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ON THE STRONG ARNOL’D HYPOTHESIS AND THE

CONNECTIVITY OF GRAPHS∗
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Abstract. In the definition of the graph parameters µ(G) and ν(G), introduced by Colin de

Verdière, and in the definition of the graph parameter ξ(G), introduced by Barioli, Fallat, and

Hogben, a transversality condition is used, called the Strong Arnol’d Hypothesis. In this paper, we

define the Strong Arnol’d Hypothesis for linear subspaces L ⊆ R
n with respect to a graph G = (V,E),

with V = {1, 2, . . . , n}. We give a necessary and sufficient condition for a linear subspace L ⊆ R
n

with dimL ≤ 2 to satisfy the Strong Arnol’d Hypothesis with respect to a graph G, and we obtain

a sufficient condition for a linear subspace L ⊆ R
n with dimL = 3 to satisfy the Strong Arnol’d

Hypothesis with respect to a graph G. We apply these results to show that if G = (V, E) with

V = {1, 2, . . . , n} is a path, 2-connected outerplanar, or 3-connected planar, then each real symmetric

n×n matrix M = [mi,j ] with mi,j < 0 if ij ∈ E and mi,j = 0 if i 6= j and ij 6∈ E (and no restriction

on the diagonal), having exactly one negative eigenvalue, satisfies the Strong Arnol’d Hypothesis.

Key words. Symmetric matrices, Nullity, Graphs, Transversality, Planar, Outerplanar, Graph
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1. Introduction. In the definition of the graph parameters µ(G) and ν(G),

introduced by Colin de Verdière in respectively [2, 3] and [4], and in the definition

of the graph parameter ξ(G), introduced by Barioli, Fallat, and Hogben in [1], a

transversality condition is used, called the Strong Arnol’d Hypothesis. The addition

of this Strong Arnol’d Hypothesis allows to show the minor-monotonicity of these

graph parameters. For example, µ(G′) ≤ µ(G) if G′ is a minor of G; we refer to

Diestel [5] for the notions used in graph theory. It is this minor-monotonicity that

makes these graph parameters so useful.

Let us first recall the definition of the Strong Arnol’d Hypothesis. For a graph

G = (V,E) with vertex set V = {1, 2, . . . , n}, denote by S(G) the set of all real

symmetric n× n matrices M = [mi,j ] with

mi,j 6= 0, i 6= j ⇔ ij ∈ E.

The tangent space, TMS(G), of S(G) at M is the space of all real symmetric n × n
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matrices A = [ai,j ] with ai,j = 0 if i 6= j and i and j are nonadjacent. Denote by Rn,k

the manifold of all real symmetric n × n matrices of nullity k. The tangent space,

TMRn,k, of Rn,k at M is the space of all real symmetric n × n matrices B = [bi,j ]

such that xTBx = 0 for all x ∈ ker(M). Here, ker(M) denotes the null space ofM . A

matrix M ∈ S(G) satisfies the Strong Arnol’d Hypothesis if the sum of TMS(G) and

TARn,k equals the space of all real symmetric n×n matrices. So, a matrixM ∈ S(G)

satisfies the Strong Arnol’d Hypothesis if and only if for each real symmetric n × n

matrix B, there is a real symmetric matrix A = [ai,j ] with ai,j = 0 if i 6= j and i and

j nonadjacent, such that xTBx = xTAx for each x ∈ ker(M).

Although stated above as a condition on the matrix M , it can be viewed as a

condition on ker(M). In this paper, we extend the definition of the Strong Arnol’d

Hypothesis to linear subspaces L ⊆ R
n with respect to a graph G = (V,E), where

V = {1, 2, . . . , n}. We give a necessary and sufficient condition for a linear subspace

L ⊆ R
n with dimL ≤ 2 to satisfy the Strong Arnol’d Hypothesis with respect to

a graph G, and we obtain a sufficient condition for a linear subspace L ⊆ R
n with

dimL = 3 to satisfy the Strong Arnol’d Hypothesis with respect to a graph G.

For a graph G = (V,E), let O(G) be the set of all M = [mi,j ] ∈ S(G) such that

mi,j < 0 for each adjacent pair of vertices i and j. Notice that for a matrixM ∈ O(G)

with exactly one negative eigenvalue, the tangent space of O(G) at M is the same

as the tangent space of S(G) at M . The parameter µ(G) is defined as the largest

nullity of any M = [mi,j ] ∈ O(G) such that M has exactly one negative eigenvalue

and satisfies the Strong Arnol’d Hypothesis. This graph parameter characterizes

outerplanar graphs as those graphs G for which µ(G) ≤ 2, and planar graphs as

those graphs G for which µ(G) ≤ 3; see van der Holst, Lovász, and Schrijver [9]

for an introduction to this graph parameter. We show that in certain cases each

M ∈ O(G) with exactly one negative eigenvalue (automatically) satisfies the Strong

Arnol’d Hypothesis. More precisely, if G is a path, 2-connected outerplanar, or 3-

connected planar, then each M ∈ O(G) with exactly one negative eigenvalue satisfies

the Strong Arnol’d Hypothesis.

2. The Strong Arnol’d Property for linear subspaces. A representation

of linearly independent vectors x1, x2, . . . , xr ∈ R
n is a function φ : {1, 2, . . . , n} → R

r

such that

[

φ(1) φ(2) . . . φ(n)
]

=











xT1
xT2
...

xTr











.

A representation of a linear subspace L of Rn is a representation of some basis of L.
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Let φ : {1, 2, . . . , n} → R
r be a representation of a basis x1, x2, . . . , xr of a linear

subspace L of Rn, and let G = (V,E) be a graph with vertex set V = {1, 2, . . . , n}. If

A is a nonsingular r × r matrix and the linear span of the symmetric r × r matrices

φ(i)φ(i)T , i ∈ V , and φ(i)φ(j)T + φ(j)φ(i)T , ij ∈ E, is equal to the space of all

symmetric r × r matrices, then the same holds for the linear span of Aφ(i)φ(i)TAT ,

i ∈ V , and Aφ(i)φ(j)TAT + Aφ(j)φ(i)TAT , ij ∈ E. This suggests to define the

following property for linear subspaces of Rn.

An r-dimensional linear subspace L of Rn satisfies the Strong Arnol’d Hypothesis

with respect to G if for any representation φ : {1, 2, . . . , n} → R
r of a basis of L, the

linear span of all matrices of the form φ(i)φ(i)T , i ∈ V , and φ(i)φ(j)T + φ(j)φ(i)T ,

ij ∈ E, is equal to the space of all symmetric r × r matrices. Equivalently, an r-

dimensional linear subspace L of Rn satisfies the Strong Arnol’d Hypothesis if the

r× r all-zero matrix is the only symmetric r× r matrix N such that φ(i)TNφ(j) = 0,

ij ∈ E, and φ(i)TNφ(i) = 0, i ∈ V . If it is clear what graph G we are dealing with,

we only write that L satisfies the Strong Arnol’d Hypothesis, omitting the part with

respect to G.

The next lemma shows why we call this property the Strong Arnol’d Hypothesis.

Lemma 2.1. Let G = (V,E) be a graph with vertex set V = {1, 2, . . . , n}. A

matrix M ∈ S(G) has the Strong Arnol’d Hypothesis if and only if ker(M) has the

Strong Arnol’d Hypothesis.

Proof. Choose a basis x1, x2, . . . , xr of ker(M), and let φ be a representation of

x1, x2, . . . , xr.

M satisfies the Strong Arnol’d Hypothesis if and only if for every symmetric n×n

matrices A, there is a symmetric n× n matrix B = [bi,j ] with bi,j = 0 if i 6= j and i

and j are nonadjacent, such that for all x ∈ ker(M), xTAx = xTBx. Hence, M has

the Strong Arnol’d Hypothesis if and only if for every symmetric r × r matrices C,

there is a symmetric n × n matrix B = [bi,j ] with bi,j = 0 if i 6= j and i and j are

nonadjacent, such that

C =
[

x1 . . . xr
]T
B
[

x1 . . . xr
]

.

This is equivalent to: M has the Strong Arnol’d Hypothesis if and only if the linear

span of all matrices of the form φ(i)φ(i)T , i ∈ V , and φ(i)φ(j)T + φ(j)φ(i)T , ij ∈ E,

is equal to the space of all symmetric r × r matrices.

Let G = (V,E) be a graph. For S ⊆ V , we denote by N(S) the set of all vertices

in V \ S adjacent to a vertex in S, and we denote by G[S] the subgraph induced by

S. For x ∈ R
n, we denote supp(x) = {i | xi 6= 0}. Two subsets of the vertex set or

two subgraphs of a graph touch if they have common vertex or are adjacent. If two

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 574-585, September 2010



ELA

On the Strong Arnol’d Hypothesis and the Connectivity of Graphs 577

subsets of the vertex set or two subgraphs of a graph do not touch, then we say that

they are separated.

Lemma 2.2. Let L be a linear space of Rn of dimension r and let φ : V → R
r be a

representation of the basis x1, x2, . . . , xr of L. Then there is a symmetric r×r matrix

N = [ni,j ] with n1,2 = n2,1 = 1 and ni,j = 0 elsewhere, such that φ(i)TNφ(i) = 0 for

all i ∈ V and φ(i)TNφ(j) = 0 for all ij ∈ E if and only if supp(x1) and supp(x2) are

separated.

Proof. It is easily checked that φ(i)TNφ(i) = 0 for all i ∈ V and φ(i)TNφ(j) = 0

for all ij ∈ E if supp(x1) and supp(x2) are separated.

Conversely, from φ(i)TNφ(i) = 0, i ∈ V , it follows that supp(x1) and supp(x2)

have no common vertex, and from φ(i)TNφ(j) = 0, ij ∈ E, it follows that supp(x1)

and supp(x2) are not adjacent. Hence, supp(x1) and supp(x2) are separated.

If a linear subspace L ⊆ R
n has dimL ≤ 2, then the following theorem gives a

sufficient and necessary condition for L to satisfy the Strong Arnol’d Hypothesis with

respect to G.

Theorem 2.3. Let G = (V,E) be a graph with vertex set V = {1, 2, . . . , n} and

let k ≤ 2. A k-dimensional linear subspace L of Rn does not satisfy the Strong Arnol’d

Hypothesis if and only if there are nonzero vectors x1, x2 ∈ L such that supp(x1) and

supp(x2) are separated.

Proof. k = 1. This is easy as every 1-dimensional linear subspace L satisfies the

Strong Arnol’d Hypothesis, and there are no two nonzero vectors x1, x2 ∈ L such that

supp(x1) and supp(x2) are separated.

k = 2. If there are nonzero vectors x1, x2 ∈ L for which supp(x1) and supp(x2)

are separated, then L does not satisfy the Strong Arnol’d Hypothesis, by Lemma 2.2.

Conversely, suppose that L does not satisfy the Strong Arnol’d Hypothesis. Since

L has dimension 2, we can find two vertices u and v and a basis x, z of L with

xu = 1, zu = 0 and xv = 0, zv = 1. Let φ : V → R
2 be a representation of x, z. As

L does not satisfy the Strong Arnol’d Hypothesis, there is a nonzero symmetric 2× 2

matrix N = [ni,j ] such that φ(i)TNφ(i) = 0 for all i ∈ V and φ(i)TNφ(j) = 0 for all

ij ∈ E. In particular, since φ(u) = [1, 0]T and φ(v) = [0, 1]T , n1,1 = n2,2 = 0. Hence,

by Lemma 2.2, supp(x1) and supp(x2) are separated.

Theorem 2.3 need not hold when dimL = 3, as the following example shows. Let

G = (V,E) be the graph with V = {1, 2, . . . , 5} and E = ∅, and let L be the linear
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subspace of R5 spanned by the vectors














1

0

0

1

1















,















0

1

0

1

2















,















0

0

1

1

3















.

Every two nonzero vectors x1, x2 ∈ L touch, but L does not satisfy the Strong Arnol’d

Hypothesis, as can be easily verified.

If a linear subspace L ⊆ R
n has dimL = 3, then the following theorem gives a

sufficient condition for L to satisfy the Strong Arnol’d Hypothesis.

Theorem 2.4. Let G = (V,E) be a graph with vertex set V = {1, 2, . . . , n}, and

let L be a linear subspace of Rn with dimL = 3. Let φ : V → R
3 be a representation

of L. If there are adjacent vertices u and v in G such that φ(u) and φ(v) are linearly

independent, and there are no nonzero vectors x1, x2 ∈ L such that supp(x1) and

supp(x2) are separated, then L satisfies the Strong Arnol’d Hypothesis.

Proof. For the sake of contradiction, assume that L does not satisfy the Strong

Arnol’d Hypothesis. Then there is a nonzero symmetric 3× 3 matrix N = [ni,j ] such

that φ(i)TNφ(i) = 0 for all i ∈ V and φ(i)TNφ(j) = 0 for all ij ∈ E. There exists

a nonsingular matrix A such that ATNA is a diagonal matrix in which each of the

diagonal entries belongs to {−1, 0, 1}. Thus, by multiplying φ with A we may assume

that N is a diagonal matrix and that its diagonal entries belongs to {−1, 0, 1}. We

will now show that each of the elements in {−1, 0, 1} occurs as a diagonal entry.

Suppose that 0 occurs twice as a diagonal entry; without loss of generality, we

may assume that n2,2 = n3,3 = 0. Since the dimension of L is three, there exists a

vertex v for which the first coordinate of φ(v) is nonzero. Then φ(v)TNφ(v) 6= 0,

contradicting that φ(i)TNφ(i) = 0 for all i ∈ V .

Suppose that 1 occurs twice as a diagonal entry; without loss of generality, we

may assume that n2,2 = n3,3 = 1. Since φ(u) and φ(v) are linearly independent,

there exists a linear combination z = aφ(u) + bφ(v) for which the first coordinate

equals 0. Then 0 6= zTNz = a2φ(u)TNφ(u)+2abφ(u)TNφ(v)+b2φ(v)TNφ(v). Since

φ(u)TNφ(u) = 0, φ(v)TNφ(v) = 0, and φ(u)TNφ(v) = 0, we obtain a contradiction.

The case where −1 occurs twice is analogous.

Hence, each of the elements in {−1, 0, 1} occurs as a diagonal entry; we may

assume that

N =





1 0 0

0 −1 0

0 0 0



 .
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We now define ψ : V → R
3 by ψ(i) = Bφ(i) for i ∈ V , where

B =





1 −1 0
1

2

1

2
0

0 0 1



 .

Then ψ is a representation of L such that if

Q =





0 1 0

1 0 0

0 0 0



 ,

then ψ(i)TQψ(i) = 0 for all i ∈ V and ψ(i)TQψ(j) = 0 for all ij ∈ E. By Lemma 2.2,

there are nonzero vectors x1, x2 ∈ L such that supp(x1) and supp(x2) are separated,

contradicting the assumption. Hence, L satisfies the Strong Arnol’d Hypothesis.

Lemma 2.5. Let G = (V,E) be a graph. Let φ : V → R
3 be a representation of

a linear subspace L of Rn with dimL = 3. If there are nonzero vectors x1, x2 ∈ L

for which there are touching components C1 and C2 of G[supp(x1)] and G[supp(x2)],

respectively, with C1 6= C2, then there are adjacent vertices u and v such that φ(u)

and φ(v) are independent.

Proof. The vectors x1, x2 are clearly linearly independent. Let x3 be a vector in

L such that x1, x2, x3 form a basis of L, and let ψ : V → R
3 be a representation of

x1, x2, x3. If for adjacent vertices u and v, ψ(u) and ψ(v) are linearly independent,

then also φ(u) and φ(v) are linearly independent.

If C1 and C2 have no vertex in common, then they must be joined by an edge

uv. As a consequence, ψ(u) and ψ(v) are linear independent, and so φ(u) and φ(v)

are linearly independent.

We may therefore assume that C1 and C2 have a vertex c in common. Since

C1 6= C2, V (C1)∆V (C2) 6= ∅; choose a vertex d from V (C1)∆V (C2). By symmetry,

we may assume that d ∈ V (C1) and d 6∈ V (C2). Since C1 and C2 are connected,

there is a path in C1 connecting c and d. On this path there is an edge uv such that

u ∈ V (C1), u 6∈ V (C2) and v ∈ V (C1), v ∈ V (C2). Then ψ(u) and ψ(v) are linear

independent. Hence, φ(u) and φ(v) are linearly independent.

Using Theorem 2.4 and Lemma 2.5, we obtain:

Theorem 2.6. Let G = (V,E) be a graph. Let φ : V → R
3 be a representation

of a linear subspace L of Rn with dimL = 3. If there are nonzero vectors x1, x2 ∈ L

for which there are touching components C1 and C2 of G[supp(x1)] and G[supp(x2)],

respectively, with C1 6= C2, then L satisfies the Strong Arnol’d Hypothesis.

Lemma 2.7. Let G = (V,E) be a graph with vertex set V = {1, 2, . . . , n}, and let

L be a linear subspace of Rn with dimL ≤ 3, which has a nonzero vector x such that
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G[supp(x)] is connected. If L does not satisfy the Strong Arnol’d Hypothesis, then

there exists a nonzero vector y ∈ L such that supp(x) and supp(y) are separated.

Proof. If each nonzero vector y ∈ L satisfies supp(y) = supp(x), then L is 1-

dimensional; each 1-dimensional linear subspace L of Rn satisfies the Strong Arnol’d

Hypothesis.

Thus, there exists a nonzero vector y ∈ L such that supp(y) 6= supp(x). We

may assume that supp(x) and supp(y) touch, for otherwise supp(x) and supp(y) are

separated. Hence, there is a component C of G[supp(y)] such that G[supp(x)] and

C touch. If C 6= G[supp(x)], then L would satisfy the Strong Arnol’d Hypothesis by

Theorem 2.6. This contradiction shows that C = G[supp(x)]. Now choose a vertex

v ∈ supp(x). There exists a scalar α such that z = αx+ y satisfies zv = 0. If there is

a vertex w ∈ supp(x) such that zw 6= 0, then there is a component D of G[supp(z)]

such that D and G[supp(x)] touch and D 6= G[supp(x)]. By Theorem 2.6, L would

satisfy the Strong Arnol’d Hypothesis. This contradiction shows that zu = 0 for all

u ∈ G[supp(x)]. Then supp(x) and supp(z) are separated.

1

2

3

4

6

5

Fig. 2.1. Complement of C6.

In Theorem 2.4, the restriction k ≤ 3 cannot be removed. For k = 4, there is

the following example. Let G = (V,E) be the complement of the 6-cycle C6, which

is the graph with V = {1, 2, . . . , 6} obtained from taking two disjoint triangles and

connecting each vertex of one triangle to a vertex of the other triangle by an edge in

a one-to-one way; see Figure 2.1. Let L be generated by the columns of the matrix

A =



















1 0 0 0

−1 1 0 0

0 −1 0 0

0 0 1 0

0 0 −1 1

0 0 0 −1



















,

and, for i ∈ V , let φ(i) be the ith column of AT . Then for every vector x ∈ L, supp(x)

induces a connected subgraph of G, and hence, for every two vectors x1, x2 ∈ L,

supp(x1) and supp(x2) touch. But L does not satisfy the Strong Arnol’d Hypothesis,
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as φ(i)TQφ(i) = 0 for i ∈ V and φ(i)TQφ(j) = 0 for ij ∈ E if

Q =









0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0









.(2.1)

However, this is essentially the only type of matrix that can occur as we will see in

the next result.

Theorem 2.8. Let G = (V,E) be a graph with vertex set V = {1, . . . , n}, and

let L be a linear subspace of Rn with dimL = 4. Let φ : V → R
4 be a representation

of L. Suppose L has the following properties:

1. L does not satisfy the Strong Arnol’d Hypothesis,

2. there are adjacent vertices u and w in G such that φ(u) and φ(w) are linearly

independent, and

3. there are no nonzero vectors x1, x2 ∈ L such that supp(x1) and supp(x2) are

separated.

Then there is a representation ψ : V → R
4 of L such that if

Q =









0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0









,

then ψ(i)TQψ(i) = 0 for all i ∈ V and ψ(i)TQψ(j) = 0 for all ij ∈ E.

Proof. Since L does not satisfy the Strong Arnol’d Hypothesis, there is a nonzero

symmetric 4 × 4 matrix N = [ni,j ] such that φ(v)TNφ(v) = 0 for each v ∈ V and

φ(v)TNφ(w) = 0 for each vw ∈ E. By multiplying φ with a nonsingular 4× 4 matrix

A, we may assume that N is a diagonal matrix and that each of its diagonal entries

belongs to {−1, 0, 1}.

Suppose first that three of the diagonal entries are equal to zero; without loss of

generality, we may assume that n1,1 = n2,2 = n3,3 = 0. Since dimL = 4, there exists

a vertex v such that the last coordinate of φ(v) is nonzero. Then φ(v)TNφ(v) 6= 0.

This contradiction shows that at most two of the diagonal entries are equal to zero.

Suppose next that two of the diagonal entries are equal to zero; without loss of

generality, we may assume that n1,1 = n2,2 = 0. If n3,3 = n4,4, then φ(v)
TNφ(v) 6= 0.
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Hence, n3,3 = −n4,4; we may assume that n3,3 = 1. Taking

A =









1 0 0 0

0 1 0 0

0 0 1 1

2

0 0 −1 1

2









,

we obtain

ATNA =









0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0









.

Let ψ : V → R
4 be defined by ψ(i) = A−1φ(i) for i = 1, 2, . . . , n. Then, by Lemma 2.2,

there exist vectors x1, x2 ∈ L such that supp(x1) and supp(x2) are separated, contra-

dicting the assumption.

Suppose next that exactly one of the diagonal entries is equal to zero; without loss

of generality, we may assume that n4,4 = 0. Each of the other diagonal entries is −1

or 1. Let z1, z2, z3, z4 be the basis corresponding to φ and let ψ be the representation

corresponding to z1, z2, z3. If R = [ri,j ] is the diagonal matrix defined by rj,j = nj,j

for j = 1, 2, 3, then ψ(v)TRψ(v) = 0 for all v ∈ V and ψ(v)TRψ(w) = 0 for all

vw ∈ E. By Theorem 2.4, there exist vectors y1, y2 in the linear span of z1, z2, z3 such

that supp(y1) and supp(y2) are separated. This contradiction shows that all diagonal

are nonzero.

If the diagonal entries are all 1 or all −1, then φ(v)TNφ(v) 6= 0 if φ(v) 6= 0.

Suppose three of the diagonal entries are 1 and one of them is −1; without loss

of generality, we may assume that n1,1 = −1 and ni,i = 1 for i = 2, 3, 4. Let

uw be an edge in G such φ(u) and φ(w) are linearly independent. Let a, b ∈ R

be such that aφ(u) + bφ(w) is a vector in R
n whose first coordinate is equal to

0. Since φ(u)TNφ(u) = 0, φ(w)TNφ(w) = 0, and φ(u)TNφ(w) = 0, (aφ(u) +

bφ(w))TN(aφ(u) + bφ(w)) = 0. However, since ni,i = 1 for i = 2, 3, 4 and the first

coordinate of aφ(u) + bφ(w) equals 0, (aφ(w) + bφ(w))TN(aφ(u) + bφ(w)) 6= 0; a

contradiction. The case where three of the diagonal entries are −1 and one of them is

1 is similar. Thus, two of the diagonal entries are −1 and two of the diagonal entries

are 1; we may assume that n1,1 = n2,2 = 1 and n3,3 = n4,4 = −1. Let

A =









1 0 0 1

2

0 1 1

2
0

0 −1 1

2
0

−1 0 0 1

2









;

then ATNA = Q. Defining ψ : V → R
4 by ψ(i) = A−1φ(i) for i = 1, 2, . . . , n, we

obtain that ψ(i)TQψ(i) = 0 for all i ∈ V and ψ(i)TQψ(j) = 0 for all ij ∈ E.
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3. The parameter µ(G) and the Strong Arnol’d Hypothesis. In this sec-

tion we apply Theorems 2.3 and 2.4 to show that if G is a path, 2-connected outer-

planar, or 3-connected planar, then each matrix in O(G) with exactly one negative

eigenvalue satisfies the Strong Arnol’d Hypothesis. Different proofs can be found in

[8].

For x ∈ R
n, we denote supp

−
(x) = {i | xi < 0} and supp+(x) = {i | xi > 0}. If

G = (V,E) is a connected graph with V = {1, 2, . . . , n}, then the Perron-Frobenius

Theorem says that each eigenvector z belonging to the smallest eigenvalue of M ∈

O(G) has multiplicity 1 and satisfies z > 0 or z < 0. Since any x ∈ ker(M) is

orthogonal to z, supp+(x) 6= ∅ and supp
−
(x) 6= ∅ for every nonzero x ∈ ker(M).

Lemma 3.1. [9, Theorem 2.17 (v)] Let G be a connected graph and let M ∈ O(G)

with exactly one negative eigenvalue. Let x ∈ ker(M) be such that G[supp+(x)] or

G[supp
−
(x)] has at least two components. Then there is no edge connecting supp+(x)

and supp
−
(x) and N(K) = N(supp(x)) for each component K of G[supp(x)].

Lemma 3.2. Let G = (V,E) be a graph and let M ∈ O(G) with exactly one

negative eigenvalue. If M has nullity at most three and there exists a nonzero x ∈

ker(M) such that supp(x) induces a connected subgraph of G, then M satisfies the

Strong Arnol’d Hypothesis.

Proof. For the sake of contradiction, assume that there is an M ∈ O(G) that

does not satisfy the Strong Arnol’d Hypothesis. By Lemma 2.7, there exists a nonzero

vector y ∈ ker(M) such that supp(x) and supp(y) are separated. The vector z = x+y

has the property that G[supp+(z)] and G[supp−(z)] are disconnected. By Lemma 3.1,

N(C) = N(supp(z)) for each component C in G[supp
−
(z)]∪G[supp+(z)] and there is

no edge between supp
−
(z) and supp+(z). However, this would mean thatG[supp

−
(x)]

and G[supp+(x)] are separated, contradicting the connectedness of G[supp(x)].

For a graph G = (V,E) and an S ⊆ V , we denote by G − S the subgraph of G

induced by the vertices in V \ S.

Theorem 3.3. Let G = (V,E) be a graph which has no vertex cut S such that

G − S has at least four components, each of which is adjacent to every vertex in

S. Then every M ∈ O(G) with nullity at most three and with exactly one negative

eigenvalue satisfies the Strong Arnol’d Hypothesis.

Proof. For the sake of contradiction, assume that there is an M ∈ O(G) that

does not satisfy the Strong Arnol’d Hypothesis.

By Lemma 3.2, G[supp(x)] is disconnected for each nonzero x ∈ ker(M). For

every x ∈ ker(M), there are at most three components in G[supp(x)], by assumption

and by Lemma 3.1. By Theorem 2.6, for every nonzero vectors x, y ∈ ker(M), any
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component C of G[supp(x)] and any component D of G[supp(y)], either C = D, or C

and D are separated, for otherwise M would satisfy the Strong Arnol’d Hypothesis.

Hence, we can conclude that there are at most three mutually disjoint connected

subgraphs K1,K2,K3 of G such that for every x ∈ ker(M), G[supp+(x)] can be

written as the union of some of K1,K2,K3. We now show that ker(M) has dimension

at most two.

For any x ∈ ker(M) and any Ki, MKi
xKi

= 0, and hence, by the Perron-

Frobenius Theorem, xKi
< 0, xKi

= 0, or xKi
> 0. Furthermore, the eigenvalue

0 has multiplicity 1 in MKi
. Let z be a positive eigenvector belonging to the negative

eigenvalue of M . Since xT z for any x ∈ ker(M), ker(M) has dimension at most two.

If M does not satisfy the Strong Arnol’d Hypothesis, then, by Theorem 2.3, there

are two nonzero vectors x, y ∈ ker(M) such that G[supp(x)] and G[supp(y)] are sepa-

rated. Let w = x+ y. Since G[supp(x)] and G[supp(y)] are disconnected, G[supp(w)]

consists of at least four components. This contradicts the assumption in the theorem.

For a matrix M , we denote by nullity(M) the nullity of M .

Corollary 3.4. Let G = (V,E) be a graph and let M ∈ O(G) have k :=

nullity(M) ≤ 3. If G has no K4,k-minor, then M satisfies the Strong Arnol’d Hy-

pothesis.

We use this corollary to show that if G is a path, 2-connected outerplanar, or

3-connected planar, then each matrix in O(G) with exactly one negative eigenvalue

satisfies the Strong Arnol’d Hypothesis.

Theorem 3.5. [6] If G is a path, then each M ∈ O(G) has nullity(M) ≤ 1.

Since each 1-dimensional linear subspace L ⊆ R
n satisfies the Strong Arnol’d

Hypothesis, we obtain:

Corollary 3.6. If G is a path, then every matrix in O(G) satisfies the Strong

Arnol’d Hypothesis.

A graph G is outerplanar if it has an embedding in the plane such that each

vertex is incident with the infinite face. Outerplanar graphs can be characterized as

those graphs that have no K4- or K2,3-minor.

Theorem 3.7. [7, Corollary 13.10.4] Let G be a graph and let M ∈ O(G) with

exactly one negative eigenvalue. If G is 2-connected outerplanar, then nullity(M) ≤

2.

Corollary 3.8. Let G be a 2-connected outerplanar graph. Then every matrix

in O(G) with exactly one negative eigenvalue satisfies the Strong Arnol’d Hypothesis.

Planar graphs can be characterized as those graphs that have no K5- or K3,3-
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minor.

Theorem 3.9. [7, Corollary 13.10.2] Let G be a graph and let M ∈ O(G) with

exactly one negative eigenvalue. If G is 3-connected planar, then nullity(M) ≤ 3.

Corollary 3.10. Let G be a 3-connected planar graph. Then every matrix in

O(G) with exactly one negative eigenvalue satisfies the Strong Arnol’d Hypothesis.

An embedding of a graph in 3-space is linkless if each pair of disjoint circuits has

zero linking number under the embedding; see Robertson, Seymour, and Thomas [10].

In the same paper they characterized graphs that have a linkless embedding as those

graphs that have no minor isomorphic to a graph in the Petersen family, a family of

seven graphs, one of which is the Petersen graph. We conclude with a conjecture.

Conjecture 3.11. Let G be a 4-connected graph that has a linkless embedding.

Then every matrix in O(G) with exactly one negative eigenvalue satisfies the Strong

Arnol’d Hypothesis.
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