PARETO H-EIGENVALUES OF NONNEGATIVE TENSORS AND UNIFORM HYPERGRAPHS*

LU ZHENG ${ }^{\dagger}$ AND BO ZHOU^{\dagger}

Abstract

The Pareto H-eigenvalues of nonnegative tensors and (adjacency tensors of) uniform hypergraphs are studied. Particularly, it is shown that the Pareto H-eigenvalues of a nonnegative tensor are just the spectral radii of its weakly irreducible principal subtensors, and those hypergraphs that minimize or maximize the second largest Pareto H-eigenvalue over several well-known classes of uniform hypergraphs are determined.

Key words. Pareto H-eigenvalues, Nonnegative tensor, Uniform hypergraph.

AMS subject classifications. 15A48, 05C65.

1. Introduction. A vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ is nonnegative (positive, respectively) if $x_{i} \geq 0\left(x_{i}>0\right.$, respectively) for all $i \in[n]:=\{1, \ldots, n\}$. Let $\mathbb{R}_{+}^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}\right.$ is nonnegative $\}$ and $\mathbb{R}_{++}^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}\right.$: \mathbf{x} is positive $\}$.

For positive integers k and n with $k \geq 2$, a k-order n-dimensional tensor (or hypermatrix) \mathcal{T} is a multidimensional array of n^{k} real entries of the form $\mathcal{T}=\left(t_{i_{1} \ldots i_{k}}\right)$, where $i_{1}, \ldots, i_{k} \in[n]$. A k-order n dimensional real tensor is symmetric if its entries $t_{i_{1} \ldots i_{k}}$ are invariant for any permutation of the indices i_{1}, \ldots, i_{k}. A k-order n-dimensional real tensor is said to be a nonnegative tensor if all its entries are nonnegative. For a k-order n-dimensional real tensor \mathcal{T} and an n-dimensional vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$, the product $\mathcal{T} \mathbf{x}^{k-1}$ is defined to be an n-dimensional vector so that for $i \in[n]$,

$$
\left(\mathcal{T} \mathbf{x}^{k-1}\right)_{i}=\sum_{i_{2} \in[n]} \cdots \sum_{i_{k} \in[n]} t_{i, i_{2}, \ldots, i_{k}} x_{i_{2}} \ldots x_{i_{k}}
$$

while $\mathcal{T} \mathbf{x}^{k}$ is defined as the following homogeneous polynomial

$$
\mathcal{T} \mathbf{x}^{k}=\sum_{i_{1} \in[n]} \cdots \sum_{i_{k} \in[n]} t_{i_{1}, \ldots, i_{k}} x_{i_{1}} \ldots x_{i_{k}}
$$

So $\mathcal{T} \mathbf{x}^{k}=\mathbf{x}^{\top}\left(\mathcal{T} \mathbf{x}^{k-1}\right)$. Let $\mathbf{x}^{[k]}=\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)^{\top}$.
Definition 1.1 ([13, 7]). A complex number λ is called an eigenvalue of tensor \mathcal{T} of order k and dimension n, if the system of homogeneous polynomial equations

$$
\mathcal{T} \mathbf{x}^{k-1}=\lambda \mathbf{x}^{[k-1]},
$$

i.e.,

$$
\left(\mathcal{T} \mathbf{x}^{k-1}\right)_{i}=\lambda x_{i}^{k-1} \text { for } i \in[n],
$$

[^0]has a nonzero solution \mathbf{x}. The vector \mathbf{x} is called an eigenvector of \mathcal{T} corresponding to λ. Moreover, if both λ and \mathbf{x} are real, then we call λ an H-eigenvalue and \mathbf{x} an H-eigenvector of \mathcal{T}. The spectral radius of \mathcal{T} is the largest modulus of its eigenvalues, denoted by $\rho(\mathcal{T})$. An H-eigenvalue of \mathcal{T} is called an H^{+}-eigenvalue (H^{++}-eigenvalue, respectively) of \mathcal{T} if its H-eigenvector $\mathbf{x} \in \mathbb{R}_{+}^{n}\left(\mathbf{x} \in \mathbb{R}_{++}^{n}\right.$, respectively $)$.

Pareto eigenvalues of tensors have been studied to some extent, see [9, 17, 18, 19].
Definition 1.2 ([17]). A real number λ is called a Pareto H-eigenvalue of tensor \mathcal{T} of order k and dimension n if there is a nonzero vector $\mathbf{x} \in \mathbb{R}_{+}^{n}$ satisfying

$$
\left\{\begin{array}{l}
\mathcal{T} \mathbf{x}^{k}=\lambda \mathbf{x}^{\top} \mathbf{x}^{[k-1]} \\
\mathcal{T} \mathbf{x}^{k-1}-\lambda \mathbf{x}^{[k-1]} \in \mathbb{R}_{+}^{n}
\end{array}\right.
$$

The vector \mathbf{x} is called a Pareto H-eigenvector of \mathcal{T} associated to λ.

If $k=2$ in Definition 1.2, then λ is a Pareto eigenvalue of $n \times n$ matrix \mathcal{T}, and \mathbf{x} is a Pareto H-eigenvector of \mathcal{T} associated to λ. Pareto eigenvalues for matrices are also known as complementarity eigenvalues. Fernandes et al. [3] and Seeger [15] studied the Pareto eigenvalues of adjacency matrix of a graph.

From Definitions 1.1 and 1.2 , we know that, if λ is an H^{+}-eigenvalue of \mathcal{T}, then λ is also a Pareto H-eigenvalue of \mathcal{T}.

DEfinition 1.3. Let \mathcal{T} be a tensor of order k and dimension n. For $\emptyset \neq I \subseteq[n]$, the principal subtensor of \mathcal{T} indexed by I, denoted by \mathcal{T}_{I}, is the tensor of order k and dimension $|I|$ with entries $t_{i_{1} \ldots i_{k}}$ with $i_{1}, \ldots, i_{k} \in I$.

We need the following necessary and sufficient conditions for Pareto H-eigenvalues established by Song and Qi.

Theorem 1.4 ([17]). Let \mathcal{T} be a tensor of order k and dimension n. Then λ is a Pareto H-eigenvalue of \mathcal{T} if and only if there exists I with $\emptyset \neq I \subseteq[n]$ and $\mathbf{y} \in \mathbb{R}_{++}^{|I|}$ satisfying

$$
\mathcal{T}_{I} \mathbf{y}^{k-1}=\lambda \mathbf{y}^{[k-1]}
$$

and

$$
\sum_{i_{2} \in I} \cdots \sum_{i_{k} \in I} t_{i i_{2} \ldots i_{k}} y_{i_{2}} \ldots y_{i_{k}} \geq 0 \text { for } i \in[n] \backslash I
$$

Furthermore, a Pareto H-eigenvector \mathbf{x} of \mathcal{T} associated to λ is given by

$$
x_{i}= \begin{cases}y_{i} & \text { if } i \in I \\ 0 & \text { if } i \in[n] \backslash I\end{cases}
$$

Given a positive integer $k \geq 2$, a k-uniform hypergraph G consists of a finite set of vertices $V(G)$ a set of hyperedges (or simply edges) and $E(G) \subseteq 2^{V(G)}$ such that each edge contains exactly k vertices, where $2^{V(G)}$ denotes the power set of $V(G)$. We call the numbers of vertices and edges of G as the order and size of G, respectively. A uniform hypergraph is a k-uniform hypergraph for some k. A linear hypergraph is one in which every two distinct edges intersect in at most one vertex. Let H be an ordinary graph (i.e., a 2-uniform hypergraph). For any $k \geq 3$, the k th power of H, denoted by H^{k}, is defined as the k-uniform
hypergraph with edge set $E\left(H^{k}\right)=\left\{e \cup\left\{i_{e, 1}, \ldots, i_{e, k-2}\right\}: e \in E(H)\right\}$ and vertex set $V\left(H^{k}\right)=V(H) \cup\left\{i_{e, j}\right.$: $e \in E(H), j \in[k-2]\}$.

Let G be a k-uniform hypergraph. For $v \in V(G)$, denote by $E_{G}(v)$ the set of edges containing v, and the degree of v in G, denoted by $d_{G}(v)$ or simply d_{v}, is $\left|E_{G}(v)\right|$. A vertex is called a pendant vertex if its degree is one, and an edge e is a pendant edge (at v) if v is the only vertex of e with degree more than one. A hypergraph G is r-regular if the degree of each vertex is r. Let U be a proper nonempty subset of $V(G)$, $G-U$ denotes the hypergraph obtained from G by deleting the vertices of U and the edges containing at least one vertex of U. In particular, we write $G-u$ for $G-\{u\}$ if $U=\{u\}$.

A walk is an alternating sequence $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{\ell}, v_{\ell+1}$ such that edge e_{i} contains vertices v_{i} and v_{i+1} for $i=1, \ldots, \ell$. The value ℓ is the length of this walk. A path is a walk with all v_{i} distinct and all e_{i} distinct. A cycle is a walk containing at least two edges, all e_{i} are distinct and all v_{i} are distinct except $v_{1}=v_{\ell+1}$. If G is connected and acyclic, then G is called a hypertree. If G is connected and contains exactly one cycle, then G is called a unicyclic hypergraph. It is evident that a hypertree is a linear hypergraph, while a unicyclic hypergraph is linear if the length of its unique cycle is at least three.

Definition 1.5 ([2]). Let G be a k-uniform hypergraph of order n. The adjacency tensor $\mathcal{A}(G)=$ $\left(a_{i_{1} \ldots i_{k}}\right)$ of G is defined as

$$
a_{i_{1} \ldots i_{k}}= \begin{cases}\frac{1}{(k-1)!} & \text { if }\left\{i_{1}, \ldots, i_{k}\right\} \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

The spectral radius of G is the the spectral radius of $\mathcal{A}(G)$, denoted by $\rho(G)$. That is, $\rho(G)=\rho(\mathcal{A}(G))$. The Pareto H-eigenvalues of G are just the Pareto H-eigenvalues of $\mathcal{A}(G)$.

In this paper, we study the Pareto H-eigenvalues of nonnegative tensors and uniform hypergraphs. Among others, we show that the Pareto H -eigenvalues of a nonnegative tensor are just the spectral radii of its weakly irreducible principal subtensors, and we determine those hypergraphs that minimize or maximize the second largest Pareto H-eigenvalue over some classes of uniform hypergraphs.
2. Preliminaries. In this section, we introduce some basic definitions and important lemmas that will be used.

Definition 2.1. Let \mathcal{T} be a k-order n-dimensional nonnegative tensor. If there exists some I with $\emptyset \neq I \subset[n]$ such that $t_{i_{1} \ldots i_{k}}=0$ whenever $i_{1} \in I$ and $i_{j} \in[n] \backslash I$ for some $j=2, \ldots, k$, then, \mathcal{T} is weakly reducible. Otherwise, \mathcal{T} is weakly irreducible.

The following lemma is the Perron-Frobenius Theorem for nonnegative tensors, see [1, Theorem 1.4], [20, Theorem 2.3], and [4, Theorem 4.1].

Lemma 2.2. Let \mathcal{T} be a k-order n-dimensional nonnegative tensor. Then
(i) $\rho(\mathcal{T}) \geq 0$ is an H^{+}-eigenvalue.
(ii) If \mathcal{T} is weakly irreducible, then $\rho(\mathcal{T})$ is an H^{++}-eigenvalue with a unique positive eigenvector, up to a positive scalar.
(iii) If \mathcal{T} is weakly irreducible and λ is an H-eigenvalue of \mathcal{T} with a positive eigenvector, then $\lambda=\rho(\mathcal{T})$.

A nonnegative vector $\mathbf{x} \in \mathbb{R}^{n}$ is called k-unit if $\sum_{i=1}^{n} x_{i}^{k}=1$.

For a weakly irreducible k-order n-dimensional nonnegative tensor \mathcal{T}, Lemma 2.2 (ii) implies that there is a unique k-unit positive eigenvector corresponding to $\rho(\mathcal{T})$, which is called the Perron vector.

The first part of the following lemma was given in [5] and the second part follows from Theorem 2.2.
Lemma 2.3. Let \mathcal{T} be a nonnegative tensor of order k and dimension n. Let \mathcal{T}_{1} be a principal subtensor of \mathcal{T}. Then $\rho\left(\mathcal{T}_{1}\right) \leq \rho(\mathcal{T})$. Moreover, if \mathcal{T} is irreducible and $\mathcal{T}_{1} \neq \mathcal{T}$, then $\rho\left(\mathcal{T}_{1}\right)<\rho(\mathcal{T})$.

LEMMA 2.4 ([12]). Let G be a k-uniform hypergraph on n vertices. Then $\mathcal{A}(G)$ is weakly irreducible if and only if G is connected.

Lemma 2.5 ([22]). If λ is an eigenvalue of a graph G, then $\lambda^{\frac{2}{k}}$ is an eigenvalue of G^{k}. Moreover, $\rho\left(G^{k}\right)=\sqrt[k]{\rho^{2}(G)}$.

For a k-uniform hypergraph G, denote by $\sigma(G)$ the set of Pareto H-eigenvalues of G. If G is an ordinary graph, then $\sigma(G)$ the set of Pareto eigenvalues of G.

Lemma 2.6 ([15]). Let G be a connected graph of order n. Then

$$
|\sigma(G)| \geq n
$$

with equality if and only if G is either a star, a path, a cycle, or a clique.
Denote by $S_{m, k}$ the k-uniform hyperstar with m edges, which is a k-uniform hypertree with m edges and there is a common vertex in any edge. In particular, $S_{0, k}$ is a single vertex, while $S_{1, k}$ is a single edge. The ordinary star on $n \geq 1$ vertices is $S_{n-1,2}$, denoted by S_{n}. For $k \geq 3$, let $U_{m, k}$ be the k-uniform hypergraph consisting of two edges e_{1}, e_{2} with precisely two vertices v_{1}, v_{2} in common if $m=2$, and the k-uniform hypergraph obtained from $U_{2, k}$ by attaching $m-2$ pendant edges e_{3}, \ldots, e_{m} at v_{1} if $m \geq 3$, see Figure 1 .

Figure 1. Unicyclic hypergraph $U_{m, k}$.
LEMMA 2.7 ($[6,11])$. If G is a k-uniform hypertree with m edges, then $\rho(G) \leq \sqrt[k]{m}$, with equality if and only if $G \cong S_{m, k}$. If G is a k-uniform unicyclic hypergraph with $m \geq 2$ edges, then $\rho(G) \leq \rho\left(U_{m, k}\right)$, with equality if and only if $G \cong U_{m, k}$ when $k \geq 3$.

From [14, Theorem 2] and its proof, we have the following lemma.
Lemma 2.8 ([14]). Let \mathcal{T} be a symmetric nonnegative tensor of order k and dimension n and \mathbf{x} a k-unit vector in \mathbb{R}_{+}^{n}. Then $\rho(\mathcal{T}) \geq \mathcal{T} x^{k}$, with equality if and only if \mathbf{x} is an H-eigenvector of \mathcal{T} associated with $\rho(\mathcal{T})$.
3. Pareto H-eigenvalue of a nonnegative tensor. In this section, we give necessary and sufficient conditions for Pareto H-eigenvalues of nonnegative tensors.

LEmma 3.1. Let \mathcal{T} be a k-order n-dimensional nonnegative tensor with an H^{++}-eigenvalue ρ_{0}. Then $\rho_{0}=\rho\left(\mathcal{T}_{I}\right)$ for some I with $\emptyset \neq I \subseteq[n]$ and \mathcal{T}_{I} is weakly irreducible.

Proof. If \mathcal{T} is weakly irreducible, then it follows from Lemma 2.2 that $\rho_{0}=\rho(\mathcal{T})$ and hence the result follows by setting $I=[n]$.

Suppose that \mathcal{T} is weakly reducible. Then there exists some J with $\emptyset \neq J \subset[n]$ such that $t_{i_{1} \ldots i_{k}}=0$ whenever $i_{1} \in J$ and $i_{s} \in[n] \backslash J$ for some $s=2, \ldots, k$. Let \mathbf{x} be the positive eigenvector of \mathcal{T} associated to ρ_{0}. Then, for $i_{1} \in J$, one has

$$
\rho_{0} x_{i_{1}}^{k-1}=\sum_{i_{2}, \ldots, i_{k} \in[n]} t_{i_{1} \ldots i_{k}} x_{i_{2}} \ldots x_{i_{k}}=\sum_{i_{2}, \ldots, i_{k} \in J} t_{i_{1} \ldots i_{k}} x_{i_{2}} \ldots x_{i_{k}}=\left(\mathcal{T}_{J} \mathbf{x}_{J}^{k-1}\right)_{i_{1}},
$$

so

$$
\rho_{0} \mathbf{x}_{J}^{[k-1]}=\mathcal{T}_{J} \mathbf{x}_{J}^{k-1}
$$

This means that ρ_{0} is an H^{++}-eigenvalue \mathcal{T}_{J}. If \mathcal{T}_{J} is weakly irreducible, then by Lemma 2.2, $\rho_{0}=\rho\left(\mathcal{T}_{J}\right)$, so we are done by setting $I=J$. Otherwise, by repeating the above process to T_{J}, we may finally find some I with $\emptyset \neq I \subset J \subset[n]$ such that $\rho_{0}=\rho\left(\mathcal{T}_{I}\right)$ and \mathcal{T}_{I} is weakly irreducible.

Consider the case when $k=2$ in Lemma 3.1. Note that ρ_{0} is not necessarily the spectral radius of each maximal irreducible principal submatrix of \mathcal{T}. For example, let

$$
\mathcal{T}=\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 1 & 3
\end{array}\right)
$$

Evidently, $\mathcal{T} \mathbf{j}=4 \mathbf{j}$ with $\mathbf{j}=(1,1,1)^{\top}$, and 4 is not the spectral radius of the principal submatrix (3).
Theorem 3.2. Let \mathcal{T} be a nonnegative tensor of order k and dimension n. Then, λ is a Pareto H eigenvalue of \mathcal{T} if and only if there exists some I with $\emptyset \neq I \subseteq[n]$ such that \mathcal{T}_{I} is weakly irreducible and $\lambda=\rho\left(\mathcal{T}_{I}\right)$.

Proof. By Theorem 1.4, λ is a Pareto H-eigenvalue of \mathcal{T} if and only if λ is an H^{++}-eigenvalue of A_{J} for some J with $\emptyset \neq J \subseteq[n]$.

By Lemma 3.1, λ is an H^{++}-eigenvalue of A_{J} if and only if $\lambda=\rho\left(\mathcal{T}_{I}\right)$ for some I with $\emptyset \neq I \subseteq J$ and \mathcal{T}_{I} is weakly irreducible. So the result follows.

By Theorem 3.2, any diagonal entry of a nonnegative tensor of order k and dimension n is a Pareto H-eigenvalue of \mathcal{T}.

Corollary 3.3. Let \mathcal{T} be a nonnegative tensor of order k and dimension n.
(i) All Pareto H-eigenvalues of \mathcal{T} are nonnegative.
(ii) $\rho(\mathcal{T})$ is the largest Pareto H-eigenvalue of \mathcal{T}.
(iii) 0 is the smallest Pareto H-eigenvalue of \mathcal{T}.

Proof. (i) follows from Theorem 1.4 trivially.

By Lemma 2.2 (i), $\rho(\mathcal{T})$ is an H^{+}-eigenvalue of \mathcal{T}, so $\rho(T)$ is a Pareto H -eigenvalue of \mathcal{T}. Let λ be any Pareto H-eigenvalue of \mathcal{T}. By Theorem 3.2, $\lambda=\rho\left(\mathcal{T}_{I}\right)$ for some I with $\emptyset \neq I \subseteq[n]$. By Lemma 2.3, $\lambda=\rho\left(\mathcal{T}_{I}\right) \leq \rho(\mathcal{T})$. This proves (ii).

Take $i \in[n]$. Let $\mathbf{x} \in \mathbb{R}^{n}$ with $x_{i}=1$ and $x_{j}=0$ for $j \in[n] \backslash\{i\}$. Then,

$$
\left(\mathcal{T} \mathbf{x}^{k-1}\right)_{i}=\sum_{i_{2} \in[n]} \cdots \sum_{i_{k} \in[n]} t_{i, i_{2}, \ldots, i_{k}} x_{i_{2}} \ldots x_{i_{k}}=0,
$$

and

$$
\left(\mathcal{T} \mathbf{x}^{k-1}\right)_{j}=\sum_{i_{2} \in[n]} \cdots \sum_{i_{k} \in[n]} t_{j, i_{2}, \ldots, i_{k}} x_{i_{2}} \ldots x_{i_{k}} \geq 0 .
$$

Applying Theorem 1.4 by setting $I=\{i\}$ and (i), we know that 0 is the smallest Pareto H -eigenvalue of \mathcal{T}. This proves (iii).
4. Pareto H-eigenvalue of a uniform hypergraph. Let G be a k-uniform hypergraph. By Lemma $2.2, \rho(G)$ is the largest H^{+}-eigenvalue. If G is connected, then by Lemmas 2.4 and $2.2, \rho(G)$ is the largest H^{++}-eigenvalue. Recall that $\sigma(G)$ denotes the set of Pareto H-eigenvalues of G.

Theorem 4.1. Let G be a connected k-uniform hypergraph on n vertices. Then,

$$
\sigma(G)=\{\rho(H): H \text { is a connected induced subhypergraph of } G\} .
$$

Proof. Let λ be any Pareto H-eigenvalue of G. By Theorem 3.2, $\lambda=\rho\left(\mathcal{A}(G)_{I}\right)$ for some I with $\emptyset \neq I \subseteq$ $[n]$ such that $\mathcal{A}(G)_{I}$ is weakly irreducible. Let H be the subhypergraph of G induced by I. By Lemma 2.4, H is connected. Note that $\mathcal{A}(H)=\mathcal{A}(G)_{I}$. So $\lambda=\rho\left(\mathcal{A}(G)_{I}\right)=\rho(H)$. Thus,

$$
\sigma(G) \subseteq\{\rho(H): H \text { is a connected induced subhypergraph of } G\} \text {. }
$$

Conversely, if H is a connected induced subhypergraph of G, then $\mathcal{A}(H)$ is a principal subtensor of $\mathcal{A}(G)$, and by Proposition 2.4, $\mathcal{A}(H)$ is weakly irreducible, so by Theorem 3.2, $\rho(H)=\rho(\mathcal{A}(H))$ is a Pareto H -eigenvalue of G. So
$\sigma(G) \supseteq\{\rho(H): H$ is a connected induced subhypergraph of $G\}$.
This completes the proof.
Let G be a k-uniform hypergraph. By Theorem 4.1 and Lemma 2.4, $\rho(G)$ is the largest Pareto Heigenvalue of G. For a k-uniform hypergraph with at least one edge, we denote by $\lambda_{2}(G)$ the second largest Pareto H-eigenvalue of G.

Proposition 4.2. Let G be a connected k-uniform hypergraph with at least one edge. Then,

$$
\lambda_{2}(G)=\max \{\rho(G-v): v \in V(G)\} .
$$

Proof. Let $r=\max \{\rho(G-v): v \in V(G)\}$, say $r=\rho(G-w)$ with $w \in V(G)$. By Lemma 2.3, r is the largest spectral radius among all proper induced subhypergraphs of G whether $G-w$ is connected or not. By Theorem 4.1, $\lambda_{2}(G)=r$.

For a hypergraph G, denote by $S(G)$ the set of representatives of all isomorphic connected induced subhypergraphs of G. A connected k-uniform hypergraph G is said to be spectrally scattered if for any connected induced subhypergraph H of G, the spectral radius of $\mathcal{A}(H)$ are all different. Let G be a connected k-uniform hypergraph, then from Theorem 4.1,

$$
|\sigma(G)| \leq|S(G)|
$$

with equality if and only if G is spectrally scattered.
Let $P_{m, k}$ be the k-uniform hyperpath with m edges. Particularly, $P_{0, k}$ is a single vertex. The ordinary path on n vertices is $P_{n}=P_{n-1,2}$. Let $C_{m, k}$ be the k-uniform hypercycle with m edges, where $m \geq 2$ if $k \geq 3$ and $m \geq 3$ if $k=2$. The ordinary cycle on $n \geq 3$ vertices is $C_{n}=C_{n, 2}$. Let K_{n} be the complete graph on vertices.

Theorem 4.3. Let G be a connected graph with $n \geq 3$ vertices. For $k \geq 3$,

$$
\left|\sigma\left(G^{k}\right)\right| \geq n
$$

with equality if and only if G is a path or a star.
Proof. Note that

$$
\left\{H^{k}: H \in S(G)\right\} \subseteq S\left(G^{k}\right)
$$

By Theorem 4.1, we have

$$
\sigma\left(G^{k}\right)=\left\{\rho(H): H \in S\left(G^{k}\right)\right\} \supseteq\left\{\rho\left(H^{k}\right): H \in S(G)\right\}
$$

Now, by Lemmas 2.5 and 2.6, we have $\left|\sigma\left(G^{k}\right)\right| \geq|\sigma(G)| \geq n$.
Suppose that $\left|\sigma\left(G^{k}\right)\right|=n$. By the above argument, $|\sigma(G)|=n$, so by Lemma 2.6, $G \cong S_{n}, P_{n}, C_{n}, K_{n}$. Obviously, $S\left(S_{n}^{k}\right)=\left\{S_{1}^{k}, S_{2}^{k}, \ldots, S_{n}^{k}\right\}$ and $S\left(P_{n}^{k}\right)=\left\{P_{1}^{k}, P_{2}^{k}, \ldots, P_{n}^{k}\right\}$. Let U be the set of the $k-2$ vertices of degree one in an arbitrary but fixed edge of C_{n}^{k}. Then, $C_{n}^{k}-U \cong P_{n}^{k}$. So $S\left(C_{n}^{k}\right)=\left\{P_{1}^{k}, P_{2}^{k}, \ldots, P_{n}^{k}, C_{n}^{k}\right\}$. Note that $\rho\left(S_{t}\right)=\sqrt{t-1}, \rho\left(P_{t}\right)=2 \cos \frac{\pi}{t+1}$ and if $t \geq 3, \rho\left(C_{t}\right)=2$. By Lemma 2.5, $\rho\left(S_{t}\right)^{k}=\sqrt[k]{t-1}$, $\rho\left(P_{t}^{k}\right)=\sqrt[k]{4 \cos ^{2} \frac{\pi}{t+1}}$ and if $t \geq 3, \rho\left(C_{t}^{k}\right)=\sqrt[k]{4}$. Thus, we have

$$
\begin{gathered}
\sigma\left(S_{n}^{k}\right)=\{\sqrt[k]{t-1}: t=1, \ldots, n\} \\
\sigma\left(P_{n}^{k}\right)=\left\{\sqrt[k]{4 \cos ^{2} \frac{\pi}{t+1}}: t=1, \ldots, n\right\}
\end{gathered}
$$

and

$$
\sigma\left(C_{n}^{k}\right)=\sigma\left(P_{n}^{k}\right) \cup\{\sqrt[k]{4}\}
$$

Hence, $\left|\sigma\left(P_{n}^{k}\right)\right|=\left|\sigma\left(S_{n}^{k}\right)\right|=n$ and $\left|\sigma\left(C_{n}^{k}\right)\right|=n+1$. It remains to check the size of $\sigma\left(K_{n}^{k}\right)$ with $n \geq 3$. For any edge $e \in E\left(K_{n}^{k}\right)$, deleting the $k-2$ vertices of e from K_{n}^{k} results in $\left(K_{n}-e\right)^{k}$, which is is a connected, so

$$
\left\{K_{1}^{k}, K_{2}^{k}, \ldots, K_{n}^{k},\left(K_{n}-e\right)^{k}\right\} \subseteq S\left(K_{n}^{k}\right)
$$

For $i=1, \ldots, n-1, K_{i}$ is a proper subgraph of $K_{n}-e$ and $K_{n}-e$ is a proper subgraph of K_{n}, so, for $i=1, \ldots, n$, we have $\rho\left(K_{i}\right)<\rho\left(K_{n}-e\right)$. Now by Lemma 2.5 that $\left|\sigma\left(K_{n}^{k}\right)\right|>n$. It follows that G is a star or a path.

Conversely, if G is a star or a path, then, as above, it is easy to see that $\left|\sigma\left(G^{k}\right)\right|=n$.

ThEOREM 4.4. Let G be a connected linear k-uniform hypergraph with diameter d. Then, $a_{0}=0, a_{1}=1$, $a_{2}=\sqrt[k]{2}, \ldots, a_{d}=\sqrt[k]{4 \cos ^{2} \frac{\pi}{d+2}}$ are always the Pareto H-eigenvalues of G.

Proof. Note that G has an induced subhypergrraph that is isomorphic to $P_{d, k}$. By Theorem 4.1, we have $\sigma\left(P_{d, k}\right) \subseteq \sigma(G)$.

Denote by $D_{m, k ; 1}$ the k-uniform hypertree obtained from $S_{m-1, k}$ by attaching a pendant edge at a vertex of degree one, where $m \geq 3$.

THEOREM 4.5. Let G be a k-uniform hypertree with $m \geq 1$ edges. Then, $\lambda_{2}(G) \leq \sqrt[k]{m-1}$, with equality if and only if $G \cong S_{m, k}$, or $m \geq 3$ and $G \cong D_{m, k ; 1}$.

Proof. If $m=1,2$, then $G \cong S_{m, k}$ with $\lambda_{2}(G)=\rho\left(S_{m-1, k}\right)=\sqrt[k]{m-1}$, so the result holds. Suppose that $m \geq 3$. By Theorem 4.1, $\lambda_{2}(G) \leq \rho(H)$ for some connected proper induced subhypergraph H of G. It is evident that H is a k-uniform hypertree with at most $m-1$ edges. By Lemma 2.7, $\rho(H) \leq \sqrt[k]{m-1}$, with equality if and only if $H \cong S_{m-1, k}$. It thus follows that $\lambda_{2}(G) \leq \sqrt[k]{m-1}$, with equality if and only if $H \cong S_{m-1, k}$, or equivalently, $G \cong S_{m, k}$ or $D_{m, k ; 1}$.

Lemma 4.6. Let T be a tree with $m \geq 2$ edges. Then,

$$
\lambda_{2}\left(T^{k}\right) \geq \sqrt[k]{4 \cos ^{2} \frac{\pi}{m+1}}
$$

with equality if and only if T is either a path or a star with three edges.
Proof. Let w be a vertex with degree at least two. Let H be a component of $T-w$ with maximum spectral radius. Let v be a pendant vertex of T that belongs to a component of $T-w$ different from H. Then, H is a proper induced subgraph of $T-v$. By Lemmas 2.4 and 2.3, $\rho(H)<\rho(T-v)$. So, we have by Lemma 2.5 that $\rho\left(T^{k}-w\right)=\rho\left((T-w)^{k}\right)=\rho\left(H^{k}\right)<\rho\left((T-v)^{k}\right)$.

Let $e=x y$ be an edge of T that is not a pendant edge. For any vertex $i_{e, j}$ of T^{k}, we denote by G the component of $T^{k}-i_{e, j}$ with maximum spectral radius. We may assume that $G=T_{1}^{k}$, where T_{1} is a component of $T-x$ or $T-y$. Letting v be a pendant vertex of T lying outside T_{1}, T_{1} is a proper induced subgraph of $T-v$. So, by Lemmas 2.4 and 2.3, $\rho\left(T_{1}\right)<\rho(T-v)$. By Lemma 2.5, $\rho\left(T^{k}-i_{e, j}\right)=\rho\left(T_{1}^{k}\right)<\rho\left((T-v)^{k}\right)$. Therefore, we have by Proposition 4.2 that

$$
\begin{aligned}
\lambda_{2}\left(T^{k}\right) & =\max \left\{\rho\left(T^{k}-z\right): z \in V\left(T^{k}\right)\right\} \\
& =\max \left\{\rho\left((T-z)^{k}\right): z \text { is a pendant vertex of } T\right\}
\end{aligned}
$$

Let z be a pendant vertex of T. By a classical result due to Lovász and Pelikán [10], $\rho(T-z) \geq 2 \cos \frac{\pi}{m+1}$, with equality if and only if $T-z$ is a path. By Lemma $2.5, \lambda_{2}\left(T^{k}\right) \geq \sqrt[k]{4 \cos ^{2} \frac{\pi}{m+1}}$, with equality if and only if for any pendant vertex z of $T, T-z$ is a path, or equivalently, T is a either path or a star with three edges.

Let e_{1}, \ldots, e_{m} be the edges of a k-uniform hyperpath $P_{m, k}$ with $m \geq 3$ such that $v_{i}, v_{i+1} \in e_{i}$ for $i=1, \ldots, m$, where v_{1}, v_{m+1} are pendant vertices and the degree of v_{2}, \ldots, v_{m} are all of degree two. Then e_{1} and e_{m} are pendant edges. We call $e_{1}\left(\right.$ or $\left.e_{m}\right)$ the first edge and e_{2} (or e_{m-1}) the second edge of $P_{m, k}$.

ThEOREM 4.7. Let G be a k-uniform hypertree with $m \geq 2$ edges. Then,

$$
\lambda_{2}(G) \geq \sqrt[k]{4 \cos ^{2} \frac{\pi}{m+1}}
$$

with equality if and only if $G \cong P_{m+1}^{k}, S_{3}^{k}$, or G is obtainable from a $P_{3, k}$ by attaching a pendant edge at a vertex of degree one of the second edge.

Proof. If $G \cong T^{k}$ for some tree T, then it follows from Lemma 4.6 that

$$
\lambda_{2}(G) \geq \sqrt[k]{4 \cos ^{2} \frac{\pi}{m+1}}
$$

with equality if and only if $G \cong P_{m+1}^{k}, S_{3}^{k}$.
Now suppose that $G \not \approx T^{k}$ for any tree T. Then, $m \geq 4$. By Proposition 4.2, $\lambda_{2}(G)=\max \{\rho(G-z)$: $z \in V(G)\}$, say $\lambda_{2}(G)=\rho(G-v)$ with $v \in V(G)$. It is easy to see that v is a pendant vertex in a pendant edge. So $\lambda_{2}(G)=\rho(H)$, where H is a k-uniform hypertree with $m-1$ edges that is a proper subhypergaph of G. By [21, Theorem 2], $P_{m-1, k}$ uniquely minimizes the spectral radius among all k-uniform hypertrees with $m-1$ edges. So

$$
\rho(H) \geq \sqrt[k]{4 \cos ^{2} \frac{\pi}{m+1}}
$$

with equality if and only if $H \cong P_{m-1, k}$. Therefore, $\lambda_{2}(G) \geq \sqrt[k]{4 \cos ^{2} \frac{\pi}{m+1}}$, with equality if and only if $H \cong P_{m-1, k}$ and for any proper subhypergraph H^{\prime} of $G, \rho\left(H^{\prime}\right) \leq \rho(H)$, that is, G is obtainable from a k-uniform hyperpath with 3 edges by attaching a pendant edge at a vertex of degree one in the second edge. \square

THEOREM 4.8. Let G be a k-uniform unicyclic hypergraph with $m \geq 3$ edges, where $k \geq 3$. Then, $\lambda_{2}(G) \leq \sqrt[k]{m+1}$, with equality if and only if $G \cong U_{m, k}, G_{1}, G_{2}$, or $m \geq 4$ and $G \cong G_{3}$, where G_{1}, G_{2}, and G_{3} are obtained from $U_{m-1, k}$ by attaching a pendant edge at a vertex of degree 2 , a pendant vertex of e_{2} and a pendent vertex of e_{3}, respectively, see Figure 2.

Figure 2. Unicyclic hypergraphs G_{1}, G_{2} and G_{3}.
Proof. By Theorem 4.1, $\lambda_{2}(G) \leq \rho(H)$ for some connected proper induced subhypergraph H of G. Evidently, $|E(H)| \leq m-1$, and H is either a k-uniform hypertree or a k-uniform unicyclic hypergraph.

Claim 1. $\rho\left(U_{m-1, k}\right)=\sqrt[k]{m+1}>\rho\left(S_{m-1, k}\right)$.
Let $\varrho=\rho\left(U_{m-1, k}\right)$ and \mathbf{x} be the unique k-unit positive eigenvector of $\mathcal{A}\left(U_{m-1, k}\right)$ associated with ϱ. Let a and b be the entries of \mathbf{x} corresponding to the vertices of degree $m-1$ and 2 , respectively. By symmetry, the entries \mathbf{x} corresponding to the pendant vertices outside e_{1} and e_{2} are all equal, which we denote by c, and the entries \mathbf{x} corresponding to the pendant vertices in $e_{1} \cup e_{2}$ are all equal, which we denote by d. Then, ϱ satisfies the following equations:

$$
\begin{aligned}
& \varrho a^{k-1}=2 b d^{k-2}+(m-3) c^{k-1}, \\
& \varrho b^{k-1}=2 a d^{k-2} \\
& \varrho c^{k-1}=a c^{k-2}, \\
& \varrho d^{k-1}=a b d^{k-3} .
\end{aligned}
$$

So

$$
a=\frac{\varrho}{\sqrt[k]{2}} d, b=\sqrt[k]{2} d, c=\frac{1}{\sqrt[k]{2}} d
$$

Thus, ϱ is the largest real root of the equation $\rho^{k}-m-1=0$. It follows that $\varrho=\sqrt[k]{m+1}$. Note that $\rho\left(S_{m-1, k}\right)=\sqrt[k]{m-1}$. So Claim 1 follows.

As H is either a k-uniform hypertree or a k-uniform unicyclic hypergraph, and $|E(H)| \leq m-1$, we have by Lemma 2.7 and Claim 1 that $\rho(H) \leq \sqrt[k]{m+1}$, with equality if and only if $H \cong U_{m-1, k}$. So $\lambda_{2}(G) \leq \sqrt[k]{m+1}$, with equality if and only if $H \cong U_{m-1, k}$, or equivalently $G \cong U_{m, k}, G_{1}, G_{2}$, or G_{3}.

Theorem 4.9. Let G be a connected r-regular k-uniform hypergraph. Then,

$$
\lambda_{2}(G) \geq \frac{n-k}{n-1} r,
$$

with equality if and only if $G-v$ is regular for some $v \in V(G)$.
Proof. As G is connected and r-regular, \mathbf{x} with $x_{w}=\frac{1}{\sqrt[k]{n}}$ for any $w \in V(G)$ is the k-unit positive eigenvector associated with $\rho(G)=r$.

Let $v \in V(G)$. Let \mathbf{y} the restriction of \mathbf{x} on $V(G) \backslash\{v\}$. As $\rho(G) x_{v}^{k-1}=\left(\mathcal{A}(G) x^{k-1}\right)_{v}=\sum_{e \in E_{G}(v)} x^{e \backslash\{v\}}$, we have

$$
\rho(G) x_{v}^{k}=x_{v} \sum_{e \in E_{G}(v)} x^{e \backslash\{v\}}=\sum_{e \in E_{v}(G)} x^{e} .
$$

Thus,

$$
\rho(G)=k \sum_{\substack{e \in E(G) \\ v \notin e}} \mathbf{x}^{e}+k \sum_{e \in E_{v}(G)} \mathbf{x}^{e}=\mathcal{A}(G-v) \mathbf{y}^{k}+k \rho(G) x_{v}^{k} .
$$

That is, $\mathcal{A}(G-v) \mathbf{y}^{k}=\rho(G)\left(1-k x_{v}^{k}\right)$. By Lemma 2.8, we have

$$
\rho(G-v) \geq \frac{\mathcal{A}(G-v) \mathbf{y}^{k}}{\left\|\mathbf{y}^{k}\right\|}=\frac{\rho(G)\left(1-k x_{n}^{k}\right)}{1-x_{v}^{k}}=\frac{n-k}{n-1} r,
$$

and equality holds in the above inequality if and only if \mathbf{y} is an eigenvector of $G-v$ associated to $\rho(G-v)$, i.e., $G-v$ is regular. Now the result follows from Proposition 4.2.

We mention that a hypergraph that attains the bound in Theorem 4.9 is not necessarily a complete hypergraph. For example, let $V(G)=[7]$ and

$$
E(G)=\{\{1,2,3\},\{1,4,5\},\{1,6,7\},\{2,3,4\},\{2,3,5\},\{4,6,7\},\{5,6,7\}\} .
$$

Then, G is a connected 3 -regular 3-uniform hypergraph and $G-1$ is 2 -regular. Note that G is not complete as $\{1,3,4\} \notin E(G)$. A more general example is as follows. A Steiner system $S(t, k, n)$ with $n>k \geq t \geq 2$ is a k-uniform hypergraph on n vertices, such that every t-subset of the vertices is contained in precisely one
edge [16]. Let G be a Steiner system $S(t, k, n)$. Then, G is connected and $\frac{n-1}{k-1}$-regular. Let $\{u, v\} \subset V(G)$. The number of edges containing u and v is $a_{2}=\frac{\binom{n-2}{t-2}}{\binom{k-2}{t-2}}$. So $G-u$ is $\left(\frac{n-1}{k-1}-a_{2}\right)$-regular.

Finally, we mention a related result from [8], where the bound in Theorem 4.9 is also given. Let G be a connected k-uniform linear hypergraph on n vertices with minimum degree δ, where $n>k \geq 2$. Then $\lambda_{2}(G) \geq \rho(G)-\sqrt[k-1]{\frac{\delta}{\rho(G)}}$, with equality if and only if G is a Steiner system $S(2, k, n)$.

Acknowledgments. The authors thank the referee for kind and helpful comments. This work was supported by the National Natural Science Foundation of China (No. 12071158).

REFERENCES

[1] K.C. Chang, K. Pearson, and T. Zhang. Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci., 6:507-520, 2008.
[2] J. Cooper, and A. Dutle. Spectra of uniform hypergraphs. Linear Algebra Appl., 436:3268-3292, 2012.
[3] R. Fernandes, J. Judice, and V. Trevisan. Complementarity eigenvalue of graphs. Linear Algebra Appl., 527:216-231, 2017.
[4] S. Friedland, S. Gaubert, and L. Han. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl., 438:738-749, 2013.
[5] S. Hu, Z. Huang, and L. Qi. Strictly nonnegative tensors and nonnegative tensor partition. Sci. China Math., 57:181-195, 2014.
[6] H. Li, J. Shao, and L. Qi. The extremal spectral radii of k-uniform supertrees. J. Comb. Optim., 32:741-764, 2016.
[7] L. Lim, Singular values and eigenvalues of tensors: a variational approach. In Proceedings of the First IEEE International Workshop on Computational Advances of Multi-Sensor Adaptive Processing, Puerto Vallarta, 129-132, 2005.
[8] H. Lin, L. Zheng, and B. Zhou. Largest and least H-eigenvalues of symmetric tensors and hypergraphs. Preprint, arXiv:2306.14244, 2023.
[9] C. Ling, H. He, and L. Qi. On the cone eigenvalue complementarity problem for higher-order tensors. Comput. Optim. Appl., 63:143-168, 2016.
[10] L. Lovász and J. Pelikán. On the eigenvalues of trees. Period. Math. Hungar., 3:175-182, 1973.
[11] C. Ouyang, L. Qi, and X. Yuan. The first few unicyclic and bicyclic hypergraphs with largest spectral radii. Linear Algebra Appl., 527:141-162, 2017.
[12] K. Pearson and T. Zhang. On spectral hypergraph theory of the adjacency tensor. Graphs Combin., 30:1233-1248, 2014.
[13] L. Qi. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 40:1302-1324, 2005.
[14] L. Qi. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl., 439:228-238, 2013.
[15] A. Seeger. Complementarity eigenvalue analysis of connected graphs. Linear Algebra Appl., 543:205-225, 2018.
[16] J.H. van Lint and R.M. Wilson. A Course in Combinatorics, Second edition. Cambridge University Press, Cambridge, 2001.
[17] Y. Song and L. Qi. Eigenvalue analysis of constrained minimization problem for homogeneous system. J. Glob. Optim., 64:563-575, 2016.
[18] Y. Song and G. Yu. Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl., 170:85-96, 2016.
[19] Y. Xu and Z. Huang. Pareto eigenvalue inclusion intervals for tensors. J. Ind. Manag. Optim., 19:2123-2139, 2023.
[20] Y. Yang and Q. Yang. Further results for Perron-Frobenius theorem for nonegative tensors. SIAM J. Matrix Anal. Appl., 31:2517-2530, 2010.
[21] J. Zhang, J. Li, and H. Guo. Uniform hypergraphs with the first two smallest spectral radii. Linear Algebra Appl., 594:71-80, 2020.
[22] J. Zhou, L. Sun, W. Wang, and C. Bu. Some spectral properties of uniform hypergraphs. Electron. J. Combin., 21:Paper 4.24, 2014.

[^0]: *Received by the editors on March 24, 2023. Accepted for publication on July 15, 2023. Handling Editor: Froilán Dopico. Corresponding Author: Bo Zhou.
 ${ }^{\dagger}$ School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China (zhenglu@m.scnu.edu.cn, zhoubo@scnu.edu.cn).

