonal entries belongs to $\{-1, 0, 1\}$. Thus, by multiplying ϕ with A we may assume that N is a diagonal matrix and that its diagonal entries belongs to $\{-1, 0, 1\}$. We will now show that each of the elements in $\{-1, 0, 1\}$ occurs as a diagonal entry.

Suppose that 0 occurs twice as a diagonal entry; without loss of generality, we may assume that $n_{2,2} = n_{3,3} = 0$. Since the dimension of L is three, there exists a vertex v for which the first coordinate of $\phi(v)$ is nonzero. Then $\phi(v)^T N \phi(v) \neq 0$, contradicting that $\phi(i)^T N \phi(i) = 0$ for all $i \in V$.

Suppose that 1 occurs twice as a diagonal entry; without loss of generality, we may assume that $n_{2,2} = n_{3,3} = 1$. Since $\phi(u)$ and $\phi(v)$ are linearly independent, there exists a linear combination $z = a\phi(u) + b\phi(v)$ for which the first coordinate equals 0. Then $0 \neq z^T N z = a^2 \phi(u)^T N \phi(u) + 2ab\phi(u)^T N \phi(v) + b^2 \phi(v)^T N \phi(v)$. Since $\phi(u)^T N \phi(u) = 0$, $\phi(v)^T N \phi(v) = 0$, and $\phi(u)^T N \phi(v) = 0$, we obtain a contradiction. The case where -1 occurs twice is analogous.

Hence, each of the elements in $\{-1,0,1\}$ occurs as a diagonal entry; we may assume that

$$N = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

On the Strong Arnol'd Hypothesis and the Connectivity of Graphs

We now define $\psi: V \to \mathbb{R}^3$ by $\psi(i) = B\phi(i)$ for $i \in V$, where

$$B = \begin{bmatrix} 1 & -1 & 0\\ \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

Then ψ is a representation of L such that if

$$Q = \left[\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right],$$

then $\psi(i)^T Q \psi(i) = 0$ for all $i \in V$ and $\psi(i)^T Q \psi(j) = 0$ for all $ij \in E$. By Lemma 2.2, there are nonzero vectors $x_1, x_2 \in L$ such that $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ are separated, contradicting the assumption. Hence, L satisfies the Strong Arnol'd Hypothesis. \Box

LEMMA 2.5. Let G = (V, E) be a graph. Let $\phi : V \to \mathbb{R}^3$ be a representation of a linear subspace L of \mathbb{R}^n with dim L = 3. If there are nonzero vectors $x_1, x_2 \in L$ for which there are touching components C_1 and C_2 of $G[\operatorname{supp}(x_1)]$ and $G[\operatorname{supp}(x_2)]$, respectively, with $C_1 \neq C_2$, then there are adjacent vertices u and v such that $\phi(u)$ and $\phi(v)$ are independent.

Proof. The vectors x_1, x_2 are clearly linearly independent. Let x_3 be a vector in L such that x_1, x_2, x_3 form a basis of L, and let $\psi : V \to \mathbb{R}^3$ be a representation of x_1, x_2, x_3 . If for adjacent vertices u and v, $\psi(u)$ and $\psi(v)$ are linearly independent, then also $\phi(u)$ and $\phi(v)$ are linearly independent.

If C_1 and C_2 have no vertex in common, then they must be joined by an edge uv. As a consequence, $\psi(u)$ and $\psi(v)$ are linear independent, and so $\phi(u)$ and $\phi(v)$ are linearly independent.

We may therefore assume that C_1 and C_2 have a vertex c in common. Since $C_1 \neq C_2$, $V(C_1)\Delta V(C_2) \neq \emptyset$; choose a vertex d from $V(C_1)\Delta V(C_2)$. By symmetry, we may assume that $d \in V(C_1)$ and $d \notin V(C_2)$. Since C_1 and C_2 are connected, there is a path in C_1 connecting c and d. On this path there is an edge uv such that $u \in V(C_1)$, $u \notin V(C_2)$ and $v \in V(C_1)$, $v \in V(C_2)$. Then $\psi(u)$ and $\psi(v)$ are linear independent. Hence, $\phi(u)$ and $\phi(v)$ are linearly independent.

Using Theorem 2.4 and Lemma 2.5, we obtain:

THEOREM 2.6. Let G = (V, E) be a graph. Let $\phi : V \to \mathbb{R}^3$ be a representation of a linear subspace L of \mathbb{R}^n with dim L = 3. If there are nonzero vectors $x_1, x_2 \in L$ for which there are touching components C_1 and C_2 of $G[\operatorname{supp}(x_1)]$ and $G[\operatorname{supp}(x_2)]$, respectively, with $C_1 \neq C_2$, then L satisfies the Strong Arnol'd Hypothesis.

LEMMA 2.7. Let G = (V, E) be a graph with vertex set $V = \{1, 2, ..., n\}$, and let L be a linear subspace of \mathbb{R}^n with dim $L \leq 3$, which has a nonzero vector x such that

H. van der Holst

 $G[\operatorname{supp}(x)]$ is connected. If L does not satisfy the Strong Arnol'd Hypothesis, then there exists a nonzero vector $y \in L$ such that $\operatorname{supp}(x)$ and $\operatorname{supp}(y)$ are separated.

Proof. If each nonzero vector $y \in L$ satisfies $\operatorname{supp}(y) = \operatorname{supp}(x)$, then L is 1-dimensional; each 1-dimensional linear subspace L of \mathbb{R}^n satisfies the Strong Arnol'd Hypothesis.

Thus, there exists a nonzero vector $y \in L$ such that $\operatorname{supp}(y) \neq \operatorname{supp}(x)$. We may assume that $\operatorname{supp}(x)$ and $\operatorname{supp}(y)$ touch, for otherwise $\operatorname{supp}(x)$ and $\operatorname{supp}(y)$ are separated. Hence, there is a component C of $G[\operatorname{supp}(y)]$ such that $G[\operatorname{supp}(x)]$ and C touch. If $C \neq G[\operatorname{supp}(x)]$, then L would satisfy the Strong Arnol'd Hypothesis by Theorem 2.6. This contradiction shows that $C = G[\operatorname{supp}(x)]$. Now choose a vertex $v \in \operatorname{supp}(x)$. There exists a scalar α such that $z = \alpha x + y$ satisfies $z_v = 0$. If there is a vertex $w \in \operatorname{supp}(x)$ such that $z_w \neq 0$, then there is a component D of $G[\operatorname{supp}(z)]$ such that D and $G[\operatorname{supp}(x)]$ touch and $D \neq G[\operatorname{supp}(x)]$. By Theorem 2.6, L would satisfy the Strong Arnol'd Hypothesis. This contradiction shows that $z_u = 0$ for all $u \in G[\operatorname{supp}(x)]$. Then $\operatorname{supp}(x)$ and $\operatorname{supp}(z)$ are separated. \Box

FIG. 2.1. Complement of C_6 .

In Theorem 2.4, the restriction $k \leq 3$ cannot be removed. For k = 4, there is the following example. Let G = (V, E) be the complement of the 6-cycle C_6 , which is the graph with $V = \{1, 2, \ldots, 6\}$ obtained from taking two disjoint triangles and connecting each vertex of one triangle to a vertex of the other triangle by an edge in a one-to-one way; see Figure 2.1. Let L be generated by the columns of the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

and, for $i \in V$, let $\phi(i)$ be the *i*th column of A^T . Then for every vector $x \in L$, supp(x) induces a connected subgraph of G, and hence, for every two vectors $x_1, x_2 \in L$, supp (x_1) and supp (x_2) touch. But L does not satisfy the Strong Arnol'd Hypothesis,

On the Strong Arnol'd Hypothesis and the Connectivity of Graphs

as $\phi(i)^T Q \phi(i) = 0$ for $i \in V$ and $\phi(i)^T Q \phi(j) = 0$ for $ij \in E$ if

(2.1)
$$Q = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

However, this is essentially the only type of matrix that can occur as we will see in the next result.

THEOREM 2.8. Let G = (V, E) be a graph with vertex set $V = \{1, ..., n\}$, and let L be a linear subspace of \mathbb{R}^n with dim L = 4. Let $\phi : V \to \mathbb{R}^4$ be a representation of L. Suppose L has the following properties:

- 1. L does not satisfy the Strong Arnol'd Hypothesis,
- 2. there are adjacent vertices u and w in G such that $\phi(u)$ and $\phi(w)$ are linearly independent, and
- 3. there are no nonzero vectors $x_1, x_2 \in L$ such that $supp(x_1)$ and $supp(x_2)$ are separated.

Then there is a representation $\psi: V \to \mathbb{R}^4$ of L such that if

$$Q = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},$$

then $\psi(i)^T Q \psi(i) = 0$ for all $i \in V$ and $\psi(i)^T Q \psi(j) = 0$ for all $ij \in E$.

Proof. Since L does not satisfy the Strong Arnol'd Hypothesis, there is a nonzero symmetric 4×4 matrix $N = [n_{i,j}]$ such that $\phi(v)^T N \phi(v) = 0$ for each $v \in V$ and $\phi(v)^T N \phi(w) = 0$ for each $vw \in E$. By multiplying ϕ with a nonsingular 4×4 matrix A, we may assume that N is a diagonal matrix and that each of its diagonal entries belongs to $\{-1, 0, 1\}$.

Suppose first that three of the diagonal entries are equal to zero; without loss of generality, we may assume that $n_{1,1} = n_{2,2} = n_{3,3} = 0$. Since dim L = 4, there exists a vertex v such that the last coordinate of $\phi(v)$ is nonzero. Then $\phi(v)^T N \phi(v) \neq 0$. This contradiction shows that at most two of the diagonal entries are equal to zero.

Suppose next that two of the diagonal entries are equal to zero; without loss of generality, we may assume that $n_{1,1} = n_{2,2} = 0$. If $n_{3,3} = n_{4,4}$, then $\phi(v)^T N \phi(v) \neq 0$.

H. van der Holst

Hence, $n_{3,3} = -n_{4,4}$; we may assume that $n_{3,3} = 1$. Taking

A

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & -1 & \frac{1}{2} \end{bmatrix}.$$

we obtain

Let $\psi: V \to \mathbb{R}^4$ be defined by $\psi(i) = A^{-1}\phi(i)$ for i = 1, 2, ..., n. Then, by Lemma 2.2, there exist vectors $x_1, x_2 \in L$ such that $\operatorname{supp}(x_1)$ and $\operatorname{supp}(x_2)$ are separated, contradicting the assumption.

Suppose next that exactly one of the diagonal entries is equal to zero; without loss of generality, we may assume that $n_{4,4} = 0$. Each of the other diagonal entries is -1or 1. Let z_1, z_2, z_3, z_4 be the basis corresponding to ϕ and let ψ be the representation corresponding to z_1, z_2, z_3 . If $R = [r_{i,j}]$ is the diagonal matrix defined by $r_{j,j} = n_{j,j}$ for j = 1, 2, 3, then $\psi(v)^T R \psi(v) = 0$ for all $v \in V$ and $\psi(v)^T R \psi(w) = 0$ for all $vw \in E$. By Theorem 2.4, there exist vectors y_1, y_2 in the linear span of z_1, z_2, z_3 such that $\supp(y_1)$ and $\supp(y_2)$ are separated. This contradiction shows that all diagonal are nonzero.

If the diagonal entries are all 1 or all -1, then $\phi(v)^T N \phi(v) \neq 0$ if $\phi(v) \neq 0$. Suppose three of the diagonal entries are 1 and one of them is -1; without loss of generality, we may assume that $n_{1,1} = -1$ and $n_{i,i} = 1$ for i = 2,3,4. Let uw be an edge in G such $\phi(u)$ and $\phi(w)$ are linearly independent. Let $a, b \in \mathbb{R}$ be such that $a\phi(u) + b\phi(w)$ is a vector in \mathbb{R}^n whose first coordinate is equal to 0. Since $\phi(u)^T N \phi(u) = 0$, $\phi(w)^T N \phi(w) = 0$, and $\phi(u)^T N \phi(w) = 0$, $(a\phi(u) + b\phi(w))^T N(a\phi(u) + b\phi(w)) = 0$. However, since $n_{i,i} = 1$ for i = 2,3,4 and the first coordinate of $a\phi(u) + b\phi(w)$ equals 0, $(a\phi(w) + b\phi(w))^T N(a\phi(u) + b\phi(w)) \neq 0$; a contradiction. The case where three of the diagonal entries are -1 and one of them is 1 is similar. Thus, two of the diagonal entries are -1 and two of the diagonal entries are 1; we may assume that $n_{1,1} = n_{2,2} = 1$ and $n_{3,3} = n_{4,4} = -1$. Let

$$A = \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} & 0 \\ 0 & -1 & \frac{1}{2} & 0 \\ -1 & 0 & 0 & \frac{1}{2} \end{bmatrix};$$

then $A^T N A = Q$. Defining $\psi : V \to \mathbb{R}^4$ by $\psi(i) = A^{-1}\phi(i)$ for i = 1, 2, ..., n, we obtain that $\psi(i)^T Q \psi(i) = 0$ for all $i \in V$ and $\psi(i)^T Q \psi(j) = 0$ for all $i j \in E$. \Box

On the Strong Arnol'd Hypothesis and the Connectivity of Graphs

3. The parameter $\mu(G)$ and the Strong Arnol'd Hypothesis. In this section we apply Theorems 2.3 and 2.4 to show that if G is a path, 2-connected outerplanar, or 3-connected planar, then each matrix in $\mathcal{O}(G)$ with exactly one negative eigenvalue satisfies the Strong Arnol'd Hypothesis. Different proofs can be found in [8].

For $x \in \mathbb{R}^n$, we denote $\operatorname{supp}_{-}(x) = \{i \mid x_i < 0\}$ and $\operatorname{supp}_{+}(x) = \{i \mid x_i > 0\}$. If G = (V, E) is a connected graph with $V = \{1, 2, \ldots, n\}$, then the Perron-Frobenius Theorem says that each eigenvector z belonging to the smallest eigenvalue of $M \in \mathcal{O}(G)$ has multiplicity 1 and satisfies z > 0 or z < 0. Since any $x \in \ker(M)$ is orthogonal to z, $\operatorname{supp}_{+}(x) \neq \emptyset$ and $\operatorname{supp}_{-}(x) \neq \emptyset$ for every nonzero $x \in \ker(M)$.

LEMMA 3.1. [9, Theorem 2.17 (v)] Let G be a connected graph and let $M \in \mathcal{O}(G)$ with exactly one negative eigenvalue. Let $x \in \ker(M)$ be such that $G[\operatorname{supp}_+(x)]$ or $G[\operatorname{supp}_-(x)]$ has at least two components. Then there is no edge connecting $\operatorname{supp}_+(x)$ and $\operatorname{supp}_-(x)$ and $N(K) = N(\operatorname{supp}(x))$ for each component K of $G[\operatorname{supp}(x)]$.

LEMMA 3.2. Let G = (V, E) be a graph and let $M \in \mathcal{O}(G)$ with exactly one negative eigenvalue. If M has nullity at most three and there exists a nonzero $x \in$ ker(M) such that supp(x) induces a connected subgraph of G, then M satisfies the Strong Arnol'd Hypothesis.

Proof. For the sake of contradiction, assume that there is an $M \in \mathcal{O}(G)$ that does not satisfy the Strong Arnol'd Hypothesis. By Lemma 2.7, there exists a nonzero vector $y \in \ker(M)$ such that $\operatorname{supp}(x)$ and $\operatorname{supp}(y)$ are separated. The vector z = x + yhas the property that $G[\operatorname{supp}_+(z)]$ and $G[\operatorname{supp}_-(z)]$ are disconnected. By Lemma 3.1, $N(C) = N(\operatorname{supp}(z))$ for each component C in $G[\operatorname{supp}_-(z)] \cup G[\operatorname{supp}_+(z)]$ and there is no edge between $\operatorname{supp}_-(z)$ and $\operatorname{supp}_+(z)$. However, this would mean that $G[\operatorname{supp}_-(x)]$ and $G[\operatorname{supp}_+(x)]$ are separated, contradicting the connectedness of $G[\operatorname{supp}(x)]$. \Box

For a graph G = (V, E) and an $S \subseteq V$, we denote by G - S the subgraph of G induced by the vertices in $V \setminus S$.

THEOREM 3.3. Let G = (V, E) be a graph which has no vertex cut S such that G - S has at least four components, each of which is adjacent to every vertex in S. Then every $M \in \mathcal{O}(G)$ with nullity at most three and with exactly one negative eigenvalue satisfies the Strong Arnol'd Hypothesis.

Proof. For the sake of contradiction, assume that there is an $M \in \mathcal{O}(G)$ that does not satisfy the Strong Arnol'd Hypothesis.

By Lemma 3.2, $G[\operatorname{supp}(x)]$ is disconnected for each nonzero $x \in \operatorname{ker}(M)$. For every $x \in \operatorname{ker}(M)$, there are at most three components in $G[\operatorname{supp}(x)]$, by assumption and by Lemma 3.1. By Theorem 2.6, for every nonzero vectors $x, y \in \operatorname{ker}(M)$, any

H. van der Holst

component C of $G[\operatorname{supp}(x)]$ and any component D of $G[\operatorname{supp}(y)]$, either C = D, or Cand D are separated, for otherwise M would satisfy the Strong Arnol'd Hypothesis. Hence, we can conclude that there are at most three mutually disjoint connected subgraphs K_1, K_2, K_3 of G such that for every $x \in \operatorname{ker}(M)$, $G[\operatorname{supp}_+(x)]$ can be written as the union of some of K_1, K_2, K_3 . We now show that $\operatorname{ker}(M)$ has dimension at most two.

For any $x \in \text{ker}(M)$ and any K_i , $M_{K_i}x_{K_i} = 0$, and hence, by the Perron-Frobenius Theorem, $x_{K_i} < 0$, $x_{K_i} = 0$, or $x_{K_i} > 0$. Furthermore, the eigenvalue 0 has multiplicity 1 in M_{K_i} . Let z be a positive eigenvector belonging to the negative eigenvalue of M. Since $x^T z$ for any $x \in \text{ker}(M)$, ker(M) has dimension at most two. If M does not satisfy the Strong Arnol'd Hypothesis, then, by Theorem 2.3, there are two nonzero vectors $x, y \in \text{ker}(M)$ such that G[supp(x)] and G[supp(y)] are separated. Let w = x + y. Since G[supp(x)] and G[supp(y)] are disconnected, G[supp(w)]consists of at least four components. This contradicts the assumption in the theorem. \Box

For a matrix M, we denote by nullity(M) the nullity of M.

COROLLARY 3.4. Let G = (V, E) be a graph and let $M \in \mathcal{O}(G)$ have $k := nullity(M) \leq 3$. If G has no $K_{4,k}$ -minor, then M satisfies the Strong Arnol'd Hypothesis.

We use this corollary to show that if G is a path, 2-connected outerplanar, or 3-connected planar, then each matrix in $\mathcal{O}(G)$ with exactly one negative eigenvalue satisfies the Strong Arnol'd Hypothesis.

THEOREM 3.5. [6] If G is a path, then each $M \in \mathcal{O}(G)$ has $nullity(M) \leq 1$.

Since each 1-dimensional linear subspace $L \subseteq \mathbb{R}^n$ satisfies the Strong Arnol'd Hypothesis, we obtain:

COROLLARY 3.6. If G is a path, then every matrix in $\mathcal{O}(G)$ satisfies the Strong Arnol'd Hypothesis.

A graph G is *outerplanar* if it has an embedding in the plane such that each vertex is incident with the infinite face. Outerplanar graphs can be characterized as those graphs that have no K_{4} - or $K_{2,3}$ -minor.

THEOREM 3.7. [7, Corollary 13.10.4] Let G be a graph and let $M \in \mathcal{O}(G)$ with exactly one negative eigenvalue. If G is 2-connected outerplanar, then nullity $(M) \leq 2$.

COROLLARY 3.8. Let G be a 2-connected outerplanar graph. Then every matrix in $\mathcal{O}(G)$ with exactly one negative eigenvalue satisfies the Strong Arnol'd Hypothesis.

Planar graphs can be characterized as those graphs that have no K_{5} - or $K_{3,3}$ -

On the Strong Arnol'd Hypothesis and the Connectivity of Graphs

minor.

THEOREM 3.9. [7, Corollary 13.10.2] Let G be a graph and let $M \in \mathcal{O}(G)$ with exactly one negative eigenvalue. If G is 3-connected planar, then nullity $(M) \leq 3$.

COROLLARY 3.10. Let G be a 3-connected planar graph. Then every matrix in $\mathcal{O}(G)$ with exactly one negative eigenvalue satisfies the Strong Arnol'd Hypothesis.

An embedding of a graph in 3-space is linkless if each pair of disjoint circuits has zero linking number under the embedding; see Robertson, Seymour, and Thomas [10]. In the same paper they characterized graphs that have a linkless embedding as those graphs that have no minor isomorphic to a graph in the Petersen family, a family of seven graphs, one of which is the Petersen graph. We conclude with a conjecture.

CONJECTURE 3.11. Let G be a 4-connected graph that has a linkless embedding. Then every matrix in $\mathcal{O}(G)$ with exactly one negative eigenvalue satisfies the Strong Arnol'd Hypothesis.

REFERENCES

- F. Barioli, S. Fallat, and L. Hogben. A variant on the graph parameters of Colin de Verdière: implications to the minimum rank of graphs. *Electron. J. Linear Algebra*, 13:387–404, 2005.
- [2] Y. Colin de Verdière. Sur un nouvel invariant des graphes et un critère de planarité. J. Comb. Theory, Ser. B., 50:11–21, 1990.
- [3] Y. Colin de Verdière. On a new graph invariant and a criterion of planarity. In N. Robertson and P. Seymour, editors, *Graph Structure Theory, Contemporary Mathematics*, American Mathematical Society, Providence, 147:137–147, 1993.
- [4] Y. Colin de Verdière. Multiplicities of eigenvalues and tree-width of graphs. J. Comb. Theory, Ser. B., 74(2):121–146, 1998.
- [5] R. Diestel. Graph Theory, 2nd edition. Springer-Verlag, New York, 2000.
- [6] M. Fiedler. A characterization of tridiagonal matrices. Linear Algebra Appl., 2:191–197, 1969.
- [7] C. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag, New York, 2001.
- [8] H. van der Holst. Topological and Spectral Graph Characterizations. PhD thesis, University of Amsterdam, 1996.
- [9] H. van der Holst, L. Lovász, and A. Schrijver. The Colin de Verdière graph parameter. Graph Theory and Combinatorial Biology, Bolyai Soc. Math. Stud., 7:29–85, 1999.
- [10] N. Robertson, P. Seymour, and R. Thomas. Sachs' linkless embedding conjecture. J. Comb. Theory, Ser. B., 64(2):185–227, 1995.