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LEAST SQUARES (P,Q)-ORTHOGONAL SYMMETRIC SOLUTIONS
OF THE MATRIX EQUATION AND ITS OPTIMAL
APPROXIMATION*

LIN-LIN ZHAO', GUO-LIANG CHENT, AND QING-BING LIU?

Abstract. In this paper, the relationship between the (P, Q)-orthogonal symmetric and symmet-
ric matrices is derived. By applying the generalized singular value decomposition, the general expres-
sion of the least square (P, Q)-orthogonal symmetric solutions for the matrix equation AT XB = C
is provided. Based on the projection theorem in inner space, and by using the canonical correlation
decomposition, an analytical expression of the optimal approximate solution in the least squares
(P, Q)-orthogonal symmetric solution set of the matrix equation AT XB = C to a given matrix is
obtained. An explicit expression of the least square (P, Q)-orthogonal symmetric solution for the
matrix equation AT X B = C with the minimum-norm is also derived. An algorithm for finding the
optimal approximation solution is described and some numerical results are given.

Key words. Matrix equation, Least squares solution, (P,Q)-orthogonal symmetric matrix,
Optimal approximate solution.
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1. Introduction. Let R™*™ denote the set of all m x n real matrices, and
SR™ "™ OR™ ™ denote the set of n x n real symmetric matrices and n x n orthogonal
matrices, respectively. I,, denotes n x n unit matrix. The notations AT, || A || stand
for the transpose and the Frobenius norm of A, respectively. For A = (a;;) € R™*™,
B = (b;j) € R™*™, A% B = (a;;b;;) € R™*" represents the Hadamard product of
matrices A and B. Let SOR™™" = {P € R"*"|PT = P, P2 = I} denote the set of
n X n generalized reflection matrices.

DEFINITION 1.1. Given P,Q € SOR™ ™, we say that X € R"" is (P,Q)-

orthogonal symmetric, if
(PXQ)T = PXQ.
We denote by SR™*"(P, Q) the set of all (P, Q)-orthogonal symmetric matrices.
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In this paper, we consider the following problems.

Problem I. Given P,Q € SOR™", A € R™*™, B € R"*!, and C € R™*!, find
X € SR™™(P, Q) such that

(1.1) | ATXB — C ||*= min.

Problem II. Given P,Q € SOR™ " A€ R™™ B c R™ ! and C € R™*!, find
Y € SR™" such that
(1.2) | (PA)TY(QB) - C ||*= min.

Problem III. Let Sg be the solution set of Problem I. Given X* € R™*", find

X e SE such that

| X —X*|?°= min || X —X*|?.
XeSE

Problem IV. Let Sg be the solution set of Problem I, find X € Sp such that

| X ||>= min.

An inverse problem [2, 3, 6, 7] arising in structural modification of the dynamic
behavior of a structure calls for the solution of certain linear matrix equations. The
matrix equation

ATXB=C

with X being orthogonal-symmetric has been studied by Peng [15] which gives the
necessary and sufficient conditions for the existence and the general solution expres-
sion. In [16], the necessary and sufficient conditions for the solvability of the matrix
equation

APXB=C

over the sets of reflexive and anti-reflexive matrices are given, and the general expres-
sions for the reflexive and anti-reflexive solutions are obtained. Don [9], Magnus [12],
and Chu [5] have discussed the matrix equation

BXAT =T

where the solution matrices are known to have a given structure (e.g., symmetric,
triangular, diagonal), either directly from the matrix equation or indirectly from the
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equivalent vector equation. But they did not consider the least squares solutions of
the equation.

For the least squares problem, the (M, N)-symmetric Procrustes problem of the
matrix equation AX = B has been treated in [13]. The least squares orthogonal-
symmetric solutions of the matrix equation AT X B = C, and the least squares sym-
metric, skew-symmetric solutions of the equation BX AT = T have been considered,
respectively, in [14] and [8]. Recently, Qiu, Zhang and Lu in [17] have proposed an
iterative method for the least squares problem of the matrix equation BX AT = F.

Problem III, that is, the optimal approximation problem of a matrix with the
given matrix restriction, is proposed in the processes of test or recovery of linear
systems with incomplete data or revising data. The optimal estimation X is a matrix
that not only satisfies the given restriction but also best approximates the given
matrix.

In this paper, we will discuss the least square (P, Q)-orthogonal symmetric solu-
tions and its optimal approximation for the matrix equation AT X B = C. By using
the generalized singular value decomposition (GSVD), the projection theorem and
the canonical correlation decomposition (CCD), we obtain the general expressions of
the solutions for Problem I, II, IIT and IV.

The paper is organized as follows. In section 2, we will give the general expressions
of the solutions for Problem I and II. In section 3, we will discuss Problem III and
IV. In section 4, we will give an algorithm to compute the solution of Problem III
and numerical examples.

2. The solutions of Problem I and II. In this section, we derive the general
expressions for the solutions of Problem I and II.
THEOREM 2.1. Problem I has a solution if and only if Problem II has a solution.

Proof. Suppose X be one of the solutions of Problem I, then we have (PX Q)T =
PXQ, and

(2.1) | ATXB — C ||?= min.

Let Y = PXQ, then YT =Y. From (2.1), we get || (PA)TYQB — C ||>= min,
that is, Y is one of least squares symmetric solutions of Problem II.

On the contrary, if Y is one of the least squares symmetric solutions of Problem
II, then we have Y7 =Y and

(2.2) | (PATY(QB) - C ||*= min.
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Let X = PYQ, then (PXQ)T = PXQ. From (2.2), we get || AT XB—C |*= min,
that is, X is one of the least squares (P, Q)-orthogonal symmetric solutions of Problem
.o

LEMMA 2.2. Let Dy = diag(ay,az,---,a,) > 0,Ds = diag(by,ba,--+,by) > 0,
and E = (e;j) € R"*™, then there exists a unique S € SR™*"™ such that

(2:3) | D1SDs — E ||= min,
and

(24) S = ¢+ (D1EDy + DyET D),
where ¢ = (¢ij), Pij = Eﬁfi_afff’ i,i=1,2,,n.

Proof. For any S = (s;;) € SR™™", E = (e;;) € R™*™, we have

n

H DlSDQ — E H2 = Z Z(aisijbj - eij)2 = Z(als“bl - 61'1')2 +

i=1 j=1 i=1
> @b} +a2b})s?; — 2(aibjei; + ajbiesi)si; + (e} + e2)].
1<i<j<n

Hence, there exist a unique solution S = (s;;) € SR™*™ such that (2.3) holds and

. aieijbj + ajejibi

S;i = 1<4,5<n.
1) afb?—l—a?bf = 7.7_

)

That is (2.4). O

LEMMA 2.3. Suppose that the matrices P, Q, A, B, and C are given in Problem
I. Decompose the matriz pair [PA, QB] by using GSVD (see[19])as

(2.5) PA=WXpsUT, QB=WZgpV7,

where W is a nonsingular n x n matriz, U € OR™* ™, V € OR™!, and

I t 0 t
Dpa s Dop s
E == E =
pA 0 r—s—t ' QB I r—s—t
0 n—r 0 n—r

Here, r = rank([PA,QB]), s = rank(PA) + rank(QB) — r, t = rank(PA) — s, and
Dpy = diag(ar,az,---,a5) >0, Dop = diag(f1, B2, -, 8s) >0 with1 > a1 > ag >
"'Zas>07 O<ﬂ1 §ﬂ2§§ﬂ5<0) andag+ﬂ3:1)lzla2vvs
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Let W = (Wi, Wy, W5, Wy), Wi € R Wy € R"* W3 € R>(r=s=t) W, ¢
R (n=7) “and let

(2.6) WIYW = (Xyj), e, Xij = WIYW;, i,5=1,2,3,4,
t (:711 C:'12 C:'13
Co Ca O3
2.7 urev = 5 21 U2 O
(2.7) m—s—t C31 C3y Cs3

l+t—r s r—s—t

THEOREM 2.4. Given A € R™*™, B € R"*!, C € R™*, and P,Q € SOR™ ™.
Let the GSVD of the matriz pair [PA,QB] be of form (2.5). Partition WITYW
and UTCV according to (2.6) and (2.7), respectively. Then the general solution of
Problem II can be expressed as
X11 012~D5]13 C~V13~ ):fm

DopCly  Xas  DpjCas Xy -
Q13 C~Y2T3~D13,14 ):(33 X3y ’
X{, X3 X3 Xu

(2.8) y=w-T

where
Xoo = ¢ * (DpaCosDgp + DopChDpa), ¢ = (¢ij),

1
afﬁ? —I—aﬁﬁf’

i, j=1,2,-,s.

7]: =D

Gij =
The matrices Xll,ng,X44 are arbitrary symmetric, X14,X24, X34 are arbitrary.

Proof. Suppose that Y is one of the least squares symmetric solutions for Problem
I, then YT =Y, and so (WTYW)T = WITYW, i.e., Xij = Xﬂ, 1,7 =1,2,3,4.
Substitute the matrices PA, QB in (2.5) into (1.2), from orthogonal invariance
of the Frobenius norm together with (2.6) and (2.7), we have
I (PATY(@B)-C|?
= || USE WY WSopVT —C |2
| S5 (WTYW)Zgn - UTCV |

0 XlgDQB X13 C:'11 (:712
= 0 DpaXowDgop DpaXas | — o1 Co 023
0 0 0 Cs1 Cay COs3

So the condition || (PA)TY (QB)—C ||>= min is equivalent to the following conditions:
| X12Dgp — Cha ||*>=min, || DpaX2sDgp — Cas ||>= min,

|| Xlg — 613 ||2: min, || DPAX23 — 623 ||2: min.
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Then, X12 = OlgDélB, Xlg = 013, X23 = D1_3114023 From Lemma 22, XQQ =
(;3* (DPACQQDQB + DQBCN'QTQDPA) with g?) = (gf;ij), (Jgij = m, 1,7 =1,2,---,s.
Then the general solution of Problem II can be expressed a; b}j (2.8). The proof is
completed. O

THEOREM 2.5. Let A € R"™*™, B € R™*! C € R™ !, and P,Q € SOR™ ™. If
the GSVD of [PA,QB] is of form (2.5), WIYW and UTCV are partitioned into
(2.6) and (2.7) respectively, then the general solution of Problem I can be expressed
as
X11~ 012~Dé]13 C~'13~ ):(14

DgpCH Xoo DphCas  Xos W0
C:'1T3 02T3~D1_3,14 ):(33 )§34 ’
XI X7 X7 Xy

(2.9) X=pPw T

where Xll, XQQ, ng, X44, X14, X24, X34 are the same as in Theorem 2.4

Proof. From Theorem 2.1 and Theorem 2.4, it can be easily proved. O

3. The solutions of Problem IIT and IV. In this section, we derive analytical
expressions of the solutions for Problem IIT and IV. To this end, we first transform

the least squares problem (1.1) with respect to the matrix equation A7 X B = C' into
a consistent matrix equation, by using the projection theorem.

LEMMA 3.1. (Projection Theorem [18]) Let S be an inner product space, K be a
subspace of S. For given x € S, if there exists a yo € K such that || x —yo ||<|| z—y ||
holds for all y € K, then yo is unique. Moreover yg is the unique minimization vector
in K if and only if (x —yo) LK.

THEOREM 3.2. Suppose that the matrices P, Q, A, B, and C are given in
Problem I, and the matriz Xo is one of the solutions of Problem I. Let

(3.1) Co = AT X,B.
Then the (P, Q)-orthogonal symmetric solution set of the consistent matrix equation
(3.2) ATXB =y
is the same as the solution set of Problem I.
Proof. Let
L={Y|Y = ATXB,VX € SR™"(P,Q),A € R™™ B ¢ R"*'}.
Then L is a subspace of R™*!. From (3.1), it is obvious that Cy € L, and

| ATXoB - C ||= min | ATXB—-C|=min ||Y -C] .
XeSR**"(P,Q) YeL
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Now, by Lemma 3.1, we have
(ATXoB - C)LL.
For all X € SR"*™(P,Q), we have
(ATXB - ATXyB) € L.
It then follows that,
| ATXB-C|?=|| ATXB - ATX,B + ATX,B — C ||?
=||ATXB - ATXB |* + | ATXoB-C |?*.
Hence, the conclusion of this theorem holds. O

From Theorem 3.2, we easily see that the optimal approximate (P, Q)-orthogonal
symmetric solution X of the consistent matrix equation (3.2) to a given matrix X* is
just the solution of Problem III. Thus, how to find Cj is the crux for solving Problem
III. So we need the following theorem.

THEOREM 3.3. Suppose that the matrices P, Q, A, B, and C are given in
Problem I. Let the GSVD of the matriz pair [PA,QB] be of form (2.5). Then the

matriz Cy can be expressed as

0 (:712 C:'13
(3.3) Co=U| 0 DpaXnDgp Ca |V7,
0 0 0

where ng is the same as in Theorem 2./.

Proof. From Theorem 2.5, we know that the least squares (P, Q)-orthogonal
symmetric solution Xy of Problem I can be given by (2.9). By substituting (2.9)
and (2.5) into the equation Cy = AT X B, after straightforward computation, we can
immediately obtain (3.3). O

Evidently, (3.3) shows that the matrix Cp given in Theorem 3.3 is dependent
only on the given matrices A, B, C, P, and @, but independent on the least squares
(P, Q)-orthogonal symmetric solution Xy of Problem I. Furthermore, we can conclude
that

| Co—C ||*= min | ATXB-C|?.
XeSRM X" (P,Q)

From the equation above, we know that the matrix equation A7 X B = C is consistent
if and only if Cy = C.

To derive the solutions of Problem IIT and IV, we need to use the CCD of the
matrix pair [PA, QB].
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LEMMA 3.4. Suppose that the matrices P, Q, A, B, and C are given in Problem
I. Decompose the matriz pair [PA, QB] by using CCD (see[10]) as

(3.4) PA=M(IIpa,0)Eps, QB = MIlgg,0)Egs,

where Epy € R™*™, Egp € RY™! are nonsingular matrices, M € OR™ ", and

I, 0 0
0 A, 0
0O 0 O I,
H == H =
PA 0 0 0 , Hgp < 0 ),
0 A; 0
0 0 Iy

are block matrices, with the diagonal matrices A; and A; given by

Aj :diag(/\1,~-,/\j), 1> 2> 2> /\j > 0,

A =diag(or,---,05), 0< o1 <---<g; <1, andA?—i—A?:Ij.
Here, g = rank(PA), h = rank(QB), s = rank(PA) +rank(QB) —rank([PA, QB]),
j=rank(BTPA) —s, t' = rank(PA) —s—j, and g = s+ j + 1.

Let M = (M15M25M37M45M57M6)7 Ml € R'n,><s7 M2 S R'n,><j7 M3 S Rnx(hisij),
My € Rrx(n=h=i=") My € R™J, Mg € R™*". Partition MTY M and E;} CoE
into the following forms:

(35)  MTYM=(Xy), Xij = MY M;, i,j=1,2,--,6,
s Ci1 Cr2 Cis Cha
J Co1 O Cas3 Cag
(3.6) EpiCoEqp =t Cs1 Csz  Css Cs4
m—g Cy1 Cao Cy3 Cuq

S J h—s—j l—h

THEOREM 3.5. Suppose that the matrices P,Q,A, B, and C are given in Problem
I, then the equation AT X B = C has a solution X € SR™"(P,Q) if and only if the
equation (PA)TY QB = C has a solution Y € SR™", and X = PYQ.

Proof. Suppose X be one of the (P, Q)-orthogonal symmetric solutions of the
equation AT XB = C,andlet Y = PXQ. Then, we have Y7 =Y and (PA)TYQB =
C, that is, Y is one of the symmetric solutions of the equation (PA)TYQB = C.

Conversely, if the equation (PA)TYQB = C has a solution Y € SR"*", then
let X = PYQ, we have (PXQ)T = PXQ and AT XB = C, that is, X is one of the
(P, Q)-orthogonal symmetric solutions of the equation AT XB = C, and X = PYQ.
The proof is completed. O
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THEOREM 3.6. Suppose that matrices P,Q,A, B are given in Problem I, and Cy
is given by (3.3). Let the CCD of the matriz pair [PA, QB] be of form (3.4). Partition
the matrices MTY M and E;gCOEé}g according to (3.5) and (3.6), respectively. Then
the general (P, Q)-orthogonal symmetric solution of the equation AT X B = Cy can be
erpressed as

Cii Ciz Ciz Xu X5 OF

CL Xo Xoz X Xos CL
017;3 X,érg X33 X34 X35 ng

3.7 X =PM MTQ,
(37) XI, X7, Xi, Xu X5 X @
Xy X35 X35 Xis Xss Xso
Cs1 Cs Cs3 Xl XL Xee
where

Xi5 = (C3; — CraAj)ATY, Xos = (Cy — XopMj)AT, X5 = (Coy — XggAj)AT Y,

the matrices X, © = 2,3,4,5,6 are symmetric matrices with suitable dimensions,
and other unknown X;; are arbitrary.

Proof. From Theorem 3.5, we first consider the symmetric solutions of the
equation (PA)TYQB = Cy. Since YT = Y, we have MTY M is symmetric, i.e,

Xij = X};, i,5 =1,2,---,6. By inserting the matrices PA and QB in (3.4) into the

equation (PA)TYQB = Cy, we get

EpA(pa,0)" M"Y M(Igp,0)Egs = Co

Since Fpa, Egp are nonsingular, then

(ILpa,0)" M"Y M(Ilgp,0) = Ep4CoEq

According to (3.5) and (3.6), we have

X11 X12 X13 0 Cii Ci2 Ci3
AjXo1 + A5 X510 AjXoo +A;Xs0 AjXoz+A;Xs53 0 | [ Cor O Cas
Xe1 X2 Xe3 0] | Ca Cs Cs

From the above equation, we get
Cl =Cui, Ciu=0, Cyy =0, (i,j=1,2,3,4).
and

X11 = Ch1, X2 = Cha, X13 = C13, Xe1 = C31,Xe2 = C32, Xg3 = C33,
A Xo1 + Aj X5 = Co1, AjXas + Aj X5y = Cog, AjXoz + AjXsz = Cas.

Cha
Coy
C3y4
Cuy
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After straightforward computation, and from Theorem 3.5, the (P, Q)-orthogonal
symmetric solution for the equation AT X B = Cj can be expressed as (3.7). O

The following lemmas are important for deriving an analytical formula of the
solution for Problem III.

LEMMA 3.7. ([15]) Suppose that the matrices E € R"*™, K € R™*" F €
R ™ H e R™*" and D = diag(ai,as, -, a,) > 0.

(1) There exists a unique G € R™*™ such that
9(G)=| G- E | + || G" - K |[*= min,
and

G = %(EJFKT).

(2) There exists a unique G € R™*™ such that
9G) = G-E|?+ |G K|+ | DG~ F |*+ || G"D — H ||*= min,
and

1
G=§<p1*(E+KT+DF+DHT),

LEMMA 3.8. ([15]) Suppose that D = diag(ay,az, --,an) > 0, and E,F,H €
R™ ™ then there exists a unique G € SR™™ such that

9(G) = G=E|?+| DG - F | + || G"D — H ||>= min,
and
G= %soa*(E+ET+D(F+HT)+(FT+H)D)=

with Y2 = (@ij)a PYij = 1/(1 +a’z2 +a§)a (Za.] = 1527" 'an)~

THEOREM 3.9. Given X* € R"*" and the matrices P,Q,A, B,C are the same
as in Problem I. Partition the matriv MT PX*QM into the following form

(3.8) MTPX*QM = (Xi;)6x6
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compatibly with the row partitioning of Ilpa, where the matriz M is given in (3.4).
Then there exists a unique solution X for Problem III and X can be expressed as

Cn 012 Cis )514 )515 ch
c Xoo Xoz Xoy Xos ch
(3.9) Sopu| 9 X% )f";? X Xos G MTQ,
X7 X24 X34 X44 Xas Xas
Xt XL X% X45 X55 Xs6
Cs1 Cs O3 XL XL Xes

where
N 1 _ _
Xy = 5% [AJ(Xa2 + X35) AT + 2(A;C0 A7 + AJCA)
—AGA; (X5 4+ X35) A7 — A2(X7, + Xos)AjA],
. 1 _ _ 1 _ _
Xo3 = §A§(X23 + X55) + A;jCoz — gAjAj(X?g + X53),
Xi5 = (Ch — Crahj)ATY, Xos = (CF, — XA)AT!, X5 = (Chy — X33A) AT,

with ¢ = (dij) € R°**, dij = 1/(0707 + Njo? + A307), (i,§ =1,2,---,5), and other
unknown X;; = 3(Xi; + X)),

Proof. 1t is easy to verify that the solution set Sg is nonempty and is a closed
convex set. Therefore, there exists a unique solution for Problem III [17]. From
Theorems 3.2 and 3.3, we know that the solution set Sg of Problem I is the same as
the (P, @)-orthogonal symmetric solution set of the consistent equation (3.2). From
Theorem 3.6, we know that the (P, Q)-orthogonal symmetric solution of the consistent
equation (3.2) can be expressed as (3.7).

From the orthogonal invariance of the Frobenius norm together with (3.8) and
(3.7), we have

| X - X" |2
= | MT*PXQM — MTPX*QM |

Cii—Xi1 Crpo—Xip Cis—Xiz Xu—Xuu Xi5—Xi5 CH—Xie
Cly— Xo1 Xoo— Xog Xoz— Xog Xoa — Xou Xos — Xos  Cy — Xoe
Clhi—Xs1 XL — X3 Xg3— X33 Xsa— Xau Xss— Xgs O — Xse
Xy —Xn X3, —Xuo Xy —Xug Xaa— Xaa Xus — Xas Xug — Xus
X —Xs1 XL —Xso X% —Xszs XL —Xsu Xss— Xss Xse — Xse
C31— X1 Cs2— Xeo Csz— Xes Xk — Xea X — Xes  Xeo — Xes

Hence,

| X — X*||?=min, VX € Sg
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if and only if

| Xis — Xii ||°=min, i=3,4,5,6.

| Xia — Xia | + || X} — X4 [|P=min, i=1,2,3.

| Xaj — Xaj |* + || Xij — Xja |*=min, j=5,6.
(3.10) | X56 — Xs6 [|* + || X56 — Xos ||>= min,
and

| Xag — Koo || + || (C — XgpAj) AT — Xos ||
(3.11) + || A7 (Caz — Aj Xa3) — X5z ||°= min,
and
| Xo3 — Xoz || + | A7 ' (Cas — AjXa3) — X3 ||

(3.12) 1| X — X |2 + || (C% — XHADAT! — X5 [°= min.

By making use of Lemma 3.7 (1) and Lemma 2.1, we know that the solution of (3.10)
is of the form

. 1 _
Xij = 5(Xi + X7).
By Lemma 3.8, we know that the solution of (3.11) is
. 1. _ _
Xop = 50 [A%(Xaz + X35) A7 4 2(A;C AT + A2CHHA)
—AGA;(Xso + Xo5) A7 — A3(XTy + Xos)AjA],

with ¢ = (gZA)”) € RS*s, qgij = 1/(0120]2» + )\12(7]2» + A?Uf), (i,j = 1,2,---,s). From
Lemma 3.7 (2) and (3.12), we get

. 1 - _ 1 _ _
Xo3 = QA?(X% + ng) + Aj023 - §AjAj(X§;—) + X53).

From Theorem 3.6, we immediately get Xo5 = (CZ, — X;‘FQAj)Agl, X35 = (CL —
)A(QT?,AJ-)AJ._l. Then, the proof is completed. O

In Theorem 3.9, if X* = 0, then we will derive an analytical expression of the
solution for Problem IV.

THEOREM 3.10. Let matrices P,Q,A, B,C be given in Problem I. Then there
exists a unique solution X for Problem IV and X can be expressed as

Ci Cn C3 0 X5 Of

01T2 XQQ Ajczg 0 X25 ng
513 x—pu| Cb ChA 0 0 Chay Chf )
' 0 0 0 0 0 0 ’
Xt XL AjCy 0 0 0
031 032 033 0 0 0
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where X15, X25, XQQ are the same as in Theorem 3.9.

Proof. The proof of this theorem is similar to that of Theorem 3.9, and it only
needs to let X* = 0. From (3.9), we can easily get (3.13). O

4. Numerical examples. Based on Theorem 3.9, we formulate the following
algorithm to find the solution X of problem IIL

Algorithm
Step 1. Input matrices A, B,C, P, @ and X*;

Step 2. Make the GSVD of the matrix pair [PA,QB], and partition UTCV
according to (2.7);

Step 3. Compute Cy by (3.3);

Step 4. Make the CCD of the matrix pair [PA, @B], and partition E;}L‘C’OE@%}
according to (3.6);

Step 5. Compute X by (3.9).

EXAMPLE 4.1. Given

0.7119 1.1908 —0.1567 —1.0565 0.5287 —2.1707 0.6145
A= 1.2902 -1.2025 —-1.6041 1.4151 , B= 0.2193 —-0.0592 0.5077 |,
0.6686 —0.0198 0.2573 —0.8051 —-0.9219 —-1.0106 1.692

—0.4326 —1.1465 0.3273

16656 11909  0.1746 —0.4326  0.2877 1.1892

C=1 01253 11802 —o01ser |* X ~ _01£65536 _1%%(;5 _OO?')Z?;ZG :
0.2877 —0.0376 0.7258 ' ' '

and
02105 —0.6612 0.7201 0.3306  0.0408  0.9429

P=| —06612 —0.4463 —0.6031 |, Q= 0.0408 —0.9987 0.0289
0.7201 —0.6031 —0.3432 0.9429 0.0289 —0.3318

By using the Algorithm, we get the matrix Cy and the unique solution of problem
IIT as follows:

—0.0935 —0.6535 0.5605
—0.1044 0.0193  0.2883
0.1114  0.3393 —0.1869
0.0095  0.1344 —0.4000

0.0188 0.1046 0.1768
, X =1 0.0785 —0.0959 0.0694
0.1123  0.2182  0.0267

Cp =
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It is easy to verify that (PXQ)T = PXQ, ATXB = Cj, and || X — X*|| = 2.1273. So
the algorithm is feasible.

EXAMPLE 4.2. Let

1 -1 1 1
0 0 0 0
-12 —-04 08 -0.8

o O O o o+

0
0
0
A= -0.9 —06 0.6 —0.6 » B= 12 -1 0 o0 |’
1 1 -1 0 0 0 0 0
0 0 0 0 0 0 0 0
3.7168 —1.3336 —0.2051 0.0036 8; 1 06336 112 1o 1.2
3.9767 —5.8704 3.9192 —1.1718 1 15 0'1 1'4 1
C= 3.1742 —4.9043 2.9143 —-0.9511 |, X* = 13 1 0'5 1'4 12 05
5.9993 —5.2680 3.0619 0.6273 1 93 1'2 0'4 2 1'5
2.2422 —2.2761 1.3852 0.5735 04 08 12 12 06 0
and
1 0 0 0 0 O 10 0 0 O O
01 0 0 0 O 01 0 OO0 O
0 0 -1 0 0O 0 0 -1 00 O
P= 00 0 -1 00 » Q= 00 0O 1 0 O
0 0 O 1 0 0O 0 0 01 O
0 0 O 0 0 1 00 0 00 -1
According to the Algorithm, we get
3.3260 —1.4450 0.1227 0
4.7817 —4.9037 4.1157 0
Co = 3.5890 —4.0614 3.4539 0 |,
6.5907 —4.7240 2.9934 0
2.4131 —2.0962 1.3866 O
and
0.1221 —1.7333 —0.6189 0.3631 —0.3802 0.4001
—1.7333 1.0051 —23.6549 —34.8874 4.5926 1.0001
% —0.6189 —23.6549  0.1443 —1.2418 1.0103  —1.2000

—0.3631  34.8874 1.2418 0.6237 0.0003  0.8498
—0.3802  4.5926 1.0103 —0.0003  1.9557 —0.6000
—0.4001 —1.0001 1.2000 0.8498 0.6000 0
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It is easy to verify that X is the (P, Q)-orthogonal symmetric solution of the
equation ATXB = Cp, and || X — X*| = 43.7618.
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