

PARETO H-EIGENVALUES OF NONNEGATIVE TENSORS AND UNIFORM HYPERGRAPHS*

LU ZHENG † AND BO ZHOU †

Abstract. The Pareto H-eigenvalues of nonnegative tensors and (adjacency tensors of) uniform hypergraphs are studied. Particularly, it is shown that the Pareto H-eigenvalues of a nonnegative tensor are just the spectral radii of its weakly irreducible principal subtensors, and those hypergraphs that minimize or maximize the second largest Pareto H-eigenvalue over several well-known classes of uniform hypergraphs are determined.

Key words. Pareto H-eigenvalues, Nonnegative tensor, Uniform hypergraph.

AMS subject classifications. 15A48, 05C65.

1. Introduction. A vector $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ is nonnegative (positive, respectively) if $x_i \geq 0$ ($x_i > 0$, respectively) for all $i \in [n] := \{1, \dots, n\}$. Let $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} \text{ is nonnegative}\}$ and $\mathbb{R}^n_{++} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} \text{ is positive}\}$.

For positive integers k and n with $k \geq 2$, a k-order n-dimensional tensor (or hypermatrix) \mathcal{T} is a multidimensional array of n^k real entries of the form $\mathcal{T} = (t_{i_1...i_k})$, where $i_1, ..., i_k \in [n]$. A k-order n-dimensional real tensor is symmetric if its entries $t_{i_1...i_k}$ are invariant for any permutation of the indices $i_1, ..., i_k$. A k-order n-dimensional real tensor is said to be a nonnegative tensor if all its entries are nonnegative. For a k-order n-dimensional real tensor \mathcal{T} and an n-dimensional vector $\mathbf{x} = (x_1, ..., x_n)^{\top}$, the product $\mathcal{T}\mathbf{x}^{k-1}$ is defined to be an n-dimensional vector so that for $i \in [n]$,

$$(\mathcal{T}\mathbf{x}^{k-1})_i = \sum_{i_2 \in [n]} \cdots \sum_{i_k \in [n]} t_{i,i_2,\dots,i_k} x_{i_2} \dots x_{i_k},$$

while $\mathcal{T}\mathbf{x}^k$ is defined as the following homogeneous polynomial

$$\mathcal{T}\mathbf{x}^k = \sum_{i_1 \in [n]} \cdots \sum_{i_k \in [n]} t_{i_1, \dots, i_k} x_{i_1} \dots x_{i_k}.$$

So
$$\mathcal{T}\mathbf{x}^k = \mathbf{x}^{\top}(\mathcal{T}\mathbf{x}^{k-1})$$
. Let $\mathbf{x}^{[k]} = (x_1^k, \dots, x_n^k)^{\top}$.

DEFINITION 1.1 ([13, 7]). A complex number λ is called an eigenvalue of tensor \mathcal{T} of order k and dimension n, if the system of homogeneous polynomial equations

$$\mathcal{T}\mathbf{x}^{k-1} = \lambda \mathbf{x}^{[k-1]},$$

i.e.,

$$(\mathcal{T}\mathbf{x}^{k-1})_i = \lambda x_i^{k-1} \text{ for } i \in [n],$$

^{*}Received by the editors on March 24, 2023. Accepted for publication on July 15, 2023. Handling Editor: Froilán Dopico. Corresponding Author: Bo Zhou.

[†]School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China (zhenglu@m.scnu.edu.cn, zhoubo@scnu.edu.cn).

L. Zheng and B. Zhou

has a nonzero solution \mathbf{x} . The vector \mathbf{x} is called an eigenvector of \mathcal{T} corresponding to λ . Moreover, if both λ and \mathbf{x} are real, then we call λ an H-eigenvalue and \mathbf{x} an H-eigenvector of \mathcal{T} . The spectral radius of \mathcal{T} is the largest modulus of its eigenvalues, denoted by $\rho(\mathcal{T})$. An H-eigenvalue of \mathcal{T} is called an H^+ -eigenvalue (H^{++} -eigenvalue, respectively) of \mathcal{T} if its H-eigenvector $\mathbf{x} \in \mathbb{R}^n_+$ ($\mathbf{x} \in \mathbb{R}^n_{++}$, respectively).

Pareto eigenvalues of tensors have been studied to some extent, see [9, 17, 18, 19].

DEFINITION 1.2 ([17]). A real number λ is called a Pareto H-eigenvalue of tensor \mathcal{T} of order k and dimension n if there is a nonzero vector $\mathbf{x} \in \mathbb{R}^n_+$ satisfying

$$\begin{cases} \mathcal{T}\mathbf{x}^k = \lambda \mathbf{x}^{\top} \mathbf{x}^{[k-1]}, \\ \mathcal{T}\mathbf{x}^{k-1} - \lambda \mathbf{x}^{[k-1]} \in \mathbb{R}^n_+. \end{cases}$$

The vector \mathbf{x} is called a Pareto H-eigenvector of \mathcal{T} associated to λ .

If k = 2 in Definition 1.2, then λ is a Pareto eigenvalue of $n \times n$ matrix \mathcal{T} , and \mathbf{x} is a Pareto H-eigenvector of \mathcal{T} associated to λ . Pareto eigenvalues for matrices are also known as complementarity eigenvalues. Fernandes et al. [3] and Seeger [15] studied the Pareto eigenvalues of adjacency matrix of a graph.

From Definitions 1.1 and 1.2, we know that, if λ is an H⁺-eigenvalue of \mathcal{T} , then λ is also a Pareto H-eigenvalue of \mathcal{T} .

DEFINITION 1.3. Let \mathcal{T} be a tensor of order k and dimension n. For $\emptyset \neq I \subseteq [n]$, the principal subtensor of \mathcal{T} indexed by I, denoted by \mathcal{T}_I , is the tensor of order k and dimension |I| with entries $t_{i_1...i_k}$ with $i_1, ..., i_k \in I$.

We need the following necessary and sufficient conditions for Pareto H-eigenvalues established by Song and Qi.

THEOREM 1.4 ([17]). Let \mathcal{T} be a tensor of order k and dimension n. Then λ is a Pareto H-eigenvalue of \mathcal{T} if and only if there exists I with $\emptyset \neq I \subseteq [n]$ and $\mathbf{y} \in \mathbb{R}_{++}^{|I|}$ satisfying

$$\mathcal{T}_I \mathbf{y}^{k-1} = \lambda \mathbf{y}^{[k-1]},$$

and

$$\sum_{i_2 \in I} \cdots \sum_{i_k \in I} t_{ii_2...i_k} y_{i_2} \dots y_{i_k} \ge 0 \text{ for } i \in [n] \setminus I.$$

Furthermore, a Pareto H-eigenvector \mathbf{x} of \mathcal{T} associated to λ is given by

$$x_i = \begin{cases} y_i & \text{if } i \in I, \\ 0 & \text{if } i \in [n] \setminus I. \end{cases}$$

Given a positive integer $k \geq 2$, a k-uniform hypergraph G consists of a finite set of vertices V(G) a set of hyperedges (or simply edges) and $E(G) \subseteq 2^{V(G)}$ such that each edge contains exactly k vertices, where $2^{V(G)}$ denotes the power set of V(G). We call the numbers of vertices and edges of G as the order and size of G, respectively. A uniform hypergraph is a k-uniform hypergraph for some k. A linear hypergraph is one in which every two distinct edges intersect in at most one vertex. Let H be an ordinary graph (i.e., a 2-uniform hypergraph). For any $k \geq 3$, the kth power of H, denoted by H^k , is defined as the k-uniform

424

hypergraph with edge set $E(H^k) = \{e \cup \{i_{e,1}, \dots, i_{e,k-2}\} : e \in E(H)\}$ and vertex set $V(H^k) = V(H) \cup \{i_{e,j} : e \in E(H), j \in [k-2]\}$.

Let G be a k-uniform hypergraph. For $v \in V(G)$, denote by $E_G(v)$ the set of edges containing v, and the degree of v in G, denoted by $d_G(v)$ or simply d_v , is $|E_G(v)|$. A vertex is called a pendant vertex if its degree is one, and an edge e is a pendant edge (at v) if v is the only vertex of e with degree more than one. A hypergraph G is r-regular if the degree of each vertex is r. Let U be a proper nonempty subset of V(G), G-U denotes the hypergraph obtained from G by deleting the vertices of U and the edges containing at least one vertex of U. In particular, we write G-u for $G-\{u\}$ if $U=\{u\}$.

A walk is an alternating sequence $v_1, e_1, v_2, e_2, \ldots, e_\ell, v_{\ell+1}$ such that edge e_i contains vertices v_i and v_{i+1} for $i=1,\ldots,\ell$. The value ℓ is the length of this walk. A path is a walk with all v_i distinct and all e_i distinct. A cycle is a walk containing at least two edges, all e_i are distinct and all v_i are distinct except $v_1 = v_{\ell+1}$. If G is connected and acyclic, then G is called a hypertree. If G is connected and contains exactly one cycle, then G is called a unicyclic hypergraph. It is evident that a hypertree is a linear hypergraph, while a unicyclic hypergraph is linear if the length of its unique cycle is at least three.

DEFINITION 1.5 ([2]). Let G be a k-uniform hypergraph of order n. The adjacency tensor $\mathcal{A}(G) = (a_{i_1...i_k})$ of G is defined as

$$a_{i_1...i_k} = \begin{cases} \frac{1}{(k-1)!} & \text{if } \{i_1, \dots, i_k\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

The spectral radius of G is the the spectral radius of $\mathcal{A}(G)$, denoted by $\rho(G)$. That is, $\rho(G) = \rho(\mathcal{A}(G))$. The Pareto H-eigenvalues of G are just the Pareto H-eigenvalues of $\mathcal{A}(G)$.

In this paper, we study the Pareto H-eigenvalues of nonnegative tensors and uniform hypergraphs. Among others, we show that the Pareto H-eigenvalues of a nonnegative tensor are just the spectral radii of its weakly irreducible principal subtensors, and we determine those hypergraphs that minimize or maximize the second largest Pareto H-eigenvalue over some classes of uniform hypergraphs.

2. Preliminaries. In this section, we introduce some basic definitions and important lemmas that will be used.

DEFINITION 2.1. Let \mathcal{T} be a k-order n-dimensional nonnegative tensor. If there exists some I with $\emptyset \neq I \subset [n]$ such that $t_{i_1...i_k} = 0$ whenever $i_1 \in I$ and $i_j \in [n] \setminus I$ for some j = 2, ..., k, then, \mathcal{T} is weakly reducible. Otherwise, \mathcal{T} is weakly irreducible.

The following lemma is the Perron–Frobenius Theorem for nonnegative tensors, see [1, Theorem 1.4], [20, Theorem 2.3], and [4, Theorem 4.1].

Lemma 2.2. Let \mathcal{T} be a k-order n-dimensional nonnegative tensor. Then

- (i) $\rho(\mathcal{T}) \geq 0$ is an H^+ -eigenvalue.
- (ii) If \mathcal{T} is weakly irreducible, then $\rho(\mathcal{T})$ is an H^{++} -eigenvalue with a unique positive eigenvector, up to a positive scalar.
- (iii) If \mathcal{T} is weakly irreducible and λ is an H-eigenvalue of \mathcal{T} with a positive eigenvector, then $\lambda = \rho(\mathcal{T})$.

A nonnegative vector $\mathbf{x} \in \mathbb{R}^n$ is called k-unit if $\sum_{i=1}^n x_i^k = 1$.

L. Zheng and B. Zhou

For a weakly irreducible k-order n-dimensional nonnegative tensor \mathcal{T} , Lemma 2.2 (ii) implies that there is a unique k-unit positive eigenvector corresponding to $\rho(\mathcal{T})$, which is called the Perron vector.

The first part of the following lemma was given in [5] and the second part follows from Theorem 2.2.

LEMMA 2.3. Let \mathcal{T} be a nonnegative tensor of order k and dimension n. Let \mathcal{T}_1 be a principal subtensor of \mathcal{T} . Then $\rho(\mathcal{T}_1) \leq \rho(\mathcal{T})$. Moreover, if \mathcal{T} is irreducible and $\mathcal{T}_1 \neq \mathcal{T}$, then $\rho(\mathcal{T}_1) < \rho(\mathcal{T})$.

LEMMA 2.4 ([12]). Let G be a k-uniform hypergraph on n vertices. Then A(G) is weakly irreducible if and only if G is connected.

LEMMA 2.5 ([22]). If λ is an eigenvalue of a graph G, then $\lambda^{\frac{2}{k}}$ is an eigenvalue of G^k . Moreover, $\rho(G^k) = \sqrt[k]{\rho^2(G)}$.

For a k-uniform hypergraph G, denote by $\sigma(G)$ the set of Pareto H-eigenvalues of G. If G is an ordinary graph, then $\sigma(G)$ the set of Pareto eigenvalues of G.

Lemma 2.6 ([15]). Let G be a connected graph of order n. Then

$$|\sigma(G)| \ge n$$
,

with equality if and only if G is either a star, a path, a cycle, or a clique.

Denote by $S_{m,k}$ the k-uniform hyperstar with m edges, which is a k-uniform hypertree with m edges and there is a common vertex in any edge. In particular, $S_{0,k}$ is a single vertex, while $S_{1,k}$ is a single edge. The ordinary star on $n \geq 1$ vertices is $S_{n-1,2}$, denoted by S_n . For $k \geq 3$, let $U_{m,k}$ be the k-uniform hypergraph consisting of two edges e_1, e_2 with precisely two vertices v_1, v_2 in common if m = 2, and the k-uniform hypergraph obtained from $U_{2,k}$ by attaching m-2 pendant edges e_3, \ldots, e_m at v_1 if $m \geq 3$, see Figure 1.

FIGURE 1. Unicyclic hypergraph $U_{m,k}$.

LEMMA 2.7 ([6, 11]). If G is a k-uniform hypertree with m edges, then $\rho(G) \leq \sqrt[k]{m}$, with equality if and only if $G \cong S_{m,k}$. If G is a k-uniform unicyclic hypergraph with $m \geq 2$ edges, then $\rho(G) \leq \rho(U_{m,k})$, with equality if and only if $G \cong U_{m,k}$ when $k \geq 3$.

From [14, Theorem 2] and its proof, we have the following lemma.

LEMMA 2.8 ([14]). Let \mathcal{T} be a symmetric nonnegative tensor of order k and dimension n and \mathbf{x} a k-unit vector in \mathbb{R}^n_+ . Then $\rho(\mathcal{T}) \geq \mathcal{T} x^k$, with equality if and only if \mathbf{x} is an H-eigenvector of \mathcal{T} associated with $\rho(\mathcal{T})$.

426

3. Pareto H-eigenvalue of a nonnegative tensor. In this section, we give necessary and sufficient conditions for Pareto H-eigenvalues of nonnegative tensors.

LEMMA 3.1. Let \mathcal{T} be a k-order n-dimensional nonnegative tensor with an H^{++} -eigenvalue ρ_0 . Then $\rho_0 = \rho(\mathcal{T}_I)$ for some I with $\emptyset \neq I \subseteq [n]$ and \mathcal{T}_I is weakly irreducible.

Proof. If \mathcal{T} is weakly irreducible, then it follows from Lemma 2.2 that $\rho_0 = \rho(\mathcal{T})$ and hence the result follows by setting I = [n].

Suppose that \mathcal{T} is weakly reducible. Then there exists some J with $\emptyset \neq J \subset [n]$ such that $t_{i_1...i_k} = 0$ whenever $i_1 \in J$ and $i_s \in [n] \setminus J$ for some s = 2, ..., k. Let \mathbf{x} be the positive eigenvector of \mathcal{T} associated to ρ_0 . Then, for $i_1 \in J$, one has

$$\rho_0 x_{i_1}^{k-1} = \sum_{i_2, \dots, i_k \in [n]} t_{i_1 \dots i_k} x_{i_2} \dots x_{i_k} = \sum_{i_2, \dots, i_k \in J} t_{i_1 \dots i_k} x_{i_2} \dots x_{i_k} = \left(\mathcal{T}_J \mathbf{x}_J^{k-1} \right)_{i_1},$$

SO

$$\rho_0 \mathbf{x}_J^{[k-1]} = \mathcal{T}_J \mathbf{x}_J^{k-1}.$$

This means that ρ_0 is an H⁺⁺-eigenvalue \mathcal{T}_J . If \mathcal{T}_J is weakly irreducible, then by Lemma 2.2, $\rho_0 = \rho(\mathcal{T}_J)$, so we are done by setting I = J. Otherwise, by repeating the above process to T_J , we may finally find some I with $\emptyset \neq I \subset J \subset [n]$ such that $\rho_0 = \rho(\mathcal{T}_I)$ and \mathcal{T}_I is weakly irreducible.

Consider the case when k=2 in Lemma 3.1. Note that ρ_0 is not necessarily the spectral radius of each maximal irreducible principal submatrix of \mathcal{T} . For example, let

$$\mathcal{T} = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 1 & 3 \end{pmatrix}.$$

Evidently, $\mathcal{T}\mathbf{j} = 4\mathbf{j}$ with $\mathbf{j} = (1, 1, 1)^{\mathsf{T}}$, and 4 is not the spectral radius of the principal submatrix (3).

THEOREM 3.2. Let \mathcal{T} be a nonnegative tensor of order k and dimension n. Then, λ is a Pareto H-eigenvalue of \mathcal{T} if and only if there exists some I with $\emptyset \neq I \subseteq [n]$ such that \mathcal{T}_I is weakly irreducible and $\lambda = \rho(\mathcal{T}_I)$.

Proof. By Theorem 1.4, λ is a Pareto H-eigenvalue of \mathcal{T} if and only if λ is an H⁺⁺-eigenvalue of A_J for some J with $\emptyset \neq J \subseteq [n]$.

By Lemma 3.1, λ is an H⁺⁺-eigenvalue of A_J if and only if $\lambda = \rho(\mathcal{T}_I)$ for some I with $\emptyset \neq I \subseteq J$ and \mathcal{T}_I is weakly irreducible. So the result follows.

By Theorem 3.2, any diagonal entry of a nonnegative tensor of order k and dimension n is a Pareto H-eigenvalue of \mathcal{T} .

COROLLARY 3.3. Let \mathcal{T} be a nonnegative tensor of order k and dimension n.

- (i) All Pareto H-eigenvalues of \mathcal{T} are nonnegative.
- (ii) $\rho(\mathcal{T})$ is the largest Pareto H-eigenvalue of \mathcal{T} .
- (iii) 0 is the smallest Pareto H-eigenvalue of \mathcal{T} .

Proof. (i) follows from Theorem 1.4 trivially.

L. Zheng and B. Zhou

By Lemma 2.2 (i), $\rho(\mathcal{T})$ is an H⁺-eigenvalue of \mathcal{T} , so $\rho(T)$ is a Pareto H-eigenvalue of \mathcal{T} . Let λ be any Pareto H-eigenvalue of \mathcal{T} . By Theorem 3.2, $\lambda = \rho(\mathcal{T}_I)$ for some I with $\emptyset \neq I \subseteq [n]$. By Lemma 2.3, $\lambda = \rho(\mathcal{T}_I) \leq \rho(\mathcal{T})$. This proves (ii).

Take $i \in [n]$. Let $\mathbf{x} \in \mathbb{R}^n$ with $x_i = 1$ and $x_j = 0$ for $j \in [n] \setminus \{i\}$. Then,

$$(\mathcal{T}\mathbf{x}^{k-1})_i = \sum_{i_2 \in [n]} \cdots \sum_{i_k \in [n]} t_{i,i_2,\dots,i_k} x_{i_2} \dots x_{i_k} = 0,$$

and

$$\left(\mathcal{T}\mathbf{x}^{k-1}\right)_j = \sum_{i_2 \in [n]} \cdots \sum_{i_k \in [n]} t_{j,i_2,\dots,i_k} x_{i_2} \dots x_{i_k} \ge 0.$$

Applying Theorem 1.4 by setting $I = \{i\}$ and (i), we know that 0 is the smallest Pareto H-eigenvalue of \mathcal{T} . This proves (iii).

4. Pareto H-eigenvalue of a uniform hypergraph. Let G be a k-uniform hypergraph. By Lemma 2.2, $\rho(G)$ is the largest H⁺-eigenvalue. If G is connected, then by Lemmas 2.4 and 2.2, $\rho(G)$ is the largest H⁺⁺-eigenvalue. Recall that $\sigma(G)$ denotes the set of Pareto H-eigenvalues of G.

Theorem 4.1. Let G be a connected k-uniform hypergraph on n vertices. Then,

$$\sigma(G) = \{ \rho(H) : H \text{ is a connected induced subhypergraph of } G \}.$$

Proof. Let λ be any Pareto H-eigenvalue of G. By Theorem 3.2, $\lambda = \rho(\mathcal{A}(G)_I)$ for some I with $\emptyset \neq I \subseteq [n]$ such that $\mathcal{A}(G)_I$ is weakly irreducible. Let H be the subhypergraph of G induced by I. By Lemma 2.4, H is connected. Note that $\mathcal{A}(H) = \mathcal{A}(G)_I$. So $\lambda = \rho(\mathcal{A}(G)_I) = \rho(H)$. Thus,

$$\sigma(G) \subseteq {\rho(H) : H \text{ is a connected induced subhypergraph of } G}.$$

Conversely, if H is a connected induced subhypergraph of G, then $\mathcal{A}(H)$ is a principal subtensor of $\mathcal{A}(G)$, and by Proposition 2.4, $\mathcal{A}(H)$ is weakly irreducible, so by Theorem 3.2, $\rho(H) = \rho(\mathcal{A}(H))$ is a Pareto H-eigenvalue of G. So

 $\sigma(G) \supseteq {\rho(H) : H \text{ is a connected induced subhypergraph of } G}.$

This completes the proof.

Let G be a k-uniform hypergraph. By Theorem 4.1 and Lemma 2.4, $\rho(G)$ is the largest Pareto H-eigenvalue of G. For a k-uniform hypergraph with at least one edge, we denote by $\lambda_2(G)$ the second largest Pareto H-eigenvalue of G.

PROPOSITION 4.2. Let G be a connected k-uniform hypergraph with at least one edge. Then,

$$\lambda_2(G) = \max\{\rho(G - v) : v \in V(G)\}.$$

Proof. Let $r = \max\{\rho(G - v) : v \in V(G)\}$, say $r = \rho(G - w)$ with $w \in V(G)$. By Lemma 2.3, r is the largest spectral radius among all proper induced subhypergraphs of G whether G - w is connected or not. By Theorem 4.1, $\lambda_2(G) = r$.

428

Pareto H-eigenvalues of nonnegative tensors and uniform hypergraphs

For a hypergraph G, denote by S(G) the set of representatives of all isomorphic connected induced subhypergraphs of G. A connected k-uniform hypergraph G is said to be spectrally scattered if for any connected induced subhypergraph H of G, the spectral radius of A(H) are all different. Let G be a connected k-uniform hypergraph, then from Theorem 4.1,

$$|\sigma(G)| \le |S(G)|,$$

with equality if and only if G is spectrally scattered.

Let $P_{m,k}$ be the k-uniform hyperpath with m edges. Particularly, $P_{0,k}$ is a single vertex. The ordinary path on n vertices is $P_n = P_{n-1,2}$. Let $C_{m,k}$ be the k-uniform hypercycle with m edges, where $m \geq 2$ if $k \geq 3$ and $m \geq 3$ if k = 2. The ordinary cycle on $n \geq 3$ vertices is $C_n = C_{n,2}$. Let K_n be the complete graph on vertices.

THEOREM 4.3. Let G be a connected graph with $n \geq 3$ vertices. For $k \geq 3$,

$$|\sigma(G^k)| \ge n$$
,

with equality if and only if G is a path or a star.

Proof. Note that

$${H^k : H \in S(G)} \subseteq S(G^k).$$

By Theorem 4.1, we have

$$\sigma(G^k) = {\rho(H) : H \in S(G^k)} \supset {\rho(H^k) : H \in S(G)}.$$

Now, by Lemmas 2.5 and 2.6, we have $|\sigma(G^k)| \ge |\sigma(G)| \ge n$.

Suppose that $|\sigma(G^k)| = n$. By the above argument, $|\sigma(G)| = n$, so by Lemma 2.6, $G \cong S_n, P_n, C_n, K_n$. Obviously, $S(S_n^k) = \{S_1^k, S_2^k, \dots, S_n^k\}$ and $S(P_n^k) = \{P_1^k, P_2^k, \dots, P_n^k\}$. Let U be the set of the k-2 vertices of degree one in an arbitrary but fixed edge of C_n^k . Then, $C_n^k - U \cong P_n^k$. So $S(C_n^k) = \{P_1^k, P_2^k, \dots, P_n^k, C_n^k\}$. Note that $\rho(S_t) = \sqrt{t-1}$, $\rho(P_t) = 2\cos\frac{\pi}{t+1}$ and if $t \geq 3$, $\rho(C_t) = 2$. By Lemma 2.5, $\rho(S_t)^k = \sqrt[k]{t-1}$, $\rho(P_t^k) = \sqrt[k]{4\cos^2\frac{\pi}{t+1}}$ and if $t \geq 3$, $\rho(C_t^k) = \sqrt[k]{4}$. Thus, we have

$$\sigma(S_n^k) = \{ \sqrt[k]{t-1} : t = 1, \dots, n \},$$

$$\sigma(P_n^k) = \{ \sqrt[k]{4\cos^2 \frac{\pi}{t+1}} : t = 1, \dots, n \},$$

and

$$\sigma(C_n^k) = \sigma(P_n^k) \cup \{\sqrt[k]{4}\}.$$

Hence, $|\sigma(P_n^k)| = |\sigma(S_n^k)| = n$ and $|\sigma(C_n^k)| = n + 1$. It remains to check the size of $\sigma(K_n^k)$ with $n \ge 3$. For any edge $e \in E(K_n^k)$, deleting the k-2 vertices of e from K_n^k results in $(K_n - e)^k$, which is is a connected, so

$$\{K_1^k, K_2^k, \dots, K_n^k, (K_n - e)^k\} \subseteq S(K_n^k).$$

For i = 1, ..., n - 1, K_i is a proper subgraph of $K_n - e$ and $K_n - e$ is a proper subgraph of K_n , so, for i = 1, ..., n, we have $\rho(K_i) < \rho(K_n - e)$. Now by Lemma 2.5 that $|\sigma(K_n^k)| > n$. It follows that G is a star or a path.

Conversely, if G is a star or a path, then, as above, it is easy to see that $|\sigma(G^k)| = n$.

L. Zheng and B. Zhou

THEOREM 4.4. Let G be a connected linear k-uniform hypergraph with diameter d. Then, $a_0 = 0$, $a_1 = 1$, $a_2 = \sqrt[k]{2}, \ldots, a_d = \sqrt[k]{4\cos^2\frac{\pi}{d+2}}$ are always the Pareto H-eigenvalues of G.

Proof. Note that G has an induced subhypergraph that is isomorphic to $P_{d,k}$. By Theorem 4.1, we have $\sigma(P_{d,k}) \subseteq \sigma(G)$.

Denote by $D_{m,k;1}$ the k-uniform hypertree obtained from $S_{m-1,k}$ by attaching a pendant edge at a vertex of degree one, where $m \geq 3$.

THEOREM 4.5. Let G be a k-uniform hypertree with $m \ge 1$ edges. Then, $\lambda_2(G) \le \sqrt[k]{m-1}$, with equality if and only if $G \cong S_{m,k}$, or $m \ge 3$ and $G \cong D_{m,k;1}$.

Proof. If m=1,2, then $G\cong S_{m,k}$ with $\lambda_2(G)=\rho(S_{m-1,k})=\sqrt[k]{m-1}$, so the result holds. Suppose that $m\geq 3$. By Theorem 4.1, $\lambda_2(G)\leq \rho(H)$ for some connected proper induced subhypergraph H of G. It is evident that H is a k-uniform hypertree with at most m-1 edges. By Lemma 2.7, $\rho(H)\leq \sqrt[k]{m-1}$, with equality if and only if $H\cong S_{m-1,k}$. It thus follows that $\lambda_2(G)\leq \sqrt[k]{m-1}$, with equality if and only if $H\cong S_{m-1,k}$, or equivalently, $G\cong S_{m,k}$ or $D_{m,k;1}$.

LEMMA 4.6. Let T be a tree with $m \geq 2$ edges. Then,

$$\lambda_2(T^k) \ge \sqrt[k]{4\cos^2\frac{\pi}{m+1}},$$

with equality if and only if T is either a path or a star with three edges.

Proof. Let w be a vertex with degree at least two. Let H be a component of T-w with maximum spectral radius. Let v be a pendant vertex of T that belongs to a component of T-w different from H. Then, H is a proper induced subgraph of T-v. By Lemmas 2.4 and 2.3, $\rho(H) < \rho(T-v)$. So, we have by Lemma 2.5 that $\rho(T^k-w) = \rho((T-w)^k) = \rho(H^k) < \rho((T-v)^k)$.

Let e=xy be an edge of T that is not a pendant edge. For any vertex $i_{e,j}$ of T^k , we denote by G the component of $T^k-i_{e,j}$ with maximum spectral radius. We may assume that $G=T_1^k$, where T_1 is a component of T-x or T-y. Letting v be a pendant vertex of T lying outside T_1 , T_1 is a proper induced subgraph of T-v. So, by Lemmas 2.4 and 2.3, $\rho(T_1) < \rho(T-v)$. By Lemma 2.5, $\rho(T^k-i_{e,j}) = \rho(T_1^k) < \rho((T-v)^k)$. Therefore, we have by Proposition 4.2 that

$$\lambda_2(T^k) = \max\{\rho(T^k - z) : z \in V(T^k)\}$$

= \text{max}\{\rho((T - z)^k) : z is a pendant vertex of T}\}.

Let z be a pendant vertex of T. By a classical result due to Lovász and Pelikán [10], $\rho(T-z) \geq 2\cos\frac{\pi}{m+1}$, with equality if and only if T-z is a path. By Lemma 2.5, $\lambda_2(T^k) \geq \sqrt[k]{4\cos^2\frac{\pi}{m+1}}$, with equality if and only if for any pendant vertex z of T, T-z is a path, or equivalently, T is a either path or a star with three edges.

Let e_1, \ldots, e_m be the edges of a k-uniform hyperpath $P_{m,k}$ with $m \geq 3$ such that $v_i, v_{i+1} \in e_i$ for $i = 1, \ldots, m$, where v_1, v_{m+1} are pendant vertices and the degree of v_2, \ldots, v_m are all of degree two. Then e_1 and e_m are pendant edges. We call e_1 (or e_m) the first edge and e_2 (or e_{m-1}) the second edge of $P_{m,k}$.

THEOREM 4.7. Let G be a k-uniform hypertree with $m \geq 2$ edges. Then,

$$\lambda_2(G) \ge \sqrt[k]{4\cos^2\frac{\pi}{m+1}},$$

with equality if and only if $G \cong P_{m+1}^k$, S_3^k , or G is obtainable from a $P_{3,k}$ by attaching a pendant edge at a vertex of degree one of the second edge.

Proof. If $G \cong T^k$ for some tree T, then it follows from Lemma 4.6 that

$$\lambda_2(G) \ge \sqrt[k]{4\cos^2\frac{\pi}{m+1}},$$

with equality if and only if $G \cong P_{m+1}^k$, S_3^k .

Now suppose that $G \not\cong T^k$ for any tree T. Then, $m \geq 4$. By Proposition 4.2, $\lambda_2(G) = \max\{\rho(G-z) : z \in V(G)\}$, say $\lambda_2(G) = \rho(G-v)$ with $v \in V(G)$. It is easy to see that v is a pendant vertex in a pendant edge. So $\lambda_2(G) = \rho(H)$, where H is a k-uniform hypertree with m-1 edges that is a proper subhypergaph of G. By [21, Theorem 2], $P_{m-1,k}$ uniquely minimizes the spectral radius among all k-uniform hypertrees with m-1 edges. So

$$\rho(H) \ge \sqrt[k]{4\cos^2\frac{\pi}{m+1}},$$

with equality if and only if $H \cong P_{m-1,k}$. Therefore, $\lambda_2(G) \geq \sqrt[k]{4\cos^2\frac{\pi}{m+1}}$, with equality if and only if $H \cong P_{m-1,k}$ and for any proper subhypergraph H' of G, $\rho(H') \leq \rho(H)$, that is, G is obtainable from a k-uniform hyperpath with 3 edges by attaching a pendant edge at a vertex of degree one in the second edge. \square

THEOREM 4.8. Let G be a k-uniform unicyclic hypergraph with $m \geq 3$ edges, where $k \geq 3$. Then, $\lambda_2(G) \leq \sqrt[k]{m+1}$, with equality if and only if $G \cong U_{m,k}$, G_1, G_2 , or $m \geq 4$ and $G \cong G_3$, where G_1 , G_2 , and G_3 are obtained from $U_{m-1,k}$ by attaching a pendant edge at a vertex of degree 2, a pendant vertex of e_2 and a pendent vertex of e_3 , respectively, see Figure 2.

Figure 2. Unicyclic hypergraphs G_1 , G_2 and G_3 .

Proof. By Theorem 4.1, $\lambda_2(G) \leq \rho(H)$ for some connected proper induced subhypergraph H of G. Evidently, $|E(H)| \leq m-1$, and H is either a k-uniform hypertree or a k-uniform unicyclic hypergraph.

Claim 1.
$$\rho(U_{m-1,k}) = \sqrt[k]{m+1} > \rho(S_{m-1,k}).$$

Let $\varrho = \rho(U_{m-1,k})$ and \mathbf{x} be the unique k-unit positive eigenvector of $\mathcal{A}(U_{m-1,k})$ associated with ϱ . Let a and b be the entries of \mathbf{x} corresponding to the vertices of degree m-1 and 2, respectively. By symmetry, the entries \mathbf{x} corresponding to the pendant vertices outside e_1 and e_2 are all equal, which we denote by c, and the entries \mathbf{x} corresponding to the pendant vertices in $e_1 \cup e_2$ are all equal, which we denote by d. Then, ϱ satisfies the following equations:

L. Zheng and B. Zhou

$$\begin{split} \varrho a^{k-1} &= 2bd^{k-2} + (m-3)c^{k-1}, \\ \varrho b^{k-1} &= 2ad^{k-2}, \\ \varrho c^{k-1} &= ac^{k-2}, \\ \varrho d^{k-1} &= abd^{k-3}. \end{split}$$

So

$$a = \frac{\varrho}{\sqrt[k]{2}}d, \ b = \sqrt[k]{2}d, \ c = \frac{1}{\sqrt[k]{2}}d.$$

Thus, ϱ is the largest real root of the equation $\rho^k - m - 1 = 0$. It follows that $\varrho = \sqrt[k]{m+1}$. Note that $\rho(S_{m-1,k}) = \sqrt[k]{m-1}$. So Claim 1 follows.

As H is either a k-uniform hypertree or a k-uniform unicyclic hypergraph, and $|E(H)| \leq m-1$, we have by Lemma 2.7 and Claim 1 that $\rho(H) \leq \sqrt[k]{m+1}$, with equality if and only if $H \cong U_{m-1,k}$. So $\lambda_2(G) \leq \sqrt[k]{m+1}$, with equality if and only if $H \cong U_{m-1,k}$, or equivalently $G \cong U_{m,k}, G_1, G_2$, or G_3 .

THEOREM 4.9. Let G be a connected r-regular k-uniform hypergraph. Then,

$$\lambda_2(G) \ge \frac{n-k}{n-1}r,$$

with equality if and only if G - v is regular for some $v \in V(G)$.

Proof. As G is connected and r-regular, \mathbf{x} with $x_w = \frac{1}{\sqrt[k]{n}}$ for any $w \in V(G)$ is the k-unit positive eigenvector associated with $\rho(G) = r$.

Let $v \in V(G)$. Let **y** the restriction of **x** on $V(G) \setminus \{v\}$. As $\rho(G)x_v^{k-1} = (\mathcal{A}(G)x^{k-1})_v = \sum_{e \in E_G(v)} x^{e \setminus \{v\}}$, we have

$$\rho(G)x_v^k = x_v \sum_{e \in E_G(v)} x^{e \setminus \{v\}} = \sum_{e \in E_v(G)} x^e.$$

Thus,

$$\rho(G) = k \sum_{\substack{e \in E(G) \\ v \neq e}} \mathbf{x}^e + k \sum_{e \in E_v(G)} \mathbf{x}^e = \mathcal{A}(G - v) \mathbf{y}^k + k \rho(G) x_v^k.$$

That is, $\mathcal{A}(G-v)\mathbf{y}^k = \rho(G)(1-kx_v^k)$. By Lemma 2.8, we have

$$\rho(G - v) \ge \frac{\mathcal{A}(G - v)\mathbf{y}^k}{\|\mathbf{y}^k\|} = \frac{\rho(G)(1 - kx_n^k)}{1 - x_v^k} = \frac{n - k}{n - 1}r,$$

and equality holds in the above inequality if and only if **y** is an eigenvector of G-v associated to $\rho(G-v)$, i.e., G-v is regular. Now the result follows from Proposition 4.2.

We mention that a hypergraph that attains the bound in Theorem 4.9 is not necessarily a complete hypergraph. For example, let V(G) = [7] and

$$E(G) = \{\{1, 2, 3\}, \{1, 4, 5\}, \{1, 6, 7\}, \{2, 3, 4\}, \{2, 3, 5\}, \{4, 6, 7\}, \{5, 6, 7\}\}.$$

Then, G is a connected 3-regular 3-uniform hypergraph and G-1 is 2-regular. Note that G is not complete as $\{1,3,4\} \notin E(G)$. A more general example is as follows. A Steiner system S(t,k,n) with $n > k \ge t \ge 2$ is a k-uniform hypergraph on n vertices, such that every t-subset of the vertices is contained in precisely one

Pareto H-eigenvalues of nonnegative tensors and uniform hypergraphs

edge [16]. Let G be a Steiner system S(t,k,n). Then, G is connected and $\frac{n-1}{k-1}$ -regular. Let $\{u,v\} \subset V(G)$. The number of edges containing u and v is $a_2 = \frac{\binom{n-2}{t-2}}{\binom{k-2}{t-2}}$. So G - u is $\binom{n-1}{k-1} - a_2$ -regular.

Finally, we mention a related result from [8], where the bound in Theorem 4.9 is also given. Let G be a connected k-uniform linear hypergraph on n vertices with minimum degree δ , where $n > k \ge 2$. Then $\lambda_2(G) \ge \rho(G) - \sqrt[k-1]{\frac{\delta}{\rho(G)}}$, with equality if and only if G is a Steiner system S(2, k, n).

Acknowledgments. The authors thank the referee for kind and helpful comments. This work was supported by the National Natural Science Foundation of China (No. 12071158).

REFERENCES

- [1] K.C. Chang, K. Pearson, and T. Zhang. Perron-Frobenius theorem for nonnegative tensors. *Commun. Math. Sci.*, 6:507–520, 2008.
- [2] J. Cooper, and A. Dutle. Spectra of uniform hypergraphs. Linear Algebra Appl., 436:3268–3292, 2012.
- [3] R. Fernandes, J. Judice, and V. Trevisan. Complementarity eigenvalue of graphs. Linear Algebra Appl., 527:216-231, 2017.
- [4] S. Friedland, S. Gaubert, and L. Han. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. *Linear Algebra Appl.*, 438:738–749, 2013.
- [5] S. Hu, Z. Huang, and L. Qi. Strictly nonnegative tensors and nonnegative tensor partition. Sci. China Math., 57:181–195, 2014.
- [6] H. Li, J. Shao, and L. Qi. The extremal spectral radii of k-uniform supertrees. J. Comb. Optim., 32:741-764, 2016.
- [7] L. Lim, Singular values and eigenvalues of tensors: a variational approach. In Proceedings of the First IEEE International Workshop on Computational Advances of Multi-Sensor Adaptive Processing, Puerto Vallarta, 129–132, 2005.
- [8] H. Lin, L. Zheng, and B. Zhou. Largest and least H-eigenvalues of symmetric tensors and hypergraphs. Preprint, arXiv:2306.14244, 2023.
- [9] C. Ling, H. He, and L. Qi. On the cone eigenvalue complementarity problem for higher-order tensors. *Comput. Optim. Appl.*, 63:143–168, 2016.
- [10] L. Lovász and J. Pelikán. On the eigenvalues of trees. Period. Math. Hungar., 3:175–182, 1973.
- [11] C. Ouyang, L. Qi, and X. Yuan. The first few unicyclic and bicyclic hypergraphs with largest spectral radii. Linear Algebra Appl., 527:141–162, 2017.
- [12] K. Pearson and T. Zhang. On spectral hypergraph theory of the adjacency tensor. Graphs Combin., 30:1233-1248, 2014.
- [13] L. Qi. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 40:1302-1324, 2005.
- [14] L. Qi. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl., 439:228–238, 2013.
- [15] A. Seeger. Complementarity eigenvalue analysis of connected graphs. Linear Algebra Appl., 543:205–225, 2018.
- [16] J.H. van Lint and R.M. Wilson. A Course in Combinatorics, Second edition. Cambridge University Press, Cambridge, 2001.
- [17] Y. Song and L. Qi. Eigenvalue analysis of constrained minimization problem for homogeneous system. J. Glob. Optim., 64:563-575, 2016.
- [18] Y. Song and G. Yu. Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl., 170:85–96, 2016.
- [19] Y. Xu and Z. Huang. Pareto eigenvalue inclusion intervals for tensors. J. Ind. Manag. Optim., 19:2123–2139, 2023.
- [20] Y. Yang and Q. Yang. Further results for Perron-Frobenius theorem for nonegative tensors. SIAM J. Matrix Anal. Appl., 31:2517–2530, 2010.
- [21] J. Zhang, J. Li, and H. Guo. Uniform hypergraphs with the first two smallest spectral radii. Linear Algebra Appl., 594:71–80, 2020.
- [22] J. Zhou, L. Sun, W. Wang, and C. Bu. Some spectral properties of uniform hypergraphs. Electron. J. Combin., 21:Paper 4.24, 2014.