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Abstract. The extreme ranks, i.e., the maximal and minimal ranks, are established for the

general Hermitian solution as well as the general skew-Hermitian solution to the classical matrix

equation AXA∗ +BY B∗ = C over the quaternion algebra. Also given in this paper are the formulas

of extreme ranks of real matrices Xi, Yi, i = 1, · · · , 4, in a pair (skew-)Hermitian solution X =

X1 + X2i + X3j + X4k, Y = Y1 + Y2i + Y3j + Y4k. Moreover, the necessary and sufficient conditions

for the existence of a real (skew-)symmetric solution, a complex (skew-)Hermitian solution, and a

pure imaginary (skew-)Hermitian solution to the matrix equation mentioned above are presented in

this paper. Also established are expressions of such solutions to the equation when corresponding

solvability conditions are satisfied. The findings of this paper widely extend the known results in the

literature.

Key words. Quaternion matrix equation, Minimal rank, Maximal rank, Hermitian solution,
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1. Introduction. Throughout this paper, we denote the real number field by

R, the complex number field by C, the set of all m × n matrices over the quaternion

algebra

H = {a0 + a1i + a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R}

by H
m×n, the identity matrix with the appropriate size by I. For a quaternion matrix

A, we denote the column right space, the row left space of A by R (A), N (A) , respec-

tively, the dimension of R (A) by dimR (A) . By [9], dimR (A) = dim N (A) , which

is called the rank of A, and denoted by r(A). The Moore-Penrose inverse of a matrix

A ∈ H
m×n, denoted by A†, is defined to be the unique matrix X ∈ H

n×m satisfying
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the following four matrix equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

Moreover, LA and RA stand for the two projectors LA = I − A†A, RA = I − AA†

induced by A.

We know that matrix equation is one of the topics of very active research in

matrix theory and applications, and a large number of papers have presented several

methods for solving several matrix equations (e.g. [4]-[6], [10], [23]-[26], [29]-[31], [37],

[39], [42]). As a very classical linear matrix equation,

(1.1) AXA∗ + BY B∗ = C

has been investigated by many authors from different aspects. For example, using gen-

eralized singular value decomposition, Chang and Wang [2] derived the expressions for

the general symmetric and minimum-2-norm symmetric solutions to (1.1) within the

real setting. Xu, Wei, and Zheng [38] obtained the general form of all least-squares

Hermitian (skew-Hermitian) solutions to (1.1). Liao and Bai [11] used generalized

singular value decomposition to investigate the symmetric positive semidefinite solu-

tion to (1.1). Zhang [40] gave necessary and sufficient conditions for the existence of a

Hermitian nonnegative-definite solution to (1.1). Wang and Zhang [32] gave a neces-

sary and sufficient condition for the existence and an expression for the re-nonnegative

definite solution to (1.1) over H by using the decomposition of pairwise matrices.

Research on extreme ranks, i.e., maximal and minimal ranks, of solutions to linear

matrix equations have been actively ongoing for more than 30 years (see [15]-[17],

[19], [20], [27], [28], [33]-[35]). It is worthy to say that minimal and maximal ranks

of a general solution to a matrix equation are very useful in linear programming

computations (see [15]-[17]). In 2009, Liu, Tian and Takane [13] presented formulas

for the maximal and minimal ranks of a Hermitian solution and a skew-Hermitian

solution to the special case of the matrix equation (1.1) in which B = 0. The following

matrix equation:

(1.2) AXA∗ = C

over C, has been well examined by many authors (see [1], [3], [7], [8], [32], [36], [41]).

Note that, to our knowledge, there has been little information on extreme ranks

of the (skew-)Hermitian solution to the matrix equation (1.1). This paper aims to

consider the formulas of extremal ranks of the general (skew-)Hermitian solution to

(1.1).

The paper is organized as follows. In Section 2, we first give an expression of

the general Hermitian solution to (1.1) by using the generalized inverses of the co-

efficient matrices of this equation, then derive the formulas of extremal ranks of the
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general Hermitian solution to (1.1). We also give the corresponding results on the

skew-Hermitian solution to (1.1). In Section 3, we first present the maximal and

minimal ranks of the real matrices X1,X2,X3,X4 and Y1, Y2, Y3, Y4 in a Hermitian

solution X = X1 + X2i + X3j + X4k, Y = Y1 + Y2i + Y3j + Y4k to (1.1), then give

some necessary and sufficient conditions for (1.1) to have a real symmetric solution,

a complex Hermitian solution, and a pure imaginary Hermitian solution. The corre-

sponding results on the skew-Hermitian solution to (1.1) are also considered. Some

special cases of (1.1) are also considered in Section 4.

2. Ranks of the general Hermitian solution to (1.1). In this section, we

consider the maximal and minimal ranks of the general (skew-)Hermitian solution to

(1.1) over H.

We begin with the following lemma that is due to Tian [18], and can be generalized

to H.

Lemma 2.1. Suppose that the matrix equation

(2.1) AXB + CY D = E

is consistent over H, where X ∈ H
p×q, Y ∈ H

s×t unknown. Then the general solution

of (2.1) can be expressed by

X = X0 + S1LGURHT1 + LAV1 + V2RB ,

Y = Y0 − S2LGURHT2 + LCW1 + W2RD,

where X0 and Y0 are a special pair solution of (2.1),

S1 = (Ip, 0) , S2 = (0, Is) , T1 = (Iq, 0)
∗
, T2 = (0, It)

∗
, G = (A,C), H =

(
B

D

)
;

U, V1, V2, W1, and W2 are arbitrary quaternion matrices with suitable sizes.

Lemma 2.2. Consider the matrix equation (1.1) where A ∈ H
m×n, B ∈ H

m×p,

C ∈ H
m×m are given, and X ∈ H

n×n, Y ∈ H
p×p unknown.

1. If C = C∗, and (1.1) has a Hermitian solution, then the general Hermitian

solution to (1.1) can be expressed as

X = X0 + S1LGZLGS∗
1 + LAV + V ∗LA,

Y = Y0 − S2LGZLGS∗
2 + LBW + W ∗LB ,(2.2)

where X0 and Y0 are a special pair Hermitian solution of (1.1),

(2.3) S1 = (In, 0) , S2 = (0, Ip) , G = (A,B) ;

Z is an arbitrary Hermitian quaternion matrix with consistent size, and V

and W are arbitrary quaternion matrices with suitable sizes.
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2. If C = −C∗, and (1.1) has a skew-Hermitian solution, then the general skew-

Hermitian solution can be expressed as

X = X0 + S1LGZLGS∗
1 + LAV − V ∗LA,

Y = Y0 − S2LGZLGS∗
2 + LBW − W ∗LB ,

where X0 and Y0 are a special pair skew-Hermitian solution of (1.1), and S1,

S2, and G are the same as (2.3); Z is an arbitrary skew-Hermitian quaternion

matrix with consistent size, and V and W are arbitrary quaternion matrices

with suitable sizes.

Proof. We here only prove 1. The proof of 2 can be similarly finished.

Suppose that X1 = X∗
1 , Y1 = Y ∗

1 are an arbitrary pair Hermitian solution of

(1.1). It follows from Lemma 2.1 and R(A,B)∗ = L(A,B), RA∗ = LA, RB∗ = LB that

X1 = X̃0 + S1LGULGS∗
1 + LAV1 + V2LA,

Y1 = Ỹ0 − S2LGULGS∗
2 + LBW1 + W2LB ,

where X̃0 and Ỹ0 are a special pair solution of (1.1), and U, V1, V2, W1, and W2 are

arbitrary matrices with suitable sizes. Since
(

X1+X∗

1

2 ,
Y1+Y ∗

1

2

)
is also a pair Hermitian

solution of (1.1), we get that

X1 =
1

2
(X1 + X∗

1 ) =
1

2
(X̃0 + X̃∗

0 ) +
1

2
S1LG(U + U∗)LGS∗

1 +
1

2
LA(V1 + V ∗

2 )

+
1

2
(V1 + V ∗

2 )∗LA,

Y1 =
1

2
(Y1 + Y ∗

1 ) =
1

2
(Ỹ0 + Ỹ ∗

0 ) −
1

2
S2LG(U + U∗)LGS∗

2 +
1

2
LB(W1 + W ∗

2 )

+
1

2
(W1 + W ∗

2 )∗LB .

Putting

X0 =
1

2
(X̃0 + X̃∗

0 ), Y0 =
1

2
(Ỹ0 + Ỹ ∗

0 ), V =
1

2
(V1 + V ∗

2 ),

W =
1

2
(W1 + W ∗

2 ), Z =
1

2
(U + U∗),

and noting that X0 and Y0 are a special pair Hermitian solution of (1.1), Z is an

arbitrary Hermitian matrix, we get that any pair Hermitian solution (X1, Y1) of (1.1)

has the form of (2.2).

Conversely, it can be verified that a pair of matrices having the form of (2.2) are

a pair Hermitian solution of (1.1). Therefore, (2.2) is an expression of the general

Hermitian solution to (1.1).
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Tian and Liu in [21] and [12] gave the following extremal ranks of matrix expres-

sions A−BXB∗ and A−BX −X∗B∗ over a field. The results can be generalized to

H.

Lemma 2.3. Let A ∈ H
m×m, B ∈ H

m×n.

1. If A = A∗, then

max
X=X∗∈Hn×n

r(A − BXB∗) = r[A,B],

min
X=X∗∈Hn×n

r(A − BXB∗) = 2r[A,B] − r

[
A B

B∗ 0

]
;

max
X∈Hn×m

r(A + BX + X∗B∗) = min

{
m, r

[
A B

B∗ 0

]}
,

min
X∈Hn×m

r(A + BX + X∗B∗) = r

[
A B

B∗ 0

]
− 2r(B).

2. If A = −A∗, then

max
X=−X∗∈Hn×n

r(A − BXB∗) = r[A,B],

min
X=−X∗∈Hn×n

r(A − BXB∗) = 2r[A,B] − r

[
A B

−B∗ 0

]
;

max
X∈Hn×m

r(A + BX − X∗B∗) = min

{
m, r

[
A B

−B∗ 0

]}
,

min
X∈Hn×m

r(A + BX − X∗B∗) = r

[
A B

−B∗ 0

]
− 2r(B).

The following lemma is due to Marsaglia and Styan [14], which can be generalized

to H.

Lemma 2.4. Let A ∈ H
m×n, B ∈ H

m×k, C ∈ H
l×n, D ∈ H

j×k and E ∈ H
l×i.

Then they satisfy the following rank equalities:

(a) r(CLA) = r

[
A

C

]
− r(A),

(b) r
[

B ALC

]
= r

[
B A

0 C

]
− r(C),

(c) r

[
C

RBA

]
= r

[
C 0

A B

]
− r(B).

Now we give one of the main theorems in this paper.

Theorem 2.5. Suppose that the matrix equation (1.1), where A ∈ H
m×n, B ∈

H
m×p, C ∈ H

m×m, C = C∗, X ∈ H
n×n, and Y ∈ H

p×p, has a Hermitian solution.

(a) The maximal and minimal ranks of the general Hermitian solution to (1.1)
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are given by:

max
AXA∗+BY B∗=C

X=X∗

r(X) = min{n, r[B,C] + 2n − r(A) − r(G)},(2.4)

min
AXA∗+BY B∗=C

X=X∗

r(X) = 2r[B,C] − r

[
C B

B∗ 0

]
;(2.5)

max
AXA∗+BY B∗=C

Y =Y ∗

r(Y ) = min{p, r[A,C] + 2p − r(B) − r(G)},(2.6)

min
AXA∗+BY B∗=C

Y =Y ∗

r(Y ) = 2r[A,C] − r

[
C A

A∗ 0

]
.(2.7)

(b) The rank of the general Hermitian solution X to (1.1) is invariant if and only

if

2r[B,C] − r

[
C B

B∗ 0

]
= n

or

r[B,C] + r(A) + r(G) = r

[
C B

B∗ 0

]
+ 2n.

The rank of the general Hermitian solution Y to (1.1) is invariant if and only

if

2r[A,C] − r

[
C A

A∗ 0

]
= p

or

r[A,C] + r(B) + r(G) = r

[
C A

A∗ 0

]
+ 2p.

Proof. (a) Applying Lemma 2.2 and Lemma 2.3 to X of (2.2), we get that

max
AXA∗+BY B∗=C

X=X∗

r(X) = max
Z=Z∗,V

r(X0 + S1LGZLGS∗
1 + LAV + V ∗LA)

= min

{
n, max

Z=Z∗

r

[
X0 + S1LGZLGS∗

1 LA

LA 0

]}

= min

{
n, max

Z=Z∗

r

([
X0 LA

LA 0

]
+

[
S1LG

0

]
Z[ LGS∗

1 0 ]

)}

= min

{
n, r

[
X0 LA S1LG

LA 0 0

]}
;(2.8)
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min
AXA∗+BY B∗=C

X=X∗

r(X) = min
Z=Z∗,V

r(X0 + S1LGZLGS∗
1 + LAV + V ∗LA)

= min
Z=Z∗

r

[
X0 + S1LGZLGS∗

1 LA

LA 0

]
− 2r(LA)

= min
Z=Z∗

r

([
X0 LA

LA 0

]
+

[
S1LG

0

]
Z [ LGS∗

1 0 ]

)
− 2r(LA)

= 2r

[
X0 LA S1LG

LA 0 0

]
− r




X0 LA S1LG

LA 0 0

LGS∗
1 0 0




− 2r(LA).(2.9)

By Lemma 2.4, block Gaussian elimination, and AX0A
∗ + BY0B

∗ = C, we have that

r(LA) = n − r(A),

r

[
X0 S1LG LA

LA 0 0

]
= r




X0 In S1 0

In 0 0 A∗

0 A 0 0

0 0 G 0


 − r(A) − r(A∗) − r(G)

= r[B,C] + 2n − r(A) − r(G),

r




X0 LA S1LG

LA 0 0

LGS∗
1 0 0


 = r




X0 In S1 0 0

In 0 0 A∗ 0

S∗
1 0 0 0 G∗

0 A 0 0 0

0 0 G 0 0



− r(A) − r(A∗) − 2r(G)

= r

[
C B

B∗ 0

]
+ 2n − 2r(G).

Substituting above two equalities into (2.8) and (2.9) yields (2.4) and (2.5), respec-

tively.

Similarly, we can get the corresponding results on Y.

(b) The ranks of X, Y, expressed as (2.2), in the general pair Hermitian solution

to (1.1) are invariant if and only if

(2.10) max r(X) − min r(X) = 0, max r(Y ) − min r(Y ) = 0.

Hence result (b) follows from (2.4)-(2.7), and (2.10).

Similarly, we can get the following.

Theorem 2.6. Let A ∈ H
m×n, B ∈ H

m×p, C ∈ H
m×m, C = −C∗, X ∈ H

n×n,

and Y ∈ H
p×p. Suppose that (1.1) has a skew-Hermitian solution over H.
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(a) The maximal and minimal ranks of the general skew-Hermitian solution to

(1.1) are given by

max
AXA∗+BY B∗=C

X=−X∗

r(X) = min{n, r[B,C] + 2n − r(A) − r(G)},

min
AXA∗+BY B∗=C

X=−X∗

r(X) = 2r[B,C] − r

[
C B

−B∗ 0

]
.

max
AXA∗+BY B∗=C

Y =−Y ∗

r(Y ) = min{p, r[A,C] + 2p − r(B) − r(G)};

min
AXA∗+BY B∗=C

Y =−Y ∗

r(Y ) = 2r[A,C] − r

[
C A

−A∗ 0

]
.

(b) The rank of the general skew-Hermitian solution X to (1.1) is invariant if

and only if

2r[B,C] − r

[
C B

−B∗ 0

]
= n,

or r[B,C] + r(A) + r(G) = r

[
C B

−B∗ 0

]
+ 2n.

The rank of the general skew-Hermitian solution Y to (1.1) is invariant if

and only if

2r[A,C]−r

[
C A

−A∗ 0

]
= p, or r[A,C]+r(B)+r(G) = r

[
C A

−A∗ 0

]
+2p.

3. Extreme ranks of the real matrices in a Hermitian solution to (1.1)

over H. In this section, we consider the maximal and minimal ranks of real matrices

Xi, Yi in a pair Hermitian solution X = X1 + X2i + X3j + X4k ∈ H
n×n and Y =

Y1 + Y2i + Y3j + Y4k ∈ H
p×p to (1.1) where

A = A1 + A2i + A3j + A4k, B = B1 + B2i + B3j + B4k, C = C1 + C2i + C3j + C4k,

Ai, Bi, Ci, i = 1, · · · , 4, are real matrices with suitable sizes.

For an arbitrary quaternion matrix M = M1 + M2i + M3j + M4k, we now define

a map φ(·), from H
m×n to R

4m×4n, by

(3.1) φ(M) =




M1 −M2 −M3 −M4

M2 M1 −M4 M3

M3 M4 M1 −M2

M4 −M3 M2 M1


 .

By (3.1), it is easy to verify that φ(·) satisfies the following properties:
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(a) M = N ⇐⇒ φ(M) = φ(N).

(b) φ(M + N) = φ(M) + φ(N), φ(MN) = φ(M)φ(N), φ(kM) = kφ(M), k ∈ R.

(c) φ(M∗) = φT (M), φ(M†) = φ†(M).

(d) φ(M) = T−1
m φ(M)Tn = R−1

m φ(M)Rn = S−1
m φ(M)Sn, where for t = m,n,

Rt =

[
0 −I2t

I2t 0

]
, St =




0 0 0 −It

0 0 It 0

0 −It 0 0

It 0 0 0


 ,

Tt =




0 −It 0 0

It 0 0 0

0 0 0 It

0 0 −It 0


 .

(e) r [φ(M)] = 4r(M).

(f) M∗ = M ⇔ φT (M) = φ(M), and M∗ = −M ⇔ φT (M) = −φ(M).

In the following theorems and corollaries, X0, Y0, S1, S2, and G are defined as in

Lemma 2.2.

Theorem 3.1. The matrix equation (1.1) has a Hermitian solution over H if

and only if the matrix equation

(3.2) φ(A) (Xij)4×4 φT (A) + φ(B) (Yij)4×4 φT (B) = φ(C), i, j = 1, 2, 3, 4,

has a symmetric solution over R. In this case, the general Hermitian solution of (1.1)

over H can be written as:

X = X1 + X2i + X3j + X4k

=
1

4
(X11 + X22 + X33 + X44) +

1

4
(XT

12 − X12 + XT
34 − X34)i

+
1

4
(XT

13 − X13 + X24 − XT
24)j +

1

4
(XT

14 − X14 + XT
23 − X23)k,(3.3)

Y = Y1 + Y2i + Y3j + Y4k

=
1

4
(Y11 + Y22 + Y33 + Y44) +

1

4
(Y T

12 − Y12 + Y T
34 − Y34)i

+
1

4
(Y T

13 − Y13 + Y24 − Y T
24)j +

1

4
(Y T

14 − Y14 + Y T
23 − Y23)k,(3.4)

where Xtt = XT
tt , Ytt = Y T

tt , t = 1, 2, 3, 4; XT
1j = Xj1, Y T

1j = Yj1, j = 2, 3, 4; XT
2j =

Xj2, Y T
2j = Yj2, j = 3, 4; XT

34 = X43, Y T
34 = Y43 are the general solutions of (3.2) over
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R. Written in explicit forms, Xi, Yi, i = 1, 2, 3, 4, in (3.3) and (3.4) are

X1 =
1

4
P1φ(X0)P

T
1 +

1

4
P2φ(X0)P

T
2 +

1

4
P3φ(X0)P

T
3 +

1

4
P4φ(X0)P

T
4

+
1

4
[P1, P2, P3, P4]E1ZET

1 [P1, P2, P3, P4]
T

+ [P1, P2, P3, P4]Lφ(A)




V1

V2

V3

V4


 +




V1

V2

V3

V4




T

LT
φ(A) [P1, P2, P3, P4]

T
,(3.5)

X2 =
1

4
P2φ(X0)P

T
1 −

1

4
P1φ(X0)P

T
2 +

1

4
P4φ(X0)P

T
3 −

1

4
P3φ(X0)P

T
4

−
1

4
[P1,−P2, P3,−P4]E1ZET

1 [P2, P1, P4, P3]
T

− [−P2, P1,−P4, P3]Lφ(A)




V1

V2

V3

V4


 +




V1

V2

V3

V4




T

LT
φ(A) [−P2, P1,−P4, P3]

T
,(3.6)

X3 =
1

4
P3φ(X0)P

T
1 −

1

4
P1φ(X0)P

T
3 +

1

4
P2φ(X0)P

T
4 −

1

4
P4φ(X0)P

T
2

−
1

4
[P1,−P2,−P3, P4]E1ZET

1 [P3, P4, P1, P2]
T

− [−P3, P1,−P2, P4]Lφ(A)




V1

V2

V3

V4


 +




V1

V2

V3

V4




T

LT
φ(A) [−P3, P1,−P2, P4]

T
,(3.7)

X4 =
1

4
P4φ(X0)P

T
1 −

1

4
P1φ(X0)P

T
4 +

1

4
P3φ(X0)P

T
2 −

1

4
P2φ(X0)P

T
3

−
1

4
[−P1, − P2, P3, P4]E1ZET

1 [P4, P3, P2, P1]
T

− [−P4, P1,−P3, P2]Lφ(A)




V1

V2

V3

V4


 +




V1

V2

V3

V4




T

LT
φ(A) [−P4, P1,−P3, P2]

T
,(3.8)
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Y1 =
1

4
Q1φ(Y0)Q

T
1 +

1

4
Q2φ(Y0)Q

T
2 +

1

4
Q3φ(Y0)Q

T
3 +

1

4
Q4φ(Y0)Q

T
4

−
1

4
[Q1, Q2, Q3,Q4]E2ZET

2 [Q1, Q2, Q3, Q4]
T

+ [Q1, Q2, Q3, Q4]Lφ(B)




W1

W2

W3

W4


 +




W1

W2

W3

W4




T

LT
φ(B) [Q1, Q2, Q3, Q4]

T
,(3.9)

Y2 =
1

4
Q2φ(Y0)Q

T
1 −

1

4
Q1φ(Y0)Q

T
2 +

1

4
Q4φ(Y0)Q

T
3 −

1

4
Q3φ(Y0)Q

T
4

+
1

4
[Q1,−Q2, Q3,−Q4]E2ZET

2 [Q2, Q1, Q4, Q3]
T

− [−Q2, Q1,−Q4, Q3]Lφ(B)




W1

W2

W3

W4


 +




W1

W2

W3

W4




T

LT
φ(B) [−Q2, Q1,−Q4, Q3]

T
,

(3.10)

Y3 =
1

4
Q3φ(Y0)Q

T
1 −

1

4
Q1φ(Y0)Q

T
3 +

1

4
Q2φ(Y0)Q

T
4 −

1

4
Q4φ(Y0)Q

T
2

+
1

4
[Q1,−Q2,−Q3, Q4]E2ZET

2 [Q3, Q4, Q1, Q2]
T

− [−Q3, Q1,−Q2, Q4]Lφ(B)




W1

W2

W3

W4


 +




W1

W2

W3

W4




T

LT
φ(B) [−Q3, Q1,−Q2, Q4]

T
,

(3.11)

Y4 =
1

4
Q4φ(Y0)Q

T
1 −

1

4
Q1φ(Y0)Q

T
4 +

1

4
Q3φ(Y0)Q

T
2 −

1

4
Q2φ(Y0)Q

T
3

+
1

4
[−Q1,−Q2, Q3, Q4]E2ZET

2 [Q4, Q3, Q2, Q1]
T

− [−Q4, Q1,−Q3, Q2]Lφ(B)




W1

W2

W3

W4


 +




W1

W2

W3

W4




T

LT
φ(B) [−Q4, Q1,−Q3, Q2]

T
,

(3.12)
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where

P1 = [In, 0, 0, 0] , P2 = [0, In, 0, 0] , P3 = [0, 0, In, 0] , P4 = [0, 0, 0, In] ,

Q1 = [Ip, 0, 0, 0] , Q2 = [0, Ip, 0, 0] , Q3 = [0, 0, Ip, 0] , Q4 = [0, 0, 0, Ip] ,

E1 = φ(S1)Lφ(G), E2 = φ(S2)Lφ(G);

Z is arbitrary real symmetric matrix, and V1, V2, V3, V4, W1, W2, W3, and W4 are

arbitrary real matrices with compatible sizes.

Proof. Suppose that (1.1) has a Hermitian solution

X = X1 + X2i + X3j + X4k, Y = Y1 + Y2i + Y3j + Y4k

over H. Applying properties (a) and (b) of φ(·) to (1.1) yields

φ(A)φ(X)φT (A) + φ(B)φ(Y )φT (B) = φ(C), φT (X) = φ(X), φT (Y ) = φ(Y ),

which implies that φ(X), φ(Y ) are real symmetric solutions to (3.2). Conversely,

suppose that (3.2) has a real symmetric solution

X =




X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X24

X41 X42 X43 X44


 , Y =




Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y24

Y41 Y42 Y43 Y44


 ,

i.e.

φ(A)XφT (A) + φ(B)Y φT (B) = φ(C), XT = X, Y T = Y.

By property (d) of φ(·), we have that

T−1
m φ(A)TnXT−1

n φT (A)Tm + T−1
m φ(B)TpY T−1

p φT (B)Tm = T−1
m φ(C)Tm,

R−1
m φ(A)RnXR−1

n φT (A)Rm + R−1
m φ(B)RpY R−1

p φT (B)Rm = R−1
m φ(C)Rm,

S−1
m φ(A)SnXS−1

n φT (A)Sm + S−1
m φ(B)SpY S−1

p φT (B)Sm = S−1
m φ(C)Sm.

Hence

φ(A)TnXT−1
n φT (A) + φ(B)TpY T−1

p φT (B) = φ(C),

φ(A)RnXR−1
n φT (A) + φ(B)RpY R−1

p φT (B) = φ(C),

φ(A)SnXS−1
n φT (A) + φ(B)SpY S−1

p φT (B) = φ(C),

implying TnXT−1
n , TpY T−1

p , RnXR−1
n , RpY R−1

p , SnXS−1
n , and SpY S−1

p are also

symmetric solutions of (3.2) over R. Thus,

1

4
(X + TnXT−1

n + RnXR−1
n + SnXS−1

n ),
1

4
(Y + TpY T−1

p + RpY R−1
p + SpY S−1

p )
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are symmetric solutions of (3.2), where

X + TpXT−1
p + RpXR−1

p + SpXS−1
p = (X̃ij)4×4, i, j = 1, 2, 3, 4

and

X̃11 = X11 + X22 + X33 + X44, X̃12 = X12 − XT
12 + X34 − XT

34,

X̃13 = X13 − XT
13 + XT

24 − X24, X̃14 = X14 − XT
14 + X23 − XT

23,

X̃21 = XT
12 − X12 + XT

34 − X34, X̃22 = X11 + X22 + X33 + X44,

X̃23 = X14 − XT
14 + X23 − XT

23, X̃24 = XT
13 − X13 + X24 − XT

24,

X̃31 = XT
13 − X13 + X24 − XT

24, X̃32 = XT
14 − X14 + XT

23 − X23,

X̃33 = X11 + X22 + X33 + X44, X̃34 = X12 − XT
12 + X34 − XT

34,

X̃41 = XT
14 − X14 + XT

23 − X23, X̃42 = X13 − XT
13 + XT

24 − X24,

X̃43 = XT
12 − X12 + XT

34 − X34, X̃44 = X11 + X22 + X33 + X44.

Y + TpY T−1
p + RpY R−1

p + SpY S−1
p has a form similar to (X̃ij)4×4. We omit it here

for simplicity.

Let

X̂ =
1

4
(X11 + X22 + X33 + X44) +

1

4
(XT

12 − X12 + XT
34 − X34)i

+
1

4
(XT

13 − X13 + X24 − XT
24)j +

1

4
(XT

14 − X14 + XT
23 − X23)k,

Ŷ =
1

4
(Y11 + Y22 + Y33 + Y44) +

1

4
(Y T

12 − Y12 + Y T
34 − Y34)i

+
1

4
(Y T

13 − Y13 + Y24 − Y T
24)j +

1

4
(Y T

14 − Y14 + Y T
23 − Y23)k.

Then by (3.1),

φ(X̂) =
1

4
(X + TnXT−1

n + RnXR−1
n + SnXS−1

n ),

φ(Ŷ ) =
1

4
(Y + TpY T−1

p + RpY R−1
p + SpY S−1

p ),

we have that X̂, Ŷ are a pair Hermitian solution of (1.1) by the property (a). Observe

that Xij and Yij , i, j = 1, 2, 3, 4 in (3.2) can be written as

Xij = PiXPT
j , Yij = QiY QT

j .

From Lemma 2.2, the general solutions to (3.2) can be written as

X = φ(X0) + φ(S1)Lφ(G)ZLφ(G)φ
T (S1) + 4Lφ(A) [V1, V2, V3, V4]

+ 4 [V1, V2, V3, V4]
T

Lφ(A),

Y = φ(Y0) − φ(S2)Lφ(G)ZLφ(G)φ
T (S2) + 4Lφ(B) [W1,W2,W3,W4]

+ 4 [W1,W2,W3,W4]
T

Lφ(B),
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where Z is an arbitrary real symmetric matrix and V1, V2, V3, V4, W1, W2, W3, and

W4 are arbitrary with suitable sizes. Hence, for i, j = 1, 2, 3, 4,

Xij = Piφ(X0)P
T
j + Piφ(S1)Lφ(G)ZLφ(G)φ

T (S1)P
T
j + 4PiLφ(A)Vj + 4V T

i Lφ(A)P
T
j ,

Yij = Qiφ(Y0)Q
T
j − Qiφ(S2)Lφ(G)ZLφ(G)φ

T (S2)Q
T
j + 4QiLφ(B)Wj + 4WT

i Lφ(B)Q
T
j .

Substituting them into (3.3) and (3.4) yields real matrices Xi and Yi, i = 1, 2, 3, 4 in

(3.5)-(3.12).

Now we consider the maximal and minimal ranks of real matrices Xi, Yi in Her-

mitian solutions X = X1 + X2i + X3j+ X4k and Y = Y1 + Y2i + Y3j + Y4k to

(1.1).

Theorem 3.2. Suppose the matrix equation (1.1) has a Hermitian solution over

H, and for i, j = 1, 2, 3, 4,

Ji =

{
Xi ∈ R

n×n

∣∣∣∣
A(X1 + X2i + X3j + X4k)A∗

+B(Y1 + Y2i + Y3j + Y4k)B∗ = C

}
,

Tj =

{
Yj ∈ R

p×p

∣∣∣∣
A(X1 + X2i + X3j + X4k)A∗

+B(Y1 + Y2i + Y3j + Y4k)B∗ = C

}
.

Then we have the following:

(a) The maximal and minimal ranks of Xi in the general Hermitian solution

X = X1 + X2i + X3j + X4k to (1.1) are given by

max
Xi∈Ji

r(Xi) = min

{
n, r

[
0 0 Ai

Ãi φ(B) φ(C)

]
+ 2n − 4r(A) − 4r(G)

}
;

min
Xi∈Ji

r(Xi) = 2r

[
0 0 Ai

Ãi φ(B) φ(C)

]
− r




0 0 Ai

0 0 φT (B)

Ãi φ(B) φ(C)




−2r




−A2 −A3 −A4

A1 −A4 A3

A4 A1 −A2

−A3 A2 A1


 ,

where

Ã1 =




A2 A3 −A4

−A1 −A4 −A3

A4 −A1 A2

A3 −A2 −A1


 , Ã2 =




−A1 A3 −A4

−A2 −A4 −A3

−A3 −A1 A2

A4 −A2 −A1


 ,
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Ã3 =




−A1 A2 −A4

−A2 −A1 −A3

−A3 A4 A2

A4 A3 −A1


 , Ã4 =




−A1 A2 A3

−A2 −A1 −A4

−A3 A4 −A1

A4 A3 −A2


 ,

A1 =




−A2 A3 A4

−A1 −A4 −A3

−A4 −A1 −A2

A3 A2 −A1




T

, A2 =




−A1 A3 A4

A2 −A4 −A3

−A3 −A1 −A2

A4 A2 −A1




T

,

A3 =




−A1 −A2 A4

A2 −A1 −A3

−A3 −A4 −A2

−A4 A3 −A1




T

, A4 =




−A1 −A2 A3

A2 −A1 A4

−A3 −A4 −A1

−A4 A3 A2




T

.

(b) The maximal and minimal ranks of Yj in a Hermitian solution Y1 + Y2i +

Y3j + Y4k to (1.1) are given by

max
Yj∈Tj

r(Yj) = min

{
p, r

[
0 0 Bj

B̃j φ(A) φ(C)

]
+ 2p − 4r(B) − 4r(G)

}
;

min
Yj∈Tj

r(Yj) = 2r

[
0 0 Bj

B̃j φ(A) φ(C)

]
− r




0 0 Bj

0 0 φT (A)

B̃j φ(A) φ(C)




−2r




−B2 −B3 −B4

B1 −B4 B3

B4 B1 −B2

−B3 B2 B1


 ,

where

B̃1 =




B2 B3 −B4

−B1 −B4 −B3

B4 −B1 B2

B3 −B2 −B1


 , B̃2 =




−B1 B3 −B4

−B2 −B4 −B3

−B3 −B1 B2

B4 −B2 −B1


 ,

B̃3 =




−B1 B2 −B4

−B2 −B1 −B3

−B3 B4 B2

B4 B3 −B1


 , B̃4 =




−B1 B2 B3

−B2 −B1 −B4

−B3 B4 −B1

B4 B3 −B2


 ,
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B1 =




−B2 B3 B4

−B1 −B4 −B3

−B4 −B1 −B2

B3 B2 −B1




T

, B2 =




−B1 B3 B4

B2 −B4 −B3

−B3 −B1 −B2

−B4 B2 −B1




T

,

B3 =




−B1 −B2 B4

B2 −B1 −B3

−B3 −B4 −B2

−B4 B3 −B1




T

, B4 =




−B1 −B2 B3

B2 −B1 B4

−B3 −B4 −B1

−B4 B3 B2




T

.

Proof. We only derive the maximal and minimal ranks of the matrix X1. The

others can be established similarly. Applying Lemma 2.3 to (3.5), we get the following

max
X1∈J1

r(X1) = max
Z=ZT ,V

r(M +
1

4
P̂ZP̂T + PV + V T PT )

= min

{
n, max

Z=ZT
r(U)

}

= min

{
n, r

[
M P P̂

PT 0 0

]}
,

min
X1∈J1

r(X1) = min
Z=ZT ,V

r(M +
1

4
P̂ZP̂T + PV + V T PT )

= min
Z=ZT

r(U) − 2r(P )

= 2r

[
M P P̂

PT 0 0

]
− r




M P P̂

PT 0 0

P̂T 0 0


 − 2r(P ),

where

U =

[
M + 1

4 P̂ZP̂T P

PT 0

]
=

[
M P

PT 0

]
+

1

4

[
P̂

0

]
Z

[
P̂T 0

]
,

M =
1

4
P1φ(X0)P

T
1 +

1

4
P2φ(X0)P

T
2 +

1

4
P3φ(X0)P

T
3 +

1

4
P4φ(X0)P

T
4 ,

P = [P1, P2, P3, P4]Lφ(A), P̂ = [P1, P2, P3, P4]E1.
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By Lemma 2.4, block Gaussian elimination, and AX0A
∗ + BY0B

∗ = C, we have that

r

[
M P P̂

PT 0 0

]
= r




M D1 D2 0

DT
1 0 0 Ψ(A∗)

0 Ψ(A) 0 0

0 0 Ψ(G) 0


 − 4r(φ(A))

− 4r(φ(A∗)) − 4r(φ(G))

= r

[
0 0 A1

Ã1 φ(B) φ(C)

]
+ 2n − 4r(A) − 4r(G),

where

D1 = [P1, P2, P3, P4] , D2 = [P1, P2, P3, P4]φ(S1),

Ψ(V ) =




φ(V ) 0 0 0

0 φ(V ) 0 0

0 0 φ(V ) 0

0 0 0 φ(V )


 , V = A,A∗, G.

Similarly, we can simplify the following

r




M P P̂

PT 0 0

P̂T 0 0


 = r




0 0 A1

0 0 φT (B)

Ã1 φ(B) φ(C)


 + 2n − 4r(G) − 4r(G∗),

r(P ) = r




−A2 −A3 −A4

A1 −A4 A3

A4 A1 −A2

−A3 A2 A1


 + n − 4r(A).

Thus we have the results for extreme ranks of the matrix X1 in (a). Similarly, applying

Lemma 2.3 and Lemma 2.4 to (3.6)–(3.12) yields the other results in (a) and (b).

Corollary 3.3. Suppose that the matrix equation (1.1) has a Hermitian solution

over H, then we have the following:

(a) (1.1) has a real symmetric solution X if and only if, for i = 2, 3, 4,

2r

[
0 0 Ai

Ãi φ(B) φ(C)

]
= r




0 0 Ai

0 0 φT (B)

Ãi φ(B) φ(C)




+ 2r




−A2 −A3 −A4

A1 −A4 A3

A4 A1 −A2

−A3 A2 A1


 .
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In that case, the real symmetric solution X can be expressed as X = X1 in

(3.5).

(b) All the solutions of (1.1) for X are real symmetric if and only if

r

[
0 0 Ai

Ãi φ(B) φ(C)

]
+ 2n = 4r(A) + 4r(G), i = 2, 3, 4.

In that case, the real symmetric solution X can be expressed as X = X1 in

(3.5).

(c) (1.1) has a complex Hermitian solution X if and only if, for i = 3, 4,

2r

[
0 0 Ai

Ãi φ(B) φ(C)

]
= r




0 0 Ai

0 0 φT (B)

Ãi φ(B) φ(C)




+ 2r




−A2 −A3 −A4

A1 −A4 A3

A4 A1 −A2

−A3 A2 A1


 .

In that case, the complex Hermitian solution X can be expressed as X =

X1 + X2i, where X1, X2 are expressed as (3.5) and (3.6).

(d) All the solutions of (1.1) for X are complex Hermitian if and only if

r

[
0 0 Ai

Ãi φ(B) φ(C)

]
+ 2n = 4r(A) + 4r(G), i = 3, 4.

In that case, the complex Hermitian solution X can be expressed as X =

X1 + X2i, where X1, X2 are expressed as (3.5) and (3.6).

(e) (1.1) has a pure imaginary Hermitian solution X if and only if

2r

[
0 0 A1

Ã1 φ(B) φ(C)

]
= r




0 0 A1

0 0 φT (B)

Ã1 φ(B) φ(C)




+ 2r




−A2 −A3 −A4

A1 −A4 A3

A4 A1 −A2

−A3 A2 A1


 .

In that case, the pure imaginary Hermitian solution X can be expressed as

X = X2i + X3j + X4k, where X2, X3, and X4 are expressed as (3.6), (3.7),

and (3.8).
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(f) All the solutions of (1.1) for X are pure imaginary Hermitian if and only if

r

[
0 0 A1

Ã1 φ(B) φ(C)

]
+ 2n = 4r(A) + 4r(G).

In that case, the pure imaginary Hermitian solution X can be expressed as

X = X2i + X3j + X4k, where X2, X3, and X4 are expressed as (3.6), (3.7),

and (3.8).

Using the same method, we can get the corresponding results on Y.

Remark 3.4. Similarly, we can get the corresponding results on the skew-

Hermitian solution of (1.1).

4. Ranks of Hermitian solution to some special cases of (1.1). In this

section, we consider some special cases of (1.1) over C. When B vanishes, (1.1)

becomes (1.2) where A ∈ C
m×n, C ∈ C

m×m. We get the corresponding results on

(1.2) as follows.

Corollary 4.1. Let A = A1 + A2i ∈ C
m×n, C = C∗ = C1 + C2i ∈ C

m×m be

given. Then

(a) The matrix equation (1.2) has a Hermitian solution if and only if the real

matrix equation

(4.1)

[
A1 −A2

A2 A1

] [
X11 X12

X21 X22

] [
AT

1 AT
2

−AT
2 AT

1

]
=

[
C1 −C2

C2 C1

]

has a symmetric solution over R. In this case, the general Hermitian solution

of (1.2) over C can be written as

(4.2) X = X1 + X2i =
1

2
(X11 + X22) +

1

2
(XT

12 − X12)i,

where Xtt = XT
tt , t = 1, 2; and XT

12 = X21 are the general solutions of (4.1)

over R. Written in an explicit form, X1, X2 in (4.2) are

X1 =
1

2
P1φ(X0)P

T
1 +

1

2
P2φ(X0)P

T
2 + [P1, P2]Lφ(A)

[
V1

V2

]

+

[
V1

V2

]T

LT
φ(A) [P1, P2]

T
,

X2 =
1

2
P2φ(X0)P

T
1 −

1

2
P1φ(X0)P

T
2 − [−P2, P1]Lφ(A)

[
V1

V2

]

+

[
V1

V2

]T

LT
φ(A) [−P2, P1]

T
,
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where X0 = A†C(A†)∗, P1 = [In, 0] , P2 = [0, In] , and V1 and V2 are arbitrary

real matrices with compatible sizes.

(b) Put

J1 =
{
X1 ∈ R

n×n | A(X1 + X2i)A
∗ = C

}
,

J2 =
{
X2 ∈ R

n×n | A(X1 + X2i)A
∗ = C

}
.

Then we have the following:

(i) The maximal and minimal ranks of X1 in the Hermitian solution X =

X1 + X2i to (1.2) are given by

max
X1∈J1

r(X1) = min



n, r




C1 −C2 A1

C2 C1 A2

AT
1 AT

2 0


 + 2n − 4r(A)



 ,

min
X1∈J1

r(X1) = r




C1 −C2 A1

C2 C1 A2

AT
1 AT

2 0


 − 2r

[
A1

A2

]
.

(ii) The maximal and minimal ranks of X2 in the Hermitian solution X =

X1 + X2i to (1.2) are given by

max
X2∈J2

r(X2) = min



n, r




C1 −C2 A1

C2 C1 A2

AT
2 −AT

1 0


 + 2n − 4r(A)



 ,

min
X2∈J2

r(X2) = r




C1 −C2 A1

C2 C1 A2

AT
2 −AT

1 0


 − 2r

[
A1

A2

]
.

Remark 4.2. Corollary 4.1 is Theorem 2.2 of [13]. Similarly, Theorem 3.2 of

[13] can be regarded as a special case of (1.1) with skew-Hermitian solutions.
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