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PARETO H-EIGENVALUES OF NONNEGATIVE TENSORS AND UNIFORM

HYPERGRAPHS∗

LU ZHENG† AND BO ZHOU†

Abstract. The Pareto H-eigenvalues of nonnegative tensors and (adjacency tensors of) uniform hypergraphs are studied.

Particularly, it is shown that the Pareto H-eigenvalues of a nonnegative tensor are just the spectral radii of its weakly irreducible

principal subtensors, and those hypergraphs that minimize or maximize the second largest Pareto H-eigenvalue over several

well-known classes of uniform hypergraphs are determined.
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1. Introduction. A vector x = (x1, . . . , xn)> is nonnegative (positive, respectively) if xi ≥ 0 (xi > 0,

respectively) for all i ∈ [n] := {1, . . . , n}. Let Rn+ = {x ∈ Rn : x is nonnegative} and Rn++ = {x ∈ Rn :

x is positive}.

For positive integers k and n with k ≥ 2, a k-order n-dimensional tensor (or hypermatrix) T is a

multidimensional array of nk real entries of the form T = (ti1...ik), where i1, . . . , ik ∈ [n]. A k-order n-

dimensional real tensor is symmetric if its entries ti1...ik are invariant for any permutation of the indices

i1, . . . , ik. A k-order n-dimensional real tensor is said to be a nonnegative tensor if all its entries are

nonnegative. For a k-order n-dimensional real tensor T and an n-dimensional vector x = (x1, . . . , xn)>, the

product T xk−1 is defined to be an n-dimensional vector so that for i ∈ [n],

(T xk−1)i =
∑
i2∈[n]

· · ·
∑
ik∈[n]

ti,i2,...,ikxi2 . . . xik ,

while T xk is defined as the following homogeneous polynomial

T xk =
∑
i1∈[n]

· · ·
∑
ik∈[n]

ti1,...,ikxi1 . . . xik .

So T xk = x>(T xk−1). Let x[k] = (xk1 , . . . , x
k
n)>.

Definition 1.1 ([13, 7]). A complex number λ is called an eigenvalue of tensor T of order k and

dimension n, if the system of homogeneous polynomial equations

T xk−1 = λx[k−1],

i.e.,

(T xk−1)i = λxk−1i for i ∈ [n],
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has a nonzero solution x. The vector x is called an eigenvector of T corresponding to λ. Moreover, if both

λ and x are real, then we call λ an H-eigenvalue and x an H-eigenvector of T . The spectral radius of T
is the largest modulus of its eigenvalues, denoted by ρ(T ). An H-eigenvalue of T is called an H+-eigenvalue

(H++-eigenvalue, respectively) of T if its H-eigenvector x ∈ Rn+ (x ∈ Rn++, respectively).

Pareto eigenvalues of tensors have been studied to some extent, see [9, 17, 18, 19].

Definition 1.2 ([17]). A real number λ is called a Pareto H-eigenvalue of tensor T of order k and

dimension n if there is a nonzero vector x ∈ Rn+ satisfying{
T xk = λx>x[k−1],

T xk−1 − λx[k−1] ∈ Rn+.

The vector x is called a Pareto H-eigenvector of T associated to λ.

If k = 2 in Definition 1.2, then λ is a Pareto eigenvalue of n×n matrix T , and x is a Pareto H-eigenvector

of T associated to λ. Pareto eigenvalues for matrices are also known as complementarity eigenvalues.

Fernandes et al. [3] and Seeger [15] studied the Pareto eigenvalues of adjacency matrix of a graph.

From Definitions 1.1 and 1.2, we know that, if λ is an H+-eigenvalue of T , then λ is also a Pareto

H-eigenvalue of T .

Definition 1.3. Let T be a tensor of order k and dimension n. For ∅ 6= I ⊆ [n], the principal subtensor

of T indexed by I, denoted by TI , is the tensor of order k and dimension |I| with entries ti1...ik with

i1, . . . , ik ∈ I.

We need the following necessary and sufficient conditions for Pareto H-eigenvalues established by Song

and Qi.

Theorem 1.4 ([17]). Let T be a tensor of order k and dimension n. Then λ is a Pareto H-eigenvalue

of T if and only if there exists I with ∅ 6= I ⊆ [n] and y ∈ R|I|++ satisfying

TIyk−1 = λy[k−1],

and ∑
i2∈I
· · ·
∑
ik∈I

tii2...ikyi2 . . . yik ≥ 0 for i ∈ [n] \ I.

Furthermore, a Pareto H-eigenvector x of T associated to λ is given by

xi =

{
yi if i ∈ I,
0 if i ∈ [n] \ I.

Given a positive integer k ≥ 2, a k-uniform hypergraph G consists of a finite set of vertices V (G) a set

of hyperedges (or simply edges) and E(G) ⊆ 2V (G) such that each edge contains exactly k vertices, where

2V (G) denotes the power set of V (G). We call the numbers of vertices and edges of G as the order and size

of G, respectively. A uniform hypergraph is a k-uniform hypergraph for some k. A linear hypergraph is

one in which every two distinct edges intersect in at most one vertex. Let H be an ordinary graph (i.e., a

2-uniform hypergraph). For any k ≥ 3, the kth power of H, denoted by Hk, is defined as the k-uniform
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hypergraph with edge set E(Hk) = {e∪{ie,1, . . . , ie,k−2} : e ∈ E(H)} and vertex set V (Hk) = V (H)∪{ie,j :

e ∈ E(H), j ∈ [k − 2]}.

Let G be a k-uniform hypergraph. For v ∈ V (G), denote by EG(v) the set of edges containing v, and

the degree of v in G, denoted by dG(v) or simply dv, is |EG(v)|. A vertex is called a pendant vertex if its

degree is one, and an edge e is a pendant edge (at v) if v is the only vertex of e with degree more than one.

A hypergraph G is r-regular if the degree of each vertex is r. Let U be a proper nonempty subset of V (G),

G − U denotes the hypergraph obtained from G by deleting the vertices of U and the edges containing at

least one vertex of U . In particular, we write G− u for G− {u} if U = {u}.

A walk is an alternating sequence v1, e1, v2, e2, . . . , e`, v`+1 such that edge ei contains vertices vi and

vi+1 for i = 1, . . . , `. The value ` is the length of this walk. A path is a walk with all vi distinct and all

ei distinct. A cycle is a walk containing at least two edges, all ei are distinct and all vi are distinct except

v1 = v`+1. If G is connected and acyclic, then G is called a hypertree. If G is connected and contains exactly

one cycle, then G is called a unicyclic hypergraph. It is evident that a hypertree is a linear hypergraph,

while a unicyclic hypergraph is linear if the length of its unique cycle is at least three.

Definition 1.5 ([2]). Let G be a k-uniform hypergraph of order n. The adjacency tensor A(G) =

(ai1...ik) of G is defined as

ai1...ik =

{
1

(k−1)! if {i1, . . . , ik} ∈ E(G),

0 otherwise.

The spectral radius of G is the the spectral radius of A(G), denoted by ρ(G). That is, ρ(G) = ρ(A(G)). The

Pareto H-eigenvalues of G are just the Pareto H-eigenvalues of A(G).

In this paper, we study the Pareto H-eigenvalues of nonnegative tensors and uniform hypergraphs.

Among others, we show that the Pareto H-eigenvalues of a nonnegative tensor are just the spectral radii of

its weakly irreducible principal subtensors, and we determine those hypergraphs that minimize or maximize

the second largest Pareto H-eigenvalue over some classes of uniform hypergraphs.

2. Preliminaries. In this section, we introduce some basic definitions and important lemmas that will

be used.

Definition 2.1. Let T be a k-order n-dimensional nonnegative tensor. If there exists some I with

∅ 6= I ⊂ [n] such that ti1...ik = 0 whenever i1 ∈ I and ij ∈ [n] \ I for some j = 2, . . . , k, then, T is weakly

reducible. Otherwise, T is weakly irreducible.

The following lemma is the Perron–Frobenius Theorem for nonnegative tensors, see [1, Theorem 1.4],

[20, Theorem 2.3], and [4, Theorem 4.1].

Lemma 2.2. Let T be a k-order n-dimensional nonnegative tensor. Then

(i) ρ(T ) ≥ 0 is an H+-eigenvalue.

(ii) If T is weakly irreducible, then ρ(T ) is an H++-eigenvalue with a unique positive eigenvector, up to

a positive scalar.

(iii) If T is weakly irreducible and λ is an H-eigenvalue of T with a positive eigenvector, then λ = ρ(T ).

A nonnegative vector x ∈ Rn is called k-unit if
∑n
i=1 x

k
i = 1.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 423-433, July 2023.

L. Zheng and B. Zhou 426

For a weakly irreducible k-order n-dimensional nonnegative tensor T , Lemma 2.2 (ii) implies that there

is a unique k-unit positive eigenvector corresponding to ρ(T ), which is called the Perron vector.

The first part of the following lemma was given in [5] and the second part follows from Theorem 2.2.

Lemma 2.3. Let T be a nonnegative tensor of order k and dimension n. Let T1 be a principal subtensor

of T . Then ρ(T1) ≤ ρ(T ). Moreover, if T is irreducible and T1 6= T , then ρ(T1) < ρ(T ).

Lemma 2.4 ([12]). Let G be a k-uniform hypergraph on n vertices. Then A(G) is weakly irreducible if

and only if G is connected.

Lemma 2.5 ([22]). If λ is an eigenvalue of a graph G, then λ
2
k is an eigenvalue of Gk. Moreover,

ρ(Gk) = k
√
ρ2(G).

For a k-uniform hypergraph G, denote by σ(G) the set of Pareto H-eigenvalues of G. If G is an ordinary

graph, then σ(G) the set of Pareto eigenvalues of G.

Lemma 2.6 ([15]). Let G be a connected graph of order n. Then

|σ(G)| ≥ n,

with equality if and only if G is either a star, a path, a cycle, or a clique.

Denote by Sm,k the k-uniform hyperstar with m edges, which is a k-uniform hypertree with m edges and

there is a common vertex in any edge. In particular, S0,k is a single vertex, while S1,k is a single edge. The

ordinary star on n ≥ 1 vertices is Sn−1,2, denoted by Sn. For k ≥ 3, let Um,k be the k-uniform hypergraph

consisting of two edges e1, e2 with precisely two vertices v1, v2 in common if m = 2, and the k-uniform

hypergraph obtained from U2,k by attaching m− 2 pendant edges e3, . . . , em at v1 if m ≥ 3, see Figure 1.

Figure 1. Unicyclic hypergraph Um,k.

Lemma 2.7 ([6, 11]). If G is a k-uniform hypertree with m edges, then ρ(G) ≤ k
√
m, with equality if

and only if G ∼= Sm,k. If G is a k-uniform unicyclic hypergraph with m ≥ 2 edges, then ρ(G) ≤ ρ(Um,k),

with equality if and only if G ∼= Um,k when k ≥ 3.

From [14, Theorem 2] and its proof, we have the following lemma.

Lemma 2.8 ([14]). Let T be a symmetric nonnegative tensor of order k and dimension n and x a k-unit

vector in Rn+. Then ρ(T ) ≥ T xk, with equality if and only if x is an H-eigenvector of T associated with

ρ(T ).
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3. Pareto H-eigenvalue of a nonnegative tensor. In this section, we give necessary and sufficient

conditions for Pareto H-eigenvalues of nonnegative tensors.

Lemma 3.1. Let T be a k-order n-dimensional nonnegative tensor with an H++-eigenvalue ρ0. Then

ρ0 = ρ(TI) for some I with ∅ 6= I ⊆ [n] and TI is weakly irreducible.

Proof. If T is weakly irreducible, then it follows from Lemma 2.2 that ρ0 = ρ(T ) and hence the result

follows by setting I = [n].

Suppose that T is weakly reducible. Then there exists some J with ∅ 6= J ⊂ [n] such that ti1...ik = 0

whenever i1 ∈ J and is ∈ [n] \ J for some s = 2, . . . , k. Let x be the positive eigenvector of T associated to

ρ0. Then, for i1 ∈ J , one has

ρ0x
k−1
i1

=
∑

i2,...,ik∈[n]

ti1...ikxi2 . . . xik =
∑

i2,...,ik∈J
ti1...ikxi2 . . . xik =

(
TJxk−1J

)
i1
,

so

ρ0x
[k−1]
J = TJxk−1J .

This means that ρ0 is an H++-eigenvalue TJ . If TJ is weakly irreducible, then by Lemma 2.2, ρ0 = ρ(TJ),

so we are done by setting I = J . Otherwise, by repeating the above process to TJ , we may finally find some

I with ∅ 6= I ⊂ J ⊂ [n] such that ρ0 = ρ(TI) and TI is weakly irreducible.

Consider the case when k = 2 in Lemma 3.1. Note that ρ0 is not necessarily the spectral radius of each

maximal irreducible principal submatrix of T . For example, let

T =

2 2 0

2 2 0

0 1 3

 .

Evidently, T j = 4j with j = (1, 1, 1)>, and 4 is not the spectral radius of the principal submatrix (3).

Theorem 3.2. Let T be a nonnegative tensor of order k and dimension n. Then, λ is a Pareto H-

eigenvalue of T if and only if there exists some I with ∅ 6= I ⊆ [n] such that TI is weakly irreducible and

λ = ρ(TI).

Proof. By Theorem 1.4, λ is a Pareto H-eigenvalue of T if and only if λ is an H++-eigenvalue of AJ for

some J with ∅ 6= J ⊆ [n].

By Lemma 3.1, λ is an H++-eigenvalue of AJ if and only if λ = ρ(TI) for some I with ∅ 6= I ⊆ J and TI
is weakly irreducible. So the result follows.

By Theorem 3.2, any diagonal entry of a nonnegative tensor of order k and dimension n is a Pareto

H-eigenvalue of T .

Corollary 3.3. Let T be a nonnegative tensor of order k and dimension n.

(i) All Pareto H-eigenvalues of T are nonnegative.

(ii) ρ(T ) is the largest Pareto H-eigenvalue of T .

(iii) 0 is the smallest Pareto H-eigenvalue of T .

Proof. (i) follows from Theorem 1.4 trivially.
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By Lemma 2.2 (i), ρ(T ) is an H+-eigenvalue of T , so ρ(T ) is a Pareto H-eigenvalue of T . Let λ be

any Pareto H-eigenvalue of T . By Theorem 3.2, λ = ρ(TI) for some I with ∅ 6= I ⊆ [n]. By Lemma 2.3,

λ = ρ(TI) ≤ ρ(T ). This proves (ii).

Take i ∈ [n]. Let x ∈ Rn with xi = 1 and xj = 0 for j ∈ [n] \ {i}. Then,(
T xk−1

)
i

=
∑
i2∈[n]

· · ·
∑
ik∈[n]

ti,i2,...,ikxi2 . . . xik = 0,

and (
T xk−1

)
j

=
∑
i2∈[n]

· · ·
∑
ik∈[n]

tj,i2,...,ikxi2 . . . xik ≥ 0.

Applying Theorem 1.4 by setting I = {i} and (i), we know that 0 is the smallest Pareto H-eigenvalue of T .

This proves (iii).

4. Pareto H-eigenvalue of a uniform hypergraph. Let G be a k-uniform hypergraph. By Lemma

2.2, ρ(G) is the largest H+-eigenvalue. If G is connected, then by Lemmas 2.4 and 2.2, ρ(G) is the largest

H++-eigenvalue. Recall that σ(G) denotes the set of Pareto H-eigenvalues of G.

Theorem 4.1. Let G be a connected k-uniform hypergraph on n vertices. Then,

σ(G) = {ρ(H) : H is a connected induced subhypergraph of G}.

Proof. Let λ be any Pareto H-eigenvalue of G. By Theorem 3.2, λ = ρ(A(G)I) for some I with ∅ 6= I ⊆
[n] such that A(G)I is weakly irreducible. Let H be the subhypergraph of G induced by I. By Lemma 2.4,

H is connected. Note that A(H) = A(G)I . So λ = ρ(A(G)I) = ρ(H). Thus,

σ(G) ⊆ {ρ(H) : H is a connected induced subhypergraph of G}.

Conversely, if H is a connected induced subhypergraph of G, then A(H) is a principal subtensor of

A(G), and by Proposition 2.4, A(H) is weakly irreducible, so by Theorem 3.2, ρ(H) = ρ(A(H)) is a Pareto

H-eigenvalue of G. So

σ(G) ⊇ {ρ(H) : H is a connected induced subhypergraph of G}.

This completes the proof.

Let G be a k-uniform hypergraph. By Theorem 4.1 and Lemma 2.4, ρ(G) is the largest Pareto H-

eigenvalue of G. For a k-uniform hypergraph with at least one edge, we denote by λ2(G) the second largest

Pareto H-eigenvalue of G.

Proposition 4.2. Let G be a connected k-uniform hypergraph with at least one edge. Then,

λ2(G) = max{ρ(G− v) : v ∈ V (G)}.

Proof. Let r = max{ρ(G − v) : v ∈ V (G)}, say r = ρ(G − w) with w ∈ V (G). By Lemma 2.3, r is the

largest spectral radius among all proper induced subhypergraphs of G whether G − w is connected or not.

By Theorem 4.1, λ2(G) = r.
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For a hypergraph G, denote by S(G) the set of representatives of all isomorphic connected induced

subhypergraphs of G. A connected k-uniform hypergraph G is said to be spectrally scattered if for any

connected induced subhypergraph H of G, the spectral radius of A(H) are all different. Let G be a connected

k-uniform hypergraph, then from Theorem 4.1,

|σ(G)| ≤ |S(G)|,

with equality if and only if G is spectrally scattered.

Let Pm,k be the k-uniform hyperpath with m edges. Particularly, P0,k is a single vertex. The ordinary

path on n vertices is Pn = Pn−1,2. Let Cm,k be the k-uniform hypercycle with m edges, where m ≥ 2 if

k ≥ 3 and m ≥ 3 if k = 2. The ordinary cycle on n ≥ 3 vertices is Cn = Cn,2. Let Kn be the complete

graph on vertices.

Theorem 4.3. Let G be a connected graph with n ≥ 3 vertices. For k ≥ 3,

|σ(Gk)| ≥ n,

with equality if and only if G is a path or a star.

Proof. Note that

{Hk : H ∈ S(G)} ⊆ S(Gk).

By Theorem 4.1, we have

σ(Gk) = {ρ(H) : H ∈ S(Gk)} ⊇ {ρ(Hk) : H ∈ S(G)}.

Now, by Lemmas 2.5 and 2.6, we have |σ(Gk)| ≥ |σ(G)| ≥ n.

Suppose that |σ(Gk)| = n. By the above argument, |σ(G)| = n, so by Lemma 2.6, G ∼= Sn, Pn, Cn,Kn.

Obviously, S(Skn) = {Sk1 , Sk2 , . . . , Skn} and S(P kn ) = {P k1 , P k2 , . . . , P kn}. Let U be the set of the k − 2 vertices

of degree one in an arbitrary but fixed edge of Ckn. Then, Ckn − U ∼= P kn . So S(Ckn) = {P k1 , P k2 , . . . , P kn , Ckn}.
Note that ρ(St) =

√
t− 1, ρ(Pt) = 2 cos π

t+1 and if t ≥ 3, ρ(Ct) = 2. By Lemma 2.5, ρ(St)
k = k

√
t− 1,

ρ(P kt ) = k

√
4 cos2 π

t+1 and if t ≥ 3, ρ(Ckt ) = k
√

4. Thus, we have

σ(Skn) = { k
√
t− 1 : t = 1, . . . , n},

σ(P kn ) =

{
k

√
4 cos2

π

t+ 1
: t = 1, . . . , n

}
,

and

σ(Ckn) = σ(P kn ) ∪ { k
√

4}.

Hence, |σ(P kn )| = |σ(Skn)| = n and |σ(Ckn)| = n + 1. It remains to check the size of σ(Kk
n) with n ≥ 3. For

any edge e ∈ E(Kk
n), deleting the k − 2 vertices of e from Kk

n results in (Kn − e)k, which is is a connected,

so

{Kk
1 ,K

k
2 , . . . ,K

k
n, (Kn − e)k} ⊆ S(Kk

n).

For i = 1, . . . , n − 1, Ki is a proper subgraph of Kn − e and Kn − e is a proper subgraph of Kn, so, for

i = 1, . . . , n, we have ρ(Ki) < ρ(Kn − e). Now by Lemma 2.5 that |σ(Kk
n)| > n. It follows that G is a star

or a path.

Conversely, if G is a star or a path, then, as above, it is easy to see that |σ(Gk)| = n.
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Theorem 4.4. Let G be a connected linear k-uniform hypergraph with diameter d. Then, a0 = 0, a1 = 1,

a2 = k
√

2, . . . , ad = k

√
4 cos2 π

d+2 are always the Pareto H-eigenvalues of G.

Proof. Note that G has an induced subhypergrraph that is isomorphic to Pd,k. By Theorem 4.1, we

have σ(Pd,k) ⊆ σ(G).

Denote by Dm,k;1 the k-uniform hypertree obtained from Sm−1,k by attaching a pendant edge at a vertex

of degree one, where m ≥ 3.

Theorem 4.5. Let G be a k-uniform hypertree with m ≥ 1 edges. Then, λ2(G) ≤ k
√
m− 1, with equality

if and only if G ∼= Sm,k, or m ≥ 3 and G ∼= Dm,k;1.

Proof. If m = 1, 2, then G ∼= Sm,k with λ2(G) = ρ(Sm−1,k) = k
√
m− 1, so the result holds. Suppose

that m ≥ 3. By Theorem 4.1, λ2(G) ≤ ρ(H) for some connected proper induced subhypergraph H of G.

It is evident that H is a k-uniform hypertree with at most m − 1 edges. By Lemma 2.7, ρ(H) ≤ k
√
m− 1,

with equality if and only if H ∼= Sm−1,k. It thus follows that λ2(G) ≤ k
√
m− 1, with equality if and only if

H ∼= Sm−1,k, or equivalently, G ∼= Sm,k or Dm,k;1.

Lemma 4.6. Let T be a tree with m ≥ 2 edges. Then,

λ2(T k) ≥ k

√
4 cos2

π

m+ 1
,

with equality if and only if T is either a path or a star with three edges.

Proof. Let w be a vertex with degree at least two. Let H be a component of T − w with maximum

spectral radius. Let v be a pendant vertex of T that belongs to a component of T − w different from H.

Then, H is a proper induced subgraph of T − v. By Lemmas 2.4 and 2.3, ρ(H) < ρ(T − v). So, we have by

Lemma 2.5 that ρ(T k − w) = ρ((T − w)k) = ρ(Hk) < ρ((T − v)k).

Let e = xy be an edge of T that is not a pendant edge. For any vertex ie,j of T k, we denote by G the

component of T k−ie,j with maximum spectral radius. We may assume that G = T k1 , where T1 is a component

of T − x or T − y. Letting v be a pendant vertex of T lying outside T1, T1 is a proper induced subgraph of

T − v. So, by Lemmas 2.4 and 2.3, ρ(T1) < ρ(T − v). By Lemma 2.5, ρ(T k − ie,j) = ρ(T k1 ) < ρ((T − v)k).

Therefore, we have by Proposition 4.2 that

λ2(T k) = max{ρ(T k − z) : z ∈ V (T k)}
= max{ρ((T − z)k) : z is a pendant vertex of T}.

Let z be a pendant vertex of T . By a classical result due to Lovász and Pelikán [10], ρ(T − z) ≥ 2 cos π
m+1 ,

with equality if and only if T − z is a path. By Lemma 2.5, λ2(T k) ≥ k

√
4 cos2 π

m+1 , with equality if and

only if for any pendant vertex z of T , T − z is a path, or equivalently, T is a either path or a star with three

edges.

Let e1, . . . , em be the edges of a k-uniform hyperpath Pm,k with m ≥ 3 such that vi, vi+1 ∈ ei for

i = 1, . . . ,m, where v1, vm+1 are pendant vertices and the degree of v2, . . . , vm are all of degree two. Then

e1 and em are pendant edges. We call e1 (or em) the first edge and e2 (or em−1) the second edge of Pm,k.

Theorem 4.7. Let G be a k-uniform hypertree with m ≥ 2 edges. Then,

λ2(G) ≥ k

√
4 cos2

π

m+ 1
,
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with equality if and only if G ∼= P km+1, Sk3 , or G is obtainable from a P3,k by attaching a pendant edge at a

vertex of degree one of the second edge.

Proof. If G ∼= T k for some tree T , then it follows from Lemma 4.6 that

λ2(G) ≥ k

√
4 cos2

π

m+ 1
,

with equality if and only if G ∼= P km+1, Sk3 .

Now suppose that G 6∼= T k for any tree T . Then, m ≥ 4. By Proposition 4.2, λ2(G) = max{ρ(G − z) :

z ∈ V (G)}, say λ2(G) = ρ(G− v) with v ∈ V (G). It is easy to see that v is a pendant vertex in a pendant

edge. So λ2(G) = ρ(H), where H is a k-uniform hypertree with m− 1 edges that is a proper subhypergaph

of G. By [21, Theorem 2], Pm−1,k uniquely minimizes the spectral radius among all k-uniform hypertrees

with m− 1 edges. So

ρ(H) ≥ k

√
4 cos2

π

m+ 1
,

with equality if and only if H ∼= Pm−1,k. Therefore, λ2(G) ≥ k

√
4 cos2 π

m+1 , with equality if and only if

H ∼= Pm−1,k and for any proper subhypergraph H ′ of G, ρ(H ′) ≤ ρ(H), that is, G is obtainable from a

k-uniform hyperpath with 3 edges by attaching a pendant edge at a vertex of degree one in the second edge.

Theorem 4.8. Let G be a k-uniform unicyclic hypergraph with m ≥ 3 edges, where k ≥ 3. Then,

λ2(G) ≤ k
√
m+ 1, with equality if and only if G ∼= Um,k, G1, G2, or m ≥ 4 and G ∼= G3, where G1, G2, and

G3 are obtained from Um−1,k by attaching a pendant edge at a vertex of degree 2 , a pendant vertex of e2
and a pendent vertex of e3, respectively, see Figure 2.

Figure 2. Unicyclic hypergraphs G1, G2 and G3.

Proof. By Theorem 4.1, λ2(G) ≤ ρ(H) for some connected proper induced subhypergraph H of G.

Evidently, |E(H)| ≤ m− 1, and H is either a k-uniform hypertree or a k-uniform unicyclic hypergraph.

Claim 1. ρ(Um−1,k) = k
√
m+ 1 > ρ(Sm−1,k).

Let % = ρ(Um−1,k) and x be the unique k-unit positive eigenvector of A(Um−1,k) associated with %. Let

a and b be the entries of x corresponding to the vertices of degree m− 1 and 2, respectively. By symmetry,

the entries x corresponding to the pendant vertices outside e1 and e2 are all equal, which we denote by c,

and the entries x corresponding to the pendant vertices in e1∪ e2 are all equal, which we denote by d. Then,

% satisfies the following equations:
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%ak−1 = 2bdk−2 + (m− 3)ck−1,

%bk−1 = 2adk−2,

%ck−1 = ack−2,

%dk−1 = abdk−3.

So

a =
%
k
√

2
d, b =

k
√

2d, c =
1
k
√

2
d.

Thus, % is the largest real root of the equation ρk − m − 1 = 0. It follows that % = k
√
m+ 1. Note that

ρ(Sm−1,k) = k
√
m− 1. So Claim 1 follows.

As H is either a k-uniform hypertree or a k-uniform unicyclic hypergraph, and |E(H)| ≤ m − 1, we

have by Lemma 2.7 and Claim 1 that ρ(H) ≤ k
√
m+ 1, with equality if and only if H ∼= Um−1,k. So

λ2(G) ≤ k
√
m+ 1, with equality if and only if H ∼= Um−1,k, or equivalently G ∼= Um,k, G1, G2, or G3.

Theorem 4.9. Let G be a connected r-regular k-uniform hypergraph. Then,

λ2(G) ≥ n− k
n− 1

r,

with equality if and only if G− v is regular for some v ∈ V (G).

Proof. As G is connected and r-regular, x with xw = 1
k
√
n

for any w ∈ V (G) is the k-unit positive

eigenvector associated with ρ(G) = r.

Let v ∈ V (G). Let y the restriction of x on V (G)\{v}. As ρ(G)xk−1v = (A(G)xk−1)v =
∑
e∈EG(v) x

e\{v},

we have

ρ(G)xkv = xv
∑

e∈EG(v)

xe\{v} =
∑

e∈Ev(G)

xe.

Thus,

ρ(G) = k
∑

e∈E(G)
v 6∈e

xe + k
∑

e∈Ev(G)

xe = A(G− v)yk + kρ(G)xkv .

That is, A(G− v)yk = ρ(G)(1− kxkv). By Lemma 2.8, we have

ρ(G− v) ≥ A(G− v)yk

‖yk‖
=
ρ(G)(1− kxkn)

1− xkv
=
n− k
n− 1

r,

and equality holds in the above inequality if and only if y is an eigenvector of G− v associated to ρ(G− v),

i.e., G− v is regular. Now the result follows from Proposition 4.2.

We mention that a hypergraph that attains the bound in Theorem 4.9 is not necessarily a complete

hypergraph. For example, let V (G) = [7] and

E(G) = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 3, 4}, {2, 3, 5}, {4, 6, 7}, {5, 6, 7}}.

Then, G is a connected 3-regular 3-uniform hypergraph and G− 1 is 2-regular. Note that G is not complete

as {1, 3, 4} 6∈ E(G). A more general example is as follows. A Steiner system S(t, k, n) with n > k ≥ t ≥ 2 is

a k-uniform hypergraph on n vertices, such that every t-subset of the vertices is contained in precisely one
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edge [16]. Let G be a Steiner system S(t, k, n). Then, G is connected and n−1
k−1 -regular. Let {u, v} ⊂ V (G).

The number of edges containing u and v is a2 =
(n−2
t−2)

(k−2
t−2)

. So G− u is
(
n−1
k−1 − a2

)
-regular.

Finally, we mention a related result from [8], where the bound in Theorem 4.9 is also given. Let G be

a connected k-uniform linear hypergraph on n vertices with minimum degree δ, where n > k ≥ 2. Then

λ2(G) ≥ ρ(G)− k−1

√
δ

ρ(G) , with equality if and only if G is a Steiner system S(2, k, n).

Acknowledgments. The authors thank the referee for kind and helpful comments. This work was

supported by the National Natural Science Foundation of China (No. 12071158).

REFERENCES

[1] K.C. Chang, K. Pearson, and T. Zhang. Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci.,

6:507–520, 2008.

[2] J. Cooper, and A. Dutle. Spectra of uniform hypergraphs. Linear Algebra Appl., 436:3268–3292, 2012.

[3] R. Fernandes, J. Judice, and V. Trevisan. Complementarity eigenvalue of graphs. Linear Algebra Appl., 527:216–231,

2017.

[4] S. Friedland, S. Gaubert, and L. Han. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear

Algebra Appl., 438:738–749, 2013.

[5] S. Hu, Z. Huang, and L. Qi. Strictly nonnegative tensors and nonnegative tensor partition. Sci. China Math., 57:181–195,

2014.

[6] H. Li, J. Shao, and L. Qi. The extremal spectral radii of k-uniform supertrees. J. Comb. Optim., 32:741–764, 2016.

[7] L. Lim, Singular values and eigenvalues of tensors: a variational approach. In Proceedings of the First IEEE International

Workshop on Computational Advances of Multi-Sensor Adaptive Processing, Puerto Vallarta, 129–132, 2005.

[8] H. Lin, L. Zheng, and B. Zhou. Largest and least H-eigenvalues of symmetric tensors and hypergraphs. Preprint,

arXiv:2306.14244, 2023.

[9] C. Ling, H. He, and L. Qi. On the cone eigenvalue complementarity problem for higher-order tensors. Comput. Optim.

Appl., 63:143–168, 2016.

[10] L. Lovász and J. Pelikán. On the eigenvalues of trees. Period. Math. Hungar., 3:175–182, 1973.

[11] C. Ouyang, L. Qi, and X. Yuan. The first few unicyclic and bicyclic hypergraphs with largest spectral radii. Linear

Algebra Appl., 527:141–162, 2017.

[12] K. Pearson and T. Zhang. On spectral hypergraph theory of the adjacency tensor. Graphs Combin., 30:1233–1248, 2014.

[13] L. Qi. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 40:1302–1324, 2005.

[14] L. Qi. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl., 439:228–238, 2013.

[15] A. Seeger. Complementarity eigenvalue analysis of connected graphs. Linear Algebra Appl., 543:205–225, 2018.

[16] J.H. van Lint and R.M. Wilson. A Course in Combinatorics, Second edition. Cambridge University Press, Cambridge,

2001.

[17] Y. Song and L. Qi. Eigenvalue analysis of constrained minimization problem for homogeneous system. J. Glob. Optim.,

64:563–575, 2016.

[18] Y. Song and G. Yu. Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl., 170:85–96,

2016.

[19] Y. Xu and Z. Huang. Pareto eigenvalue inclusion intervals for tensors. J. Ind. Manag. Optim., 19:2123–2139, 2023.

[20] Y. Yang and Q. Yang. Further results for Perron-Frobenius theorem for nonegative tensors. SIAM J. Matrix Anal. Appl.,

31:2517–2530, 2010.

[21] J. Zhang, J. Li, and H. Guo. Uniform hypergraphs with the first two smallest spectral radii. Linear Algebra Appl.,

594:71–80, 2020.

[22] J. Zhou, L. Sun, W. Wang, and C. Bu. Some spectral properties of uniform hypergraphs. Electron. J. Combin., 21:Paper

4.24, 2014.


	Introduction
	Preliminaries
	Pareto H-eigenvalue of a nonnegative tensor
	Pareto H-eigenvalue of a uniform hypergraph
	References

