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LEAST SQUARES (P,Q)-ORTHOGONAL SYMMETRIC SOLUTIONS

OF THE MATRIX EQUATION AND ITS OPTIMAL

APPROXIMATION∗

LIN-LIN ZHAO† , GUO-LIANG CHEN† , AND QING-BING LIU‡

Abstract. In this paper, the relationship between the (P,Q)-orthogonal symmetric and symmet-

ric matrices is derived. By applying the generalized singular value decomposition, the general expres-

sion of the least square (P,Q)-orthogonal symmetric solutions for the matrix equation ATXB = C

is provided. Based on the projection theorem in inner space, and by using the canonical correlation

decomposition, an analytical expression of the optimal approximate solution in the least squares

(P,Q)-orthogonal symmetric solution set of the matrix equation ATXB = C to a given matrix is

obtained. An explicit expression of the least square (P,Q)-orthogonal symmetric solution for the

matrix equation ATXB = C with the minimum-norm is also derived. An algorithm for finding the

optimal approximation solution is described and some numerical results are given.

Key words. Matrix equation, Least squares solution, (P,Q)-orthogonal symmetric matrix,

Optimal approximate solution.
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1. Introduction. Let Rm×n denote the set of all m × n real matrices, and

SRn×n, ORn×n denote the set of n×n real symmetric matrices and n×n orthogonal

matrices, respectively. In denotes n× n unit matrix. The notations AT , ‖ A ‖ stand

for the transpose and the Frobenius norm of A, respectively. For A = (aij) ∈ Rm×n,

B = (bij) ∈ Rm×n, A ∗ B = (aijbij) ∈ Rm×n represents the Hadamard product of

matrices A and B. Let SORn×n = {P ∈ Rn×n|PT = P, P 2 = I} denote the set of

n× n generalized reflection matrices.

Definition 1.1. Given P,Q ∈ SORn×n, we say that X ∈ Rn×n is (P,Q)-

orthogonal symmetric, if

(PXQ)T = PXQ.

We denote by SRn×n(P,Q) the set of all (P,Q)-orthogonal symmetric matrices.
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In this paper, we consider the following problems.

Problem I. Given P,Q ∈ SORn×n, A ∈ Rn×m, B ∈ Rn×l, and C ∈ Rm×l, find

X ∈ SRn×n(P,Q) such that

‖ ATXB − C ‖2= min .(1.1)

Problem II. Given P,Q ∈ SORn×n, A ∈ Rn×m, B ∈ Rn×l, and C ∈ Rm×l, find

Y ∈ SRn×n such that

‖ (PA)TY (QB)− C ‖2= min .(1.2)

Problem III. Let SE be the solution set of Problem I. Given X∗ ∈ Rn×n, find

X̂ ∈ SE such that

‖ X̂ −X∗ ‖2= min
X∈SE

‖ X −X∗ ‖2 .

Problem IV. Let SE be the solution set of Problem I, find X̃ ∈ SE such that

‖ X̃ ‖2= min .

An inverse problem [2, 3, 6, 7] arising in structural modification of the dynamic

behavior of a structure calls for the solution of certain linear matrix equations. The

matrix equation

ATXB = C

with X being orthogonal-symmetric has been studied by Peng [15] which gives the

necessary and sufficient conditions for the existence and the general solution expres-

sion. In [16], the necessary and sufficient conditions for the solvability of the matrix

equation

AHXB = C

over the sets of reflexive and anti-reflexive matrices are given, and the general expres-

sions for the reflexive and anti-reflexive solutions are obtained. Don [9], Magnus [12],

and Chu [5] have discussed the matrix equation

BXAT = T

where the solution matrices are known to have a given structure (e.g., symmetric,

triangular, diagonal), either directly from the matrix equation or indirectly from the
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equivalent vector equation. But they did not consider the least squares solutions of

the equation.

For the least squares problem, the (M,N)-symmetric Procrustes problem of the

matrix equation AX = B has been treated in [13]. The least squares orthogonal-

symmetric solutions of the matrix equation ATXB = C, and the least squares sym-

metric, skew-symmetric solutions of the equation BXAT = T have been considered,

respectively, in [14] and [8]. Recently, Qiu, Zhang and Lu in [17] have proposed an

iterative method for the least squares problem of the matrix equation BXAT = F .

Problem III, that is, the optimal approximation problem of a matrix with the

given matrix restriction, is proposed in the processes of test or recovery of linear

systems with incomplete data or revising data. The optimal estimation X̂ is a matrix

that not only satisfies the given restriction but also best approximates the given

matrix.

In this paper, we will discuss the least square (P,Q)-orthogonal symmetric solu-

tions and its optimal approximation for the matrix equation ATXB = C. By using

the generalized singular value decomposition (GSVD), the projection theorem and

the canonical correlation decomposition (CCD), we obtain the general expressions of

the solutions for Problem I, II, III and IV.

The paper is organized as follows. In section 2, we will give the general expressions

of the solutions for Problem I and II. In section 3, we will discuss Problem III and

IV. In section 4, we will give an algorithm to compute the solution of Problem III

and numerical examples.

2. The solutions of Problem I and II. In this section, we derive the general

expressions for the solutions of Problem I and II.

Theorem 2.1. Problem I has a solution if and only if Problem II has a solution.

Proof. Suppose X be one of the solutions of Problem I, then we have (PXQ)T =

PXQ, and

‖ ATXB − C ‖2= min .(2.1)

Let Y = PXQ, then Y T = Y . From (2.1), we get ‖ (PA)TY QB − C ‖2= min,

that is, Y is one of least squares symmetric solutions of Problem II.

On the contrary, if Y is one of the least squares symmetric solutions of Problem

II, then we have Y T = Y and

‖ (PA)TY (QB)− C ‖2= min .(2.2)
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LetX = PY Q, then (PXQ)T = PXQ. From (2.2), we get ‖ ATXB−C ‖2= min,

that is, X is one of the least squares (P,Q)-orthogonal symmetric solutions of Problem

I.

Lemma 2.2. Let D1 = diag(a1, a2, · · · , an) > 0, D2 = diag(b1, b2, · · · , bn) > 0,

and E = (eij) ∈ Rn×n, then there exists a unique S ∈ SRn×n such that

‖ D1SD2 − E ‖2= min,(2.3)

and

S = φ ∗ (D1ED2 +D2E
TD1),(2.4)

where φ = (φij), φij =
1

a2

i
b2
j
+a2

j
b2
i

, i, j = 1, 2, · · · , n.

Proof. For any S = (sij) ∈ SRn×n, E = (eij) ∈ Rn×n, we have

‖ D1SD2 − E ‖2 =

n
∑

i=1

n
∑

j=1

(aisijbj − eij)
2 =

n
∑

i=1

(aisiibi − eii)
2 +

∑

1≤i<j≤n

[(a2i b
2
j + a2jb

2
i )s

2
ij − 2(aibjeij + ajbieji)sij + (e2ij + e2ji)].

Hence, there exist a unique solution S = (sij) ∈ SRn×n such that (2.3) holds and

sij =
aieijbj + ajejibi

a2i b
2
j + a2jb

2
i

, 1 ≤ i, j ≤ n.

That is (2.4).

Lemma 2.3. Suppose that the matrices P , Q, A, B, and C are given in Problem

I. Decompose the matrix pair [PA,QB] by using GSVD (see[19])as

PA = WΣPAU
T , QB = WΣQBV

T ,(2.5)

where W is a nonsingular n× n matrix, U ∈ ORm×m, V ∈ ORl×l, and

ΣPA =









I

DPA

0

0









t

s

r − s− t

n− r

, ΣQB =









0

DQB

I

0









t

s

r − s− t

n− r

.

Here, r = rank([PA,QB]), s = rank(PA) + rank(QB) − r, t = rank(PA) − s, and

DPA = diag(α1, α2, · · · , αs) > 0, DQB = diag(β1, β2, · · · , βs) > 0 with 1 > α1 ≥ α2 ≥

· · · ≥ αs > 0, 0 < β1 ≤ β2 ≤ · · · ≤ βs < 0, and α2
i + β2

i = 1, i = 1, 2, · · · , s.
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Let W = (W1,W2,W3,W4), W1 ∈ Rn×t,W2 ∈ Rn×s,W3 ∈ Rn×(r−s−t),W4 ∈

Rn×(n−r), and let

WTYW = (X̃ij), i.e., X̃ij = WT
i YWj , i, j = 1, 2, 3, 4,(2.6)

UTCV =

t

s

m− s− t





C̃11 C̃12 C̃13

C̃21 C̃22 C̃23

C̃31 C̃32 C̃33





l+ t− r s r − s− t

.(2.7)

Theorem 2.4. Given A ∈ Rn×m, B ∈ Rn×l, C ∈ Rm×l, and P,Q ∈ SORn×n.

Let the GSVD of the matrix pair [PA,QB] be of form (2.5). Partition WTYW

and UTCV according to (2.6) and (2.7), respectively. Then the general solution of

Problem II can be expressed as

Y = W−T











X̃11 C̃12D
−1
QB C̃13 X̃14

D−1
QBC̃

T
12 X̃22 D−1

PAC̃23 X̃24

C̃T
13 C̃T

23D
−1
PA X̃33 X̃34

X̃T
14 X̃T

24 X̃T
34 X̃44











W−1,(2.8)

where

X̃22 = φ̃ ∗ (DPAC̃22DQB +DQBC̃
T
22DPA), φ̃ = (φ̃ij),

φ̃ij =
1

α2
iβ

2
j + α2

jβ
2
i

, i, j = 1, 2, · · · , s.

The matrices X̃11, X̃33, X̃44 are arbitrary symmetric, X̃14, X̃24, X̃34 are arbitrary.

Proof. Suppose that Y is one of the least squares symmetric solutions for Problem

II, then Y T = Y , and so (WTYW )T = WTYW , i.e., X̃ij = X̃T
ji, i, j = 1, 2, 3, 4.

Substitute the matrices PA, QB in (2.5) into (1.2), from orthogonal invariance

of the Frobenius norm together with (2.6) and (2.7), we have

‖ (PA)TY (QB)− C ‖2

= ‖ UΣT
PAW

TYWΣQBV
T − C ‖2

= ‖ ΣT
PA(W

TYW )ΣQB − UTCV ‖2

=

∥

∥

∥

∥

∥

∥





0 X̃12DQB X̃13

0 DPAX̃22DQB DPAX̃23

0 0 0



−





C̃11 C̃12 C̃13

C̃21 C̃22 C̃23

C̃31 C̃32 C̃33





∥

∥

∥

∥

∥

∥

2

.

So the condition ‖ (PA)TY (QB)−C ‖2= min is equivalent to the following conditions:

‖ X̃12DQB − C̃12 ‖2= min, ‖ DPAX̃22DQB − C̃22 ‖2= min,

‖ X̃13 − C̃13 ‖2= min, ‖ DPAX̃23 − C̃23 ‖2= min .
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Then, X̃12 = C̃12D
−1
QB, X̃13 = C̃13, X̃23 = D−1

PAC̃23. From Lemma 2.2, X̃22 =

φ̃ ∗ (DPAC̃22DQB +DQBC̃
T
22DPA) with φ̃ = (φ̃ij), φ̃ij =

1
α2

i
β2

j
+α2

j
β2

i

, i, j = 1, 2, · · · , s.

Then the general solution of Problem II can be expressed as by (2.8). The proof is

completed.

Theorem 2.5. Let A ∈ Rn×m, B ∈ Rn×l, C ∈ Rm×l, and P,Q ∈ SORn×n. If

the GSVD of [PA,QB] is of form (2.5), WTYW and UTCV are partitioned into

(2.6) and (2.7) respectively, then the general solution of Problem I can be expressed

as

X = PW−T











X̃11 C̃12D
−1
QB C̃13 X̃14

D−1
QBC̃

T
12 X̃22 D−1

PAC̃23 X̃24

C̃T
13 C̃T

23D
−1
PA X̃33 X̃34

X̃T
14 X̃T

24 X̃T
34 X̃44











W−1Q,(2.9)

where X̃11, X̃22, X̃33, X̃44, X̃14, X̃24, X̃34 are the same as in Theorem 2.4

Proof. From Theorem 2.1 and Theorem 2.4, it can be easily proved.

3. The solutions of Problem III and IV. In this section, we derive analytical

expressions of the solutions for Problem III and IV. To this end, we first transform

the least squares problem (1.1) with respect to the matrix equation ATXB = C into

a consistent matrix equation, by using the projection theorem.

Lemma 3.1. (Projection Theorem [18]) Let S be an inner product space, K be a

subspace of S. For given x ∈ S, if there exists a y0 ∈ K such that ‖ x−y0 ‖≤‖ x−y ‖

holds for all y ∈ K, then y0 is unique. Moreover y0 is the unique minimization vector

in K if and only if (x− y0)⊥K.

Theorem 3.2. Suppose that the matrices P , Q, A, B, and C are given in

Problem I, and the matrix X0 is one of the solutions of Problem I. Let

C0 = ATX0B.(3.1)

Then the (P,Q)-orthogonal symmetric solution set of the consistent matrix equation

ATXB = C0(3.2)

is the same as the solution set of Problem I.

Proof. Let

L = {Y |Y = ATXB, ∀X ∈ SRn×n(P,Q), A ∈ Rn×m, B ∈ Rn×l}.

Then L is a subspace of Rm×l. From (3.1), it is obvious that C0 ∈ L, and

‖ ATX0B − C ‖= min
X∈SRn×n(P,Q)

‖ ATXB − C ‖= min
Y ∈L

‖ Y − C ‖ .
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Now, by Lemma 3.1, we have

(ATX0B − C)⊥L.

For all X ∈ SRn×n(P,Q), we have

(ATXB −ATX0B) ∈ L.

It then follows that,

‖ ATXB − C ‖2 = ‖ ATXB −ATX0B +ATX0B − C ‖2

= ‖ ATXB −ATX0B ‖2 + ‖ ATX0B − C ‖2 .

Hence, the conclusion of this theorem holds.

From Theorem 3.2, we easily see that the optimal approximate (P,Q)-orthogonal

symmetric solution X̂ of the consistent matrix equation (3.2) to a given matrix X∗ is

just the solution of Problem III. Thus, how to find C0 is the crux for solving Problem

III. So we need the following theorem.

Theorem 3.3. Suppose that the matrices P , Q, A, B, and C are given in

Problem I. Let the GSVD of the matrix pair [PA,QB] be of form (2.5). Then the

matrix C0 can be expressed as

C0 = U





0 C̃12 C̃13

0 DPAX̃22DQB C̃23

0 0 0



V T ,(3.3)

where X̃22 is the same as in Theorem 2.4.

Proof. From Theorem 2.5, we know that the least squares (P,Q)-orthogonal

symmetric solution X0 of Problem I can be given by (2.9). By substituting (2.9)

and (2.5) into the equation C0 = ATX0B, after straightforward computation, we can

immediately obtain (3.3).

Evidently, (3.3) shows that the matrix C0 given in Theorem 3.3 is dependent

only on the given matrices A,B,C, P, and Q, but independent on the least squares

(P,Q)-orthogonal symmetric solution X0 of Problem I. Furthermore, we can conclude

that

‖ C0 − C ‖2= min
X∈SRn×n(P,Q)

‖ ATXB − C ‖2 .

From the equation above, we know that the matrix equation ATXB = C is consistent

if and only if C0 = C.

To derive the solutions of Problem III and IV, we need to use the CCD of the

matrix pair [PA,QB].
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Lemma 3.4. Suppose that the matrices P , Q, A, B, and C are given in Problem

I. Decompose the matrix pair [PA,QB] by using CCD (see[10]) as

PA = M(ΠPA, 0)EPA, QB = M(ΠQB , 0)EQB,(3.4)

where EPA ∈ Rm×m, EQB ∈ Rl×l are nonsingular matrices, M ∈ ORn×n, and

ΠPA =



















Is 0 0

0 Λj 0

0 0 0

0 0 0

0 ∆j 0

0 0 It′



















, ΠQB =

(

Ih
0

)

,

are block matrices, with the diagonal matrices Λj and ∆j given by

Λj = diag(λ1, · · · , λj), 1 > λ1 ≥ · · · ≥ λj > 0,

∆j = diag(σ1, · · · , σj), 0 < σ1 ≤ · · · ≤ σj < 1, and Λ2
j +∆2

j = Ij .

Here, g = rank(PA), h = rank(QB), s = rank(PA)+ rank(QB)− rank([PA,QB]),

j = rank(BTPA)− s, t′ = rank(PA)− s− j, and g = s+ j + t′.

Let M = (M1,M2,M3,M4,M5,M6), M1 ∈ Rn×s, M2 ∈ Rn×j , M3 ∈ Rn×(h−s−j),

M4 ∈ Rn×(n−h−j−t′), M5 ∈ Rn×j, M6 ∈ Rn×t′ . Partition MTYM and E−T
PAC0E

−1
QB

into the following forms:

MTYM = (Xij), Xij = MT
i YMj, i, j = 1, 2, · · · , 6,(3.5)

E−T
PAC0E

−1
QB =

s

j

t′

m− g









C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44









s j h− s− j l − h

.(3.6)

Theorem 3.5. Suppose that the matrices P,Q,A,B, and C are given in Problem

I, then the equation ATXB = C has a solution X ∈ SRn×n(P,Q) if and only if the

equation (PA)TY QB = C has a solution Y ∈ SRn×n, and X = PY Q.

Proof. Suppose X be one of the (P,Q)-orthogonal symmetric solutions of the

equation ATXB = C, and let Y = PXQ. Then, we have Y T = Y and (PA)TY QB =

C, that is, Y is one of the symmetric solutions of the equation (PA)TY QB = C.

Conversely, if the equation (PA)TY QB = C has a solution Y ∈ SRn×n, then

let X = PY Q, we have (PXQ)T = PXQ and ATXB = C, that is, X is one of the

(P,Q)-orthogonal symmetric solutions of the equation ATXB = C, and X = PY Q.

The proof is completed.
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Theorem 3.6. Suppose that matrices P,Q,A,B are given in Problem I, and C0

is given by (3.3). Let the CCD of the matrix pair [PA,QB] be of form (3.4). Partition

the matrices MTYM and E−T
PAC0E

−1
QB according to (3.5) and (3.6), respectively. Then

the general (P,Q)-orthogonal symmetric solution of the equation ATXB = C0 can be

expressed as

X = PM



















C11 C12 C13 X14 X15 CT
31

CT
12 X22 X23 X24 X25 CT

32

CT
13 XT

23 X33 X34 X35 CT
33

XT
14 XT

24 XT
34 X44 X45 X46

XT
15 XT

25 XT
35 XT

45 X55 X56

C31 C32 C33 XT
46 XT

56 X66



















MTQ,(3.7)

where

X15 = (CT
21 − C12Λj)∆

−1
j , X25 = (CT

22 −XT
22Λj)∆

−1
j , X35 = (CT

23 −XT
23Λj)∆

−1
j ,

the matrices Xii, i = 2, 3, 4, 5, 6 are symmetric matrices with suitable dimensions,

and other unknown Xij are arbitrary.

Proof. From Theorem 3.5, we first consider the symmetric solutions of the

equation (PA)TY QB = C0. Since Y T = Y , we have MTYM is symmetric, i.e,

Xij = XT
ji, i, j = 1, 2, · · · , 6. By inserting the matrices PA and QB in (3.4) into the

equation (PA)TY QB = C0, we get

ET
PA(ΠPA, 0)

TMTYM(ΠQB , 0)EQB = C0

Since EPA, EQB are nonsingular, then

(ΠPA, 0)
TMTYM(ΠQB, 0) = E−T

PAC0E
−1
QB

According to (3.5) and (3.6), we have









X11 X12 X13 0

ΛjX21 +∆jX51 ΛjX22 +∆jX52 ΛjX23 +∆jX53 0

X61 X62 X63 0

0 0 0 0









=









C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44









.

From the above equation, we get

CT
11 = C11, Ci4 = 0, C4j = 0, (i, j = 1, 2, 3, 4).

and

X11 = C11, X12 = C12, X13 = C13, X61 = C31, X62 = C32, X63 = C33,

ΛjX21 +∆jX51 = C21, ΛjX22 +∆jX52 = C22, ΛjX23 +∆jX53 = C23.
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After straightforward computation, and from Theorem 3.5, the (P,Q)-orthogonal

symmetric solution for the equation ATXB = C0 can be expressed as (3.7).

The following lemmas are important for deriving an analytical formula of the

solution for Problem III.

Lemma 3.7. ([15]) Suppose that the matrices E ∈ Rn×m, K ∈ Rm×n, F ∈

Rn×m, H ∈ Rm×n, and D = diag(a1, a2, · · · , an) > 0.

(1) There exists a unique G ∈ Rn×m such that

g(G) =‖ G− E ‖2 + ‖ GT −K ‖2= min,

and

G =
1

2
(E +KT ).

(2) There exists a unique G ∈ Rn×m such that

g(G) =‖ G− E ‖2 + ‖ GT −K ‖2 + ‖ DG− F ‖2 + ‖ GTD −H ‖2= min,

and

G =
1

2
ϕ1 ∗ (E +KT +DF +DHT ),

with ϕ1 = (ϕij), ϕij = 1/(1 + a2i ), (i, j = 1, 2, · · · , n).

Lemma 3.8. ([15]) Suppose that D = diag(a1, a2, · · · , an) > 0, and E,F,H ∈

Rn×n, then there exists a unique G ∈ SRn×n such that

g(G) =‖ G− E ‖2 + ‖ DG− F ‖2 + ‖ GTD −H ‖2= min,

and

G =
1

2
ϕ2 ∗ (E + ET +D(F +HT ) + (FT +H)D),

with ϕ2 = (ϕij), ϕij = 1/(1 + a2i + a2j), (i, j = 1, 2, · · · , n).

Theorem 3.9. Given X∗ ∈ Rn×n, and the matrices P,Q,A,B,C are the same

as in Problem I. Partition the matrix MTPX∗QM into the following form

MTPX∗QM = (X̄ij)6×6(3.8)
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compatibly with the row partitioning of ΠPA, where the matrix M is given in (3.4).

Then there exists a unique solution X̂ for Problem III and X̂ can be expressed as

X̂ = PM



















C11 C12 C13 X̂14 X̂15 CT
31

CT
12 X̂22 X̂23 X̂24 X̂25 CT

32

CT
13 X̂T

23 X̂33 X̂34 X̂35 CT
33

X̂T
14 X̂T

24 X̂T
34 X̂44 X̂45 X̂46

X̂T
15 X̂T

25 X̂T
35 X̂T

45 X̂55 X̂56

C31 C32 C33 X̂T
46 X̂T

56 X̂66



















MTQ,(3.9)

where

X̂22 =
1

2
φ̂ ∗ [∆2

j(X̄22 + X̄T
22)∆

2
j + 2(ΛjC22∆

2
j +∆2

jC
T
22Λj)

−∆jΛj(X̄52 + X̄T
25)∆

2
j −∆2

j(X̄
T
52 + X̄25)Λj∆j ],

X̂23 =
1

2
∆2

j(X̄23 + X̄T
32) + ΛjC23 −

1

2
Λj∆j(X̄

T
35 + X̄53),

X̂15 = (CT
21 − C12Λj)∆

−1
j , X̂25 = (CT

22 − X̂T
22Λj)∆

−1
j , X̂35 = (CT

23 − X̂T
23Λj)∆

−1
j ,

with φ̂ = (φ̂ij) ∈ Rs×s, φ̂ij = 1/(σ2
i σ

2
j + λ2

i σ
2
j + λ2

jσ
2
i ), (i, j = 1, 2, · · · , s), and other

unknown X̂ij =
1
2 (X̄ij + X̄T

ji).

Proof. It is easy to verify that the solution set SE is nonempty and is a closed

convex set. Therefore, there exists a unique solution for Problem III [17]. From

Theorems 3.2 and 3.3, we know that the solution set SE of Problem I is the same as

the (P,Q)-orthogonal symmetric solution set of the consistent equation (3.2). From

Theorem 3.6, we know that the (P,Q)-orthogonal symmetric solution of the consistent

equation (3.2) can be expressed as (3.7).

From the orthogonal invariance of the Frobenius norm together with (3.8) and

(3.7), we have

‖ X −X∗ ‖2

= ‖ MTPXQM −MTPX∗QM ‖2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥



















C11 − X̄11 C12 − X̄12 C13 − X̄13 X14 − X̄14 X15 − X̄15 CT
31 − X̄16

CT
12 − X̄21 X22 − X̄22 X23 − X̄23 X24 − X̄24 X25 − X̄25 CT

32 − X̄26

CT
13 − X̄31 XT

23 − X̄32 X33 − X̄33 X34 − X̄34 X35 − X̄35 CT
33 − X̄36

XT
14 − X̄41 XT

24 − X̄42 XT
34 − X̄43 X44 − X̄44 X45 − X̄45 X46 − X̄46

XT
15 − X̄51 XT

25 − X̄52 XT
35 − X̄53 XT

45 − X̄54 X55 − X̄55 X56 − X̄56

C31 − X̄61 C32 − X̄62 C33 − X̄63 XT
46 − X̄64 XT

56 − X̄65 X66 − X̄66



















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

Hence,

‖ X −X∗ ‖2= min, ∀X ∈ SE
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if and only if

‖ Xii − X̄ii ‖
2= min, i = 3, 4, 5, 6.

‖ Xi4 − X̄i4 ‖2 + ‖ XT
i4 − X̄4i ‖

2= min, i = 1, 2, 3.

‖ X4j − X̄4j ‖
2 + ‖ XT

4j − X̄j4 ‖2= min, j = 5, 6.

‖ X56 − X̄56 ‖2 + ‖ XT
56 − X̄65 ‖2= min,(3.10)

and

‖ X22 − X̄22 ‖2 + ‖ (CT
22 −XT

22Λj)∆
−1
j − X̄25 ‖2

+ ‖ ∆−1
j (C22 − ΛjX22)− X̄52 ‖2= min,(3.11)

and

‖ X23 − X̄23 ‖2 + ‖ ∆−1
j (C23 − ΛjX23)− X̄53 ‖2

+ ‖ XT
23 − X̄32 ‖2 + ‖ (CT

23 −XT
23Λj)∆

−1
j − X̄35 ‖2= min .(3.12)

By making use of Lemma 3.7 (1) and Lemma 2.1, we know that the solution of (3.10)

is of the form

X̂ij =
1

2
(X̄ij + X̄T

ji).

By Lemma 3.8, we know that the solution of (3.11) is

X̂22 =
1

2
φ̂ ∗ [∆2

j(X̄22 + X̄T
22)∆

2
j + 2(ΛjC22∆

2
j +∆2

jC
T
22Λj)

−∆jΛj(X̄52 + X̄T
25)∆

2
j −∆2

j (X̄
T
52 + X̄25)Λj∆j ],

with φ̂ = (φ̂ij) ∈ Rs×s, φ̂ij = 1/(σ2
i σ

2
j + λ2

iσ
2
j + λ2

jσ
2
i ), (i, j = 1, 2, · · · , s). From

Lemma 3.7 (2) and (3.12), we get

X̂23 =
1

2
∆2

j (X̄23 + X̄T
32) + ΛjC23 −

1

2
Λj∆j(X̄

T
35 + X̄53).

From Theorem 3.6, we immediately get X̂25 = (CT
22 − X̂T

22Λj)∆
−1
j , X̂35 = (CT

23 −

X̂T
23Λj)∆

−1
j . Then, the proof is completed.

In Theorem 3.9, if X∗ = 0, then we will derive an analytical expression of the

solution for Problem IV.

Theorem 3.10. Let matrices P,Q,A,B,C be given in Problem I. Then there

exists a unique solution X̃ for Problem IV and X̃ can be expressed as

X̃ = PM



















C11 C12 C13 0 X̂15 CT
31

CT
12 X̂22 ΛjC23 0 X̂25 CT

32

CT
13 CT

23Λj 0 0 CT
23∆j CT

33

0 0 0 0 0 0

X̂T
15 X̂T

25 ∆jC23 0 0 0

C31 C32 C33 0 0 0



















MTQ,(3.13)
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where X̂15, X̂25, X̂22 are the same as in Theorem 3.9.

Proof. The proof of this theorem is similar to that of Theorem 3.9, and it only

needs to let X∗ = 0. From (3.9), we can easily get (3.13).

4. Numerical examples. Based on Theorem 3.9, we formulate the following

algorithm to find the solution X̂ of problem III.

Algorithm

Step 1. Input matrices A, B,C, P , Q and X∗;

Step 2. Make the GSVD of the matrix pair [PA,QB], and partition UTCV

according to (2.7);

Step 3. Compute C0 by (3.3);

Step 4. Make the CCD of the matrix pair [PA,QB], and partition E−1
PAC0E

−1
QB

according to (3.6);

Step 5. Compute X̂ by (3.9).

Example 4.1. Given

A =





0.7119 1.1908 −0.1567 −1.0565

1.2902 −1.2025 −1.6041 1.4151

0.6686 −0.0198 0.2573 −0.8051



 , B =





0.5287 −2.1707 0.6145

0.2193 −0.0592 0.5077

−0.9219 −1.0106 1.692



 ,

C =









−0.4326 −1.1465 0.3273

−1.6656 1.1909 0.1746

0.1253 1.1892 −0.1867

0.2877 −0.0376 0.7258









, X∗ =





−0.4326 0.2877 1.1892

−1.6656 −1.1465 −0.0376

0.1253 1.1909 0.3273



 ,

and

P =





−0.2105 −0.6612 0.7201

−0.6612 −0.4463 −0.6031

0.7201 −0.6031 −0.3432



 , Q =





0.3306 0.0408 0.9429

0.0408 −0.9987 0.0289

0.9429 0.0289 −0.3318



 .

By using the Algorithm, we get the matrix C0 and the unique solution of problem

III as follows:

C0 =









−0.0935 −0.6535 0.5605

−0.1044 0.0193 0.2883

0.1114 0.3393 −0.1869

0.0095 0.1344 −0.4000









, X̂ =





0.0188 0.1046 0.1768

0.0785 −0.0959 0.0694

0.1123 0.2182 0.0267



 .
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It is easy to verify that (PXQ)T = PXQ, AT X̂B = C0, and ‖X̂ −X∗‖ = 2.1273. So

the algorithm is feasible.

Example 4.2. Let

A =



















1 −1 1 1 1

0 0 0 0 0

−1.2 −0.4 0.8 −0.8 0

−0.9 −0.6 0.6 −0.6 0

1 1 −1 0 0

0 0 0 0 0



















, B =



















2 0 0 0

−1 1 −0.8 0

0 0 0 0

1.2 −1 0 0

0 0 0 0

0 0 0 0



















,

C =















3.7168 −1.3336 −0.2051 0.0036

3.9767 −5.8704 3.9192 −1.1718

3.1742 −4.9043 2.9143 −0.9511

5.9993 −5.2680 3.0619 0.6273

2.2422 −2.2761 1.3852 0.5735















, X∗ =



















0.5 1 0.36 1 1.5 1.2

0.2 1 0.3 1.2 2 1

1 1.5 0.1 1.4 1 1

1.3 1 0.5 1.4 1.2 0.5

1 2.3 1.2 0.4 2 1.5

0.4 0.8 1.2 1.2 0.6 0



















.

and

P =



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



















, Q =



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1



















.

According to the Algorithm, we get

C0 =















3.3260 −1.4450 0.1227 0

4.7817 −4.9037 4.1157 0

3.5890 −4.0614 3.4539 0

6.5907 −4.7240 2.9934 0

2.4131 −2.0962 1.3866 0















,

and

X̂ =



















0.1221 −1.7333 −0.6189 0.3631 −0.3802 0.4001

−1.7333 1.0051 −23.6549 −34.8874 4.5926 1.0001

−0.6189 −23.6549 0.1443 −1.2418 1.0103 −1.2000

−0.3631 34.8874 1.2418 0.6237 0.0003 0.8498

−0.3802 4.5926 1.0103 −0.0003 1.9557 −0.6000

−0.4001 −1.0001 1.2000 0.8498 0.6000 0



















.
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It is easy to verify that X is the (P,Q)-orthogonal symmetric solution of the

equation ATXB = C0, and ‖X̂ −X∗‖ = 43.7618.
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